
Evaluating a lightweight transcriptome assembly pipeline on 
two closely related ascidian species

De novo transcriptome sequencing and assembly for non-model organisms has become 

prevalent in the past decade. However, most assembly approaches are computationally 

expensive, and little in-depth evaluation has been done to compare de novo approaches. We 

sequenced several developmental stages of two free-spawning marine species—Molgula 

occulta and Molgula oculata—assembled their transcriptomes using four different 

combinations of preprocessing and assembly approaches, and evaluated the quality of the 

assembly. We present a straightforward and reproducible mRNAseq assembly protocol that 

combines quality filtering, digital normalization, and assembly, together with several metrics to

evaluate our de novo assemblies. The use of digital normalization in the protocol reduces the 

time and memory needed to complete the assembly and makes this pipeline available to labs 

without large computing infrastructure. Despite varying widely in basic assembly statistics, all 

of the assembled transcriptomes evaluate well in metrics such as gene recovery and 

estimated completeness.
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ABSTRACT

De novo transcriptome sequencing and assembly for non-model organisms has become prevalent in the past decade.
However, most assembly approaches are computationally expensive, and little in-depth evaluation has been done to compare
de novo approaches. We sequenced several developmental stages of two free-spawning marine species—Molgula occulta
and Molgula oculata—assembled their transcriptomes using four different combinations of preprocessing and assembly
approaches, and evaluated the quality of the assembly. We present a straightforward and reproducible mRNAseq assembly
protocol that combines quality filtering, digital normalization, and assembly, together with several metrics to evaluate our de
novo assemblies. The use of digital normalization in the protocol reduces the time and memory needed to complete the
assembly and makes this pipeline available to labs without large computing infrastructure. Despite varying widely in basic
assembly statistics, all of the assembled transcriptomes evaluate well in metrics such as gene recovery and estimated
completeness.
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1 INTRODUCTION1

Next generation sequencing (NGS) has allowed us to study organisms with a broader lens, looking at entire genomes and2

transcriptomes instead of single genes. This capability is particularly important for non-model organisms where little prior3

knowledge may be available, and where NGS readily enables whole-transcriptome analyses (Wang et al., 2009), allowing4

us to study organisms that are ecologically or evolutionarily interesting.5

There are now several sequencing technologies, Illumina being one of the most versatile (Glenn, 2011), that can produce6

millions of short reads ranging from 75 to 150 bp in length at a low cost (Zhang et al., 2011). As sequencing costs continue7

to drop, transcriptomes from multiple developmental stages of non-model organisms can easily be sequenced. Various types8

of de novo assembly algorithms and reference based assembly approaches have been developed to handle this massive influx9

of transcriptomic data (Pop, 2009; Vinson et al., 2005; Stapley et al., 2010). It has been shown in some cases that mapping10

mRNA-seq reads to a reference genome yields better transcriptomes than de novo assemblies, even if the genome is 5-15%11

divergent (Vijay et al., 2012). However, with many non-model organisms, no nearby reference genome is available.12

De novo transcriptome assembly is the only solution for organisms with no evolutionarily close reference genome.13

Transcriptome assemblers such as Trinity (Grabherr et al., 2011) and Velvet/Oases (Zerbino and Birney, 2008; Schulz et al.,14

2012) use De Bruijn-graph based de novo approaches which build graphs connecting the reads based on k-mer overlap.15

These graphs are then traversed via an Eulerian path algorithm to assemble transcripts. Because De Bruijn graphs are based16

on exact matches between DNA words, increasing numbers of sequencing errors result in an exponential number of new17

paths, adding to the complexity of the graph and, in turn, increasing the assembly time and memory requirements (Pop,18

2009).19

Here we have sequenced the transcriptomes of several developmental stages of Molgula occulta and Molgula ocu-20

lata—two closely related, free-spawning ascidian species, with no available reference genome. Ciona intestinalis and21

Ciona savignyi are the closest related ascidian species with well-assembled genomes, but are not close enough to use as22

a nucleotide reference for transcriptome construction. In this paper, we describe an efficient, easy to follow protocol for23

the transcriptome assembly of two Molgulid developmental transcriptomes. A crucial part of this protocol is the use of a24

preprocessing step that normalizes read abundances prior to assembly, called “digital normalization.” We study the effect of25

digital normalization on assemblies performed with both Trinity and Velvet/Oases. We compare our approach to the results26
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of running Trinity and Velvet/Oases without digitally normalized reads and show that our approach recovers essentially the27

same gene content but has significantly reduced requirements for time and memory. This reduction in time and memory lets28

us assemble transcriptomes efficiently using cloud resources, making our results exceptionally easy to reproduce (Haas29

et al., 2013), and more broadly enabling transcriptome assembly by researchers without access to large computer resources.30

2 METHODS31

2.1 Sequencing preparation32

M. occulta and M. oculata were collected by dredging off the shores of Roscoff, France near La Station Biologique. Swalla33

et al have previously described the maintenance (Swalla and Jeffery, 1990) and culturing (Swalla et al., 1999) of the animals.34

The transcriptomes of M. occulta and M. oculata were sequenced at Michigan State University (MSU) in the Research35

Technology Support Facility on Illumina HiSeq 2000. Five lanes of sequences were generated for M. occulta, two lanes of36

the gastrula stage (F+3), one of neurula (F+4), one of early tailbud (F+5), and one from the tailbud (F+6) stage (Table 1).37

Three lanes of sequences were generated for M. oculata, one each for the gastrula, neurula and tailbud stage. 10µg of RNA38

were sequenced for each stage with the exception of M. occulta F+4, where 1.05µg of RNA was sequenced. On average39

each embryonic stage yielded 48 million reads of 75 base pairs (bp) in length with paired-end insert lengths of 250 bp. All40

reads can be found in the NCBI short read archive (SRA) under accession number SRP040134.41

2.2 Assembly protocol42

Below is an overview of the steps used for the de novo assembly and annotation of our transcriptomes.43

1. Quality trimming and filtering of raw reads.44

2. Apply digital normalization to decrease data size.45

3. Assemble transcriptome.46

4. Assess transcriptome quality.47

5. BLAST (gene recovery/identification).48

Scripts used to run these steps can be found in the following GitHub repository: https://github.com/ged-lab/2014-mrnaseq-49

cloud50

2.3 Pre-assembly read trimming and normalization51

Low quality bases were trimmed and low quality reads were removed using quality-trim-pe.py found in the scripts directory52

of the repository. A hard trim is done at a Phred quality score of 33 and reads less than 30 base pairs in length are discarded.53

This process creates a paired and singleton fastq file for each library because of the removal of low quality reads. The54

filtering of reads allows for better assembly and better mapping, although it may also reduce sensitivity to low-expressed55

transcripts (Lohse et al., 2012; Macmanes, 2014). The reads were initially 75 bp long, and the average base pair (bp)56

length was 63 bp after quality trimming and filtering. After quality trimming reads were either directly assembled, or first57

preprocessed with digital normalization and then assembled.58

Digital normalization (diginorm) is a technique that down samples reads from highly abundant transcripts while retaining59

approximately the full sequence information content of the reads (Brown et al., 2012). Here, for each species, reads from all60

stages were normalized together to build a common reference transcriptome; reads were normalized to a k-mer coverage of61

20 with the k-mer size set to 20 as well. The initial data set from M. occulta contained 237 million reads from 5 lanes, and62

M. oculata contained 150 million total reads; after digital normalization, the M. occulta dataset was reduced to 91.6 million63

reads and M. oculata was reduced to 50 million reads, a 60% and 77% reduction respectively (Table 1).64

2.4 Transcriptome assembly65

We used the Trinity (r20140413p1) and Velvet/Oases (v1.2.08/v0.2.08) assembler packages, both of which have performed66

well on other data sets (Vijay et al., 2012; Grabherr et al., 2011; Schulz et al., 2012). Velvet was initially developed67

to assemble genomes, and the Oases add-on package was developed for transcriptome assembly, since transcriptomes68

have variable coverage and many isoforms. Since Oases cannot be run without Velvet, we refer below to transcriptomes69

assembled with Velvet and Oases as Oases assemblies. Unlike Trinity, Oases requires the choice of a k-mer overlap for70

assembly; we chose several k values ranging from k = 21 to k = 35, for odd values of k, with scaffolding turned off. After71

assembly, the Oases transcriptomes with the highest number of blast hits to C. intestinalis were selected for further analysis.72

The Trinity assembler was run with default parameters.73

All assemblies were performed on the Michigan State University (MSU) High Performance computing cluster (HPCC).74

All diginorm assemblies were repeated on Amazon EC2 machines as a proof of concept. After assembly, transcripts shorter75
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Table 1: Read counts
Sample Number of reads Reads kept Percentage kept Accession Number

M. occulta F+3 42,174,510 - - SRR1197985
M. occulta F+3.2 50,018,302 - - SRR1197986
M. occulta F+4 44,948,983 - - SRR1199464
M. occulta F+5 53,692,296 - - SRR1199259
M. occulta F+6 45,782,981 - - SRR1199268
M. occulta Total 236,617,072 91,316,419 38.6%
M. oculata F+3 47,045,433 - - SRR1197522
M. oculata F+4 52,890,938 - - SRR1197965
M. oculata F+6 50,156,895 - - SRR1197972
M. oculata Total 150,093,266 49,957,980 33.3%

Table 1. Digitally normalized reads. The number of reads sequenced before and after digital normalization are shown
for each lane of sequencing. The percentage of total reads kept after digital normalization is shown in bold. M. occulta had
approximately ∼237 million reads and was reduced to 91 million reads, a 60% reduction. M. oculata had 150 million reads
and reduced by 77% to ∼50 million reads.

than 200 bp in length were removed, and CD-HIT was used to eliminate small transcripts with 99% identity to longer76

transcripts using the following command: “cd-hit-est -i <transcript file>-c 0.99 -o <output file>” (Li and Godzik, 2006).77

To choose the best k-mer parameter for the Oases assemblies, C. intestinalis proteins were searched with TBLASTN78

(e-value cutoff of 1e-6) against each Oases assembly and the transcriptome with the most hits was selected for further79

analysis.80

2.5 Gene identification81

We used standalone BLAST to find reciprocal best hits (RBH) between the eight assembled transcriptomes and the C. in-82

testinalis proteome retrieved from NCBI under search term “(ciona intestinalis) AND Ciona intestinalis [porgn: txid7719]”.83

At the time of retrieval there were 16,123 sequences and they were downloaded and stored in the GitHub repository under84

the file name “ciona transcriptome.fa” in case the sequences change on NCBI. An e-value cutoff of 1e-6 was used as a85

minimum threshold for transcript identity. The find-reciprocal-2.py script was used to identify the RBH.86

2.6 Read mapping87

To determine the inclusion of reads in the various transcriptome assemblies trimmed reads were mapped to their respective88

species using bowtie2 v2.2.1 (Langmead and Salzberg, 2012). For both unnormalized read and diginorm assemblies the89

full set of trimmed reads were used for mapping. Default parameters were used, and both paired ends and singletons were90

mapped. Samtools v0.1.19 (Li et al., 2009) was used for format conversion from SAM to BAM format, and also to calculate91

the percentage of mapped reads. The BAM files were also used to calculate the coverage of transcripts.92

3 RESULTS93

3.1 Digital normalization reduces the resources needed for assembly94

The M. oculata unnormalized read data set assembled with Oases used 44 CPU hours and 85 GB of RAM. The Oases95

assembly done with the digitally normalized reads took ∼22 CPU hours and 21 GB of RAM (Figure 1); this includes the96

time and memory required to run the digital normalization pipeline. M. occulta diginorm Oases assembly required over 10097

GB of RAM, and the raw read Oases used 300 GB of RAM. The raw read Oases assemblies for both species took twice as98

long and needed at least three times as much memory when compared to the diginorm reads.99

The difference in assembly time and memory between diginorm and raw reads was not as large when using the Trinity100

assembler. Diginorm completed its assemblies several hours faster than assembling raw reads, ∼15 hours compared to ∼26101

hours for M. oculata and ∼24 hours compared to ∼39 hours for M. occulta. M. oculata unnormalized reads did not require102

much more memory than the normalized reads—16.8 GB and 15.65 GB, respectively. Diginorm had a larger effect on M.103

occulta, assembling M. occulta normalized reads with 23.17 GB of RAM versus 34.14 GB of RAM for the unnormalized104

reads (Figure 1).105
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Figure 1. Wall time and memory requirements for assemblies. Wall time (left) in hours to complete the diginorm
(DN) and raw read (RAW) assemblies for both species and assemblers. Oases assembled multiple k’s, 21 ≤ k ≤ 35 opposed
to Trinity that uses only a single k. This is one reason the assembly times differed. (right) Shows the memory used to
assemble each of the transcriptomes. M. oculata (ocu) transcriptomes assemble in less time than M. occulta (occ) because
they have fewer lanes of reads to assemble. In all cases diginorm required less time and memory to complete the assembly.

Table 2: Assembly Statistics

Species Method N50 Mean transcripts length Total number of transcripts Total number of base pairs

M. occulta DN Oases 14,606 888 89,465 79,447,700
M. occulta Oases 14,492 912 89,692 81,824,388
M. occulta DN Trinity 14,738 978 96,287 94,200,549
M. occulta Trinity 12,300 914 87,090 79,672,435
M. oculata DN Oases 7,274 1,478 39,438 58,291,461
M. oculata Oases 7,158 1,380 39,738 54,869,493
M. oculata DN Trinity 10,141 1,450 57,105 82,856,337
M. oculata Trinity 8,018 1,275 49,265 62,817,433

1

Table 2. Transcriptome metrics. Several metrics used to assess the assembled transcriptomes. The N50, mean transcript
length, total number of transcripts and total number of base pairs are listed for each transcriptomes.

3.2 Assembly statistics varied by preprocessing approach and assembler106

Oases run with the diginormed reads yielded fewer total transcripts than Oases run with the unnormalized reads. The M.107

oculata diginorm assembly produced 300 fewer transcripts, and the M. occulta diginorm assembly produced 227 fewer108

transcripts (Table 2). Digital normalization had the opposite affect when using Trinity for assembly, increasing the total109

number of assembled transcripts by 7,840 for M. oculata and 9,197 for M. occulta.110

Trinity produces 6.8k (7.6%) more transcripts than Oases for M. occulta using the digitally normalized reads, and a 2.6k111

(2.9%) decrease in the number of transcripts using the unnormalized reads. Trinity assembled more transcripts for both M.112

oculata assemblies, a 17.6k (44.8%) increase for diginorm and a 9.5k (24%) increase for the raw reads.113

3.3 Trinity assemblies include more low-abundance k-mers than Oases assemblies114

We next examined the k-mer spectrum of the assembled transcripts using k-mer abundances from the digitally normalized115

reads. The k-mer spectrum is an account of the information content of the reads and can be used to evaluate the ability of116

the assemblers to recover low-abundance transcripts (Pop, 2009). We first used digital normalization to reduce the reads117

to a median k-mer coverage of 20, so that the k-mer frequency spectrum peaked at a coverage of 20, and then plotted a118

cumulative abundance plot of those k-mers shared between the normalized reads and the assemblies. The results, displayed119

in Figure 2, show that Trinity recovers more low-abundance k-mers. Also note that between assemblies done with the same120
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Figure 2. K-mer distribution. The k-mer distribution is shown for each assembler and assembly condition, diginorm
(DN) and unnormalized reads. The k-mer distribution is the coverage of a given k-mer verses how many k-mers of that
coverage is incorporated in the respective assemblies. Both Oases and Trinity assemblies are shown for (a) M. occulta
k-mer distribution and (b) M. oculata k-mer distributions. Trinity had a higher k-mer distribution for both species,
reflective of the inclusion of more low abundance reads into the Trinity assemblies.

Table 3: K-mer multiplicity

Species Method n = 1 n = 2 n � 3

M. occulta DN Oases 60.7 18.4 20.9
M. occulta Oases 60.3 17.4 22.3
M. occulta DN Trinity 68.5 17.5 14
M. occulta Trinity 73.5 16 10.5
M. oculata DN Oases 65 17.7 17.3
M. oculata Oases 67.1 16.4 16.5
M. oculata DN Trinity 66.1 17.3 16.6
M. oculata Trinity 74.2 15 10.8

1

Table 3. Multiplicity. The k-mer multiplicity shows uniqueness of each assembly. All k-mers with a multiplicity of one
are unique. Trinity has a higher percentage of unique k-mers when comparing assemblers. The unnormalized Trinity had
the highest number of unique k-mers overall.

assemblers, the k-mer distributions were very similar, suggesting that the k-mer spectrum is reflective of the underlying121

graph traversal algorithm used by the assembler. In addition the Trinity assemblies included more unique k-mers (Figure 3)122

3.4 Read mapping shows high inclusion of reads in the assembled transcriptomes123

We mapped the quality-filtered reads to the assembled transcriptomes to evaluate their inclusiveness. The F+3 stage of reads124

from M. occulta had the lowest percentage of mapped reads, with the Oases unnormalized assembly mapping only 49% of125

the reads, and the Trinity unnormalized assembly mapping 67% (Figure 3(a)). This was an isolated case: all other Oases126

assemblies contained at least 75% of the reads for each time point and the Trinity assemblies contained at least 93% of the127

reads for each time point. Trinity raw read assemblies tended to contain slightly more reads than the diginorm assemblies,128

while the opposite was true for Oases; however, in no case did the raw-reads assembly differ from the diginorm assemblies129

in more than 3% of their read content.130

3.5 All assemblies recovered transcripts with high accuracy but varied completeness131

mRNAseq assembly accuracy can be calculated based on known transcripts generated from longer reads or reference132

genomes (Vijay et al., 2012; Martin and Wang, 2011). We use Molgulid nucleotide sequences from NCBI to measure133

accuracy, and we define accuracy as the average BLAST identity score for the best match for each gene recovered (Li et al.,134

2009). There are 178 sequences from within the Molgula clade in the NCBI database. With the exception of M. occulta135

unnormalized Oases assembly, all assemblies have hits to at least 113 out of these Molgula sequences (Figure 4). The136

Trinity assemblies for both species have hits to all 178 sequences. Oases assemblies have hits for more sequences using137
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Figure 3. Read mapping. Unnormalized reads were mapped back to each of the assemblies to determine the inclusion of
reads in the assembly. (a)M. occulta first round of gastrulation reads (f+3), showed the lowest mapping quality for all
assemblies, with the lowest being raw Oases at 48.57%. M. occulta f+3 is the only case were mapping is less than 74% and
the only case where DN Trinity mapped more reads than Raw Trinity. (b)M. oculata unnormalized Oases performed the
worst, with Trinity assemble having the best mappings. Trinity assemblies have more mapped reads than Oases for all
conditions, with at least 93% read mapping for both species. Raw Trinity typically mapped slightly more reads than DN,
and the opposite occurs for Oases, with DN having more reads mapped to its assembly. Note that the Y axis starts at 45%.

digital normalized reads, two additional hits for M. oculata and 40 additional hits for M. occulta. M. oculata assemblies hits138

have high average accuracy in the 90 and 99 percentile for Oases and Trinity, respectively. Completeness is the percentage139

of a gene, transcript or protein that is recovered. Within the M. oculata assemblies, the unnormalized Oases assembly has140

the lowest average completeness at 36%, the Trinity assemblies round out at 60% and the digital normalized Oases assembly141

has the highest average completeness at 72%. (Note that many of the Molgula sequences are genomic, not coding, so we142

would not expect high completeness.)143

Of these 178 nucleotide sequences, 8 of them are M. occulta sequences and 15 of them are M. oculata sequences. All M.144

occulta assemblies recovered all 8 of the NCBI M. occulta sequences with a 94% or greater accuracy. M. oculata assemblies145

recovered M. oculata transcripts at a 93% accuracy as well. M. occulta assemblies produced the lowest completeness of the146

two species, 41% and 43% for unnormalized Oases and diginorm Oases respectively, and 75% for both Trinity assemblies.147

M. oculata assemblies produced more complete transcripts 66, 75, 86, and 83 percent for unnormalized Oases, Diginorm148

Oases, unnormalized Trinity and Diginorm Trinity respectively.149

3.6 Both unnormalized and normalized assemblies recovered many of the same transcripts150

We evaluated the two diginorm and unnormalized assemblies against one another to test whether either method missed151

significant portions of the transcriptome assembled by the other. We used BLAT to compare unnormalized and diginorm152

assemblies in both directions. In M. occulta, both methods recovered at least 93% of the transcripts, with Trinity diginorm153

recovering ∼99% of Trinity’s unnormalized assembly. M. oculata assemblies showed high overlap as well, all recovering154

greater than 98% of each other with the exception of diginorm Oases recovering 94% of unnormalized Oases assembly.155

3.7 Homology search against the Ciona proteome shows similar recovery of ascidian genes across156

assemblies157

We used Ciona intestinalis to evaluate the completeness of our transcriptomes. C. intestinalis has an assembled genome158

that is well annotated and is the closest available genome to the Molgulids. C. intestinalis has a genome of 160 Mb and159

contains ∼16,000 genes (Satoh and Levine, 2005). A total of 13, 835 (86%) of the C. intestinalis proteins found in NCBI160

had hits in the M. occulta transcriptomes (Figure 5), with 2,288 genes (14%) having no hits due presumably to either lack of161

expression, high divergence, or loss M. occulta. When comparing transcripts excluded by either diginorm or unnormalized162

reads for all assemblies, the unnormalized read assemblies produced an additional 0.04% hits to C. intestinalis and there163

was additional 0.03% for the diginorm assemblies. There was little difference between the assemblies when compared to C.164

intestinalis, with 99% of the C. intestinalis genes being found in all M. occulta assemblies (Figure 4a). Eighty-six percent165

of the C. intestinalis proteins had matches in the M. occulta and M. oculata assemblies with less than 1% difference in166
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Figure 4. Accuracy, completeness and recovery rate against know Molgula sequences. The NCBI has 178 Molgula
sequence in its database. Transcripts were searched against these sequences using BLASTN with a cut-off of e-12. Trinity
assemblies performed the best, recovering all known sequences. M. occulta unnormalized assembled performed the worst,
only recovering 79 (44%) of the transcripts. M. occulta tended to recover fewer of the known transcripts as well.

presence between the several assemblies (Figure 4b).167

We next examined the difference between the unnormalized and digitally normalized assemblies. Transcripts in the168

unnormalized assembly with BLAST hits to C. intestinalis but without hits in diginorm assemblies were extracted, and169

searched using BLASTN against the diginorm assemblies; we found fragmented versions of these transcripts, suggesting170

that they were partially assembled. We then mapped the diginorm reads to the extracted unnormalized transcripts and found171

that some portions of the transcripts were not covered by the normalized reads. This demonstrates that these transcripts172

were lost due to a loss of information from the diginorm process. However, the overall loss was minimal and complemented173

by an increase in the recovery of other conserved transcripts; this is clearly a direction for further study.174

3.8 CEGMA analysis shows high recovery of genes175

CEGMA uses a list of highly conserved eukaryotic proteins to evaluate genome and transcriptome completeness (Parra et al.,176

2007). We used CEGMA to analyze the number of protein families that are present in each assembly. The default CEGMA177

parameters were used for analysis. CEGMA reports recovery as “complete” or “partial”, where a match is marked as178

“complete” if 70% or more of the amino acid sequence is recovered. More than 90% of the CEGMA genes were recovered179

completely in each of the transcriptome assemblies, while greater than 98% of the CEGMA genes were recovered at least180

partially.181

4 DISCUSSION182

4.1 Transcriptome assembly accurately recovers known transcripts and many genes183

All of the transcriptome assemblies yielded homologs for an almost identical subset of the Ciona intestinalis proteome.184

While the evolutionary distance between the Molgulids and C. intestinalis may be large – the Molgulids are stolidobranch185

ascidians and are believed to be very divergent from C. intestinalis, which is a phlebobranch ascidian (Huber et al., 2000;186

Stach and Turbeville, 2002)—approximately 84% of Ciona proteins were found in all assemblies via BLAST, and more than187

44% of Ciona proteins had putative orthologs in each of our assemblies via reciprocal best hit. Since both transcriptomes188

are from a limited set of embryonic tissues that do not express all genes, these are surprisingly high numbers! We infer that189

we have recovered almost all embryonic genes and the majority of genes present in the Molgula genomes.190

Read mapping and CEGMA analyses further confirm that the transcriptome assemblies are of high quality and191

inclusiveness. The assemblies represent 75% or more of the reads from all but one time point, contain complete matches to192

90% or more of the conserved eukaryotic gene families in CEGMA, and contain partial matches to 98% or more of the193

CEGMA families. It is important to note that the CEGMA results are almost certainly biased upwards by the nature of the194

CEGMA families, which represent many more metabolic and cellular function genes than e.g. animal-specific transcription195

factors; thus the CEGMA numbers do not directly demonstrate the inclusiveness of the transcriptome families, as they196

would for a genome assembly (Parra et al., 2007).197
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Figure 5. Gene recovery, raw reads versus normalized. Gene homologue with C. intestinalis via BLAST for M.
occulta (left) and M. oculata (right). Each oval represent the total number of homologs sequences recovered. In both
species the Trinity assembler assembled more homologous sequences. There was almost complete overlap in homology for
both assemblers and both assembly conditions.

4.2 Digital normalization eases assembly without strongly affecting assembly content198

One of our goals in this study was explore the impact of digital normalization on the biological interpretation of transcriptome199

assemblies; while previous studies have shown that digital normalization can make assembly faster and less memory200

intensive, gene recovery has been less well studied (Haas et al., 2013; Brown et al., 2012). Here we confirm the computational201

results: diginorm dramatically reduces the computational cost of Oases assemblies, and also decreases the time and memory202

requirements for Trinity assemblies.203

While digital normalization does alter the number of transcripts significantly, it does not strongly affect either read204

inclusion or the conserved gene content of the assemblies. Read inclusion by mapping never decreased more than 3% after205

digital normalization, and in many cases increased. The conserved gene content, measured by a proteome comparison,206

showed that we recover essentially the same set of proteins with all four treatments on both transcriptomes.207

Combined, these results suggest that the varying number of transcripts largely reflect differences in the splice variants208

reported by different assemblers under different conditions. These results also strongly support the idea that preprocessing209

with digital normalization does not strongly affect assembly content. We note, however, that the few transcripts not recovered210

in assemblies of the digitally normalized reads were probably not recovered because the underlying reads were eliminated211

during digital normalization. This is an area where digital normalization can be improved.212

Only a small number (well below 1%) of different homology matches were reported between the various assemblies.213

Because of this we decided not to merge or otherwise combine the different assemblies: the likely benefits were outweighed214

by the risk of introducing chimeric transcripts or combining isoforms.215

We also note that the variation in number of assembled transcripts due to read preprocessing and choice of assembler216

despite the similar gene content suggests that traditional genome assembly metrics such as number of transcripts, total bp217

assembled, and N50 are not useful for transcriptome evaluation as previously suggested (O’Neil and Emrich, 2013). For218

example, the same exon may be included in multiple splice variants, inflating the total bp assembled; some assemblers may219

choose to report more isoforms than others even with the same read support; and N50 makes little sense for transcriptomes.220

4.3 Trinity assemblies are more sensitive to low-abundance k-mers but contain no new conserved221

genes222

The difference in transcript numbers between Trinity and Oases assemblies is stark: for the same data set, with the same223

treatment, Trinity always produces thousands more transcripts than Oases. Moreover, many more reads can be mapped to224

the Trinity assemblies —an additional 10% or more, for every stage. Despite this greater inclusion of reads, we see no225

substantial gain in either CEGMA matches or Ciona proteome matches for the Trinity assemblies.226

This conundrum can be resolved by examining the k-mer spectra, which show that the Trinity assemblies include many227

more low-abundance k-mers from the read data set. This demonstrates that Trinity is more sensitive to low-abundance228

sequences, and may include more isoforms in its assemblies—by design, Trinity attempts to be more sensitive to isoforms229

than Oases, and focuses particularly on low-coverage isoforms (Vijay et al., 2012; Grabherr et al., 2011; Van Belleghem230
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et al., 2012). Those transcripts were indeed the results of Trinity assembling low coverage reads, having an average coverage231

of 5x compared to 75x.232

5 CONCLUSIONS233

We show that transcriptome assembly on two closely related species of Molgulid ascidians produced accurate and high-234

quality transcriptomes, as determined by several different metrics. Importantly, four different assembly protocols produced235

transcriptomes that contained nearly identical complements of homologs to the nearest model organism, Ciona intestinalis.236

While variations in isoform content were observed, these variations had little apparent impact on sensitivity of homologous237

gene recovery. We provide detailed assembly protocols that should enable others to easily achieve de novo transcriptome238

assemblies.239
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