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ABSTRACT 43	  

Rapidly growing biological data volumes – including molecular sequences, species traits, 44	  

geographic occurrences, specimen collections, and fossil records – hold an unprecedented, yet 45	  

largely unexplored potential to reveal how ecological and evolutionary processes generate and 46	  

maintain biodiversity. Most biodiversity studies integrating ecological data and evolutionary 47	  

history use an idiosyncratic step-by-step approach for the reconstruction of time-calibrated 48	  

phylogenies in light of ecological and evolutionary scenarios. Here we introduce a conceptual 49	  

framework, termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation 50	  

and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with 51	  

the moving targets of biodiversity research. This framework reconstructs dated phylogenies 52	  

based on the assembly of molecular datasets and collects pertinent data on ecology, distribution, 53	  

and fossils of the focal clade. The data handled for each step are continuously updated as 54	  

databases accumulate new records. We exemplify the practice of our method by presenting 55	  

comprehensive phylogenetic and dating analyses for the orders Primates and the Gentianales. We 56	  

believe that this emerging framework will provide an invaluable tool for a wide range of 57	  

hypothesis-driven research questions in ecology and evolution. 58	  

 59	  

60	  
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INTRODUCTION 61	  

 62	  

“We are drowning in information, while starving for wisdom” 63	  

E. O. Wilson, Consilience: The unity of knowledge (1999) 64	  

 65	  

In biodiversity studies, many important theories have been built through the accumulation of data 66	  

(e.g. ecological, genetic, and geographic) in order to unveil most of today’s well-known patterns 67	  

of biodiversity, ranging from the latitudinal diversity gradient, through the species-abundance 68	  

distribution, to descent with modification. Nowadays, the amount of data available for studying 69	  

many aspects of biodiversity is tantalizing (see Fig. 1 for key examples). For instance, DNA 70	  

records of the International Nucleotide Sequence Database Collaboration (INSDC) including 71	  

GenBank, ENA, and DDBJ (Nakamura et al. 2013) grow exponentially, doubling in number 72	  

every 10 months and currently comprising over 150 million sequences from more than 300,000 73	  

species. Similarly, there are over 445 million observation records available through the Global 74	  

Biodiversity Information Facility (http://www.gbif.org) and over 1.1 million taxonomic records 75	  

of fossils in the Paleobiology Database (http://fossilworks.org/). In addition, ecological data are 76	  

increasingly compiled and stored in archives or repositories for entire clades, e.g. mammals in 77	  

PanTHERIA (Jones et al. 2009), birds in eBird (http://ebird.org), and plants in TRY (http://try-78	  

db.org). Despite important caveats concerning the uneven geographic, temporal, and taxonomic 79	  

representation in these databases, as well as varying levels of quality and annotation (Bidartondo 80	  

et al. 2008), it is clear that these data hold a tremendous – yet largely unexplored – scientific 81	  

potential and explanatory power. However, it is less clear how these large data collections are 82	  
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best integrated in biodiversity research, and what effect they may have on understanding 83	  

ecological and evolutionary processes that have shaped diversity patterns through time and space 84	  

– from estimates of species delimitations, species relationships, divergence times, and 85	  

diversification rates, to historical biogeography and macroecology. Nonetheless, if we want to 86	  

start assembling the big picture to reveal how ecological and evolutionary processes generate and 87	  

maintain biodiversity (Zanne et al. 2014), we need approaches that integrate ecological data and 88	  

evolutionary history in a user-friendly framework to study biodiversity at various temporal, 89	  

spatial and taxonomic scales (Chave 2013). 90	  

In this paper we review the current challenges in evolutionary research for reaching this 91	  

goal and highlight the prospects of biodiversity workflows. We also identify and discuss 92	  

solutions for inherent concerns in the quality and completeness of the data we are handling. We 93	  

then present a new conceptual framework, the Self-Updating Platform for Estimating Rates of 94	  

Speciation and Migration, Ages and Relationships of Taxa (SUPERSMART), which allows 95	  

researchers to use all publicly available genetic, genomic, ecological, and geographic data 96	  

available, in addition to their own data. We illustrate this approach with two empirical examples, 97	  

the Primates (including humans, apes, monkeys and prosimians) and the plant order Gentianales 98	  

(including the coffee family Rubiaceae and the dogbane family Apocynaceae, among others).  99	  

100	  
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OUTSTANDING CHALLENGES IN ECO-EVOLUTIONARY RESEARCH  101	  

  102	  

The Tree of Life. Assembling a complete species-level tree (or network) of life constitutes an 103	  

overarching goal in biology. A major obstacle is that genetic sampling of species is 104	  

taxonomically and geographically highly biased (Gotelli & Colwell 2001). Wealthy but species-105	  

poor countries in the Northern Hemisphere are generally better sampled than tropical, species-106	  

rich developing regions in Latin America, Africa, and Southeast Asia, although this situation 107	  

may be changing with developing countries such as Brazil investing heavily in molecular 108	  

projects in conjunction with scientific education. A second hurdle is the fact that scientists have 109	  

used different sets of genes and genetic markers for different taxa, both for intrinsic reasons (e.g. 110	  

markers differ in information content among taxa, ease of sequencing, and quality of source 111	  

material) and because of a lack of consensus on which markers to use for addressing similar 112	  

phylogenetic problems. 113	  

 114	  

Two main approaches have been developed to take advantage of the sequencing and 115	  

phylogenetic efforts done so far, both of which have the capacity to handle very large numbers of  116	  

terminal taxa: i) supertrees, which involve the fusion of separate trees that should have at least 117	  

some degree of taxonomic overlap, using parsimony, maximum likelihood, or Bayesian 118	  

approaches (e.g., Nguyen et al. 2012, and references therein); and ii) supermatrices, which are 119	  

datasets containing sets of markers that may partly overlap, such that not all taxa are covered by 120	  

all markers (de Queiroz & Gatesy 2007). A schematic illustration depicting the rationale and 121	  

differences between supertrees and supermatrices is provided in Fig. 2. Both approaches present 122	  
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particular advantages as well as limitations (von Haeseler 2012), and alternatives are starting to 123	  

develop (Smith et al. 2013). 124	  

 125	  

 Supertrees have so far been the only solution to produce a single, near-complete 126	  

phylogenetic tree comprising all organisms in a clade. They can be built even when there is no 127	  

genetic overlap among the subtrees they comprise, their inference is usually fast, and their 128	  

mathematical properties well studied; factors which jointly have made supertrees (or variations 129	  

thereof) the preferred choice for current synthetic projects such as the Open Tree of Life 130	  

(http://www.opentreeoflife.org). Criticism against supertrees includes the difficulties – both 131	  

practical and theoretical – in combining tree topologies and computing clade support from trees 132	  

derived from different sources of data, and often also different methods and assumptions. 133	  

Supertree approaches have also been shown through simulations to be less accurate than 134	  

supermatrices in recovering correct topologies (Kupczok et al. 2010). Another factor that has 135	  

contributed to defavoring supertrees is the realisation that just a small fraction of phylogenetic 136	  

trees published can be retrieved through open data repositories or direct requests to authors of 137	  

phylogenetic papers (Drew 2013; Stoltzfus et al. 2013). In a recent study, it was only possible to 138	  

obtain trees from about 17% of 7500+ phylogenetic articles from the last 12 years – a figure that 139	  

also includes trees with poor or inconsistent underlying data such as incomplete taxon names, 140	  

lack of information on which characters were used in the analyses, and missing settings and input 141	  

files for phylogenetic analyses (Drew et al. 2013). 142	  

 143	  
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Supermatrix approaches allow the estimation of large trees under a single analysis, 144	  

relying directly on the underlying data (molecular and/or morphological) rather than on tree 145	  

topologies. Analyses of empirical and simulated data suggest that initial concerns with missing 146	  

data may have been largely unsubstantiated. Even a relatively small set of informative characters, 147	  

such as a single gene or genetic marker scored across all taxa, may potentially provide the 148	  

backbone of a phylogeny and allow more rapidly evolving markers to resolve terminal 149	  

relationships (Wiens 1998, 2006; Kupczok et al. 2010). The total number of terminals in a 150	  

supermatrix has long been a limiting factor for tree reconstruction, but increasingly larger 151	  

phylogenetic trees can now be inferred using both parsimony and maximum likelihood methods 152	  

(Sanderson 2008; Goloboff et al. 2009; Stamatakis et al. 2010). In addition, existing 153	  

phylogenetic algorithms are constantly being optimized (Stamatakis et al. 2012) and new ones 154	  

introduced (Price et al. 2010). 155	  

 156	  

A major drawback with supermatrices spanning large taxonomic units and evolutionary 157	  

times is homology assessment during the alignment of highly divergent or saturated sequences. 158	  

Although this issue is often ignored or not formally dealt with (e.g. only through visual 159	  

inspection of sequences and manual exclusion of apparent outliers), automated methods have 160	  

been developed to detect rogue taxa (Aberer et al. 2013), sequence saturation, and perform 161	  

profile alignment of very large supermatrices (Smith et al. 2009). In addition, current initiatives 162	  

now aim at standardizing the identification and annotation of orthologous genes and their 163	  

phenotypes, which will certainly facilitate the generation of aligned supermatrices containing 164	  

only orthologs (e.g. http://inparanoid.sbc.su.se and http://www.phenotypercn.org). Although 165	  
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these efforts address some of the difficulties in assembling input datasets, the simple application 166	  

of supermatrix approaches to recover both deep relationships among higher taxa as well as more 167	  

recent divergences in one analysis may not always succeed. This is due to limitations in the 168	  

scalability of current state-of-the-art phylogenetic software for recovering species trees from 169	  

gene trees (Edwards 2009). Supermatrix analyses therefore typically resort to less sophisticated, 170	  

but more scalable techniques. A serious shortcoming of both supertree and supermatrix methods 171	  

is that they typically assume that all data partitions are evolving according to the same tree, thus 172	  

failing to account for processes such as incomplete lineage sorting, hybridisation, and gene 173	  

duplications/losses (Whidden et al. 2014). 174	  

 175	  

The Chronogram of Life. Estimating divergence times among all species poses similar as well 176	  

as novel challenges as compared to phylogenetic inference. In the absence of full sequence 177	  

coverage, dating supertrees requires hybrid approaches that include both fossil-calibrated 178	  

sequence data (Vos & Mooers 2004) as well as, for nodes lacking sequence coverage, the 179	  

application of expected waiting times between speciation events based on models of clade 180	  

growth (Gernhard et al. 2006). Edge length estimation may be just as challenging for large, 181	  

gappy supermatrices. 182	  

There are several methods and software suites available for molecular dating, each with 183	  

its own set of assumptions, advantages, and potential caveats. Even if the choice of dating 184	  

method may lead to substantial differences in age estimations (Linder et al. 2005; Gustafsson et 185	  

al. 2010), node calibration (Sauquet et al. 2012) and prior distributions on ages (Ho & Phillips 186	  
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2009) are often the most crucial steps. Time calibration can be done directly or indirectly (also 187	  

termed primary and secondary calibration, respectively). 188	  

 189	  

Direct calibration enforces age constraints on specific clades of the phylogeny, most 190	  

often through the use of fossils but sometimes through geological events (such as the age of an 191	  

island or a land bridge). The location of calibration points in the tree appears to determine the 192	  

extent to which variance propagates upwards from the tip to the root (for recent calibration 193	  

points) or is constrained (for older calibration points; Vos & Mooers 2004). While early dating 194	  

methods usually required those ages to be fixed, or to be “hard” minimum or maximum age 195	  

constraints (Sanderson 2002, 2003), it is now possible to model uncertainties in the timing 196	  

information as “soft” prior probability distributions (Drummond et al. 2006; Ho & Phillips 2009). 197	  

Indirect calibrations typically rely either on applying nucleotide substitution rates 198	  

derived in other studies of closely related taxa, or on using the age of a lineage split estimated in 199	  

a previous dating analysis. Indirect calibration is practical when there are no fossils or other 200	  

direct age constraints available for the focal group. Although this may result in increased 201	  

uncertainties in estimated ages, it is possible to transfer posterior age distributions from one 202	  

Bayesian analysis as priors to another. In addition, calibration may be improved by 203	  

implementing it on two or more nodes of the phylogeny rather than a single one (Sauquet et al. 204	  

2012). 205	  

  206	  

Considering the many methodological options available and the complexity of working 207	  

with imperfect empirical data, it is not surprising that studies employing molecular dating 208	  
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analyses show a wide spectrum of variation. This includes the various uses of available software; 209	  

the varying quality and reliability of the fossil record (in terms of phylogenetic placement, 210	  

absolute age, and proximity to the true timing of speciation of the taxon they represent), and the 211	  

reliability of the molecular data supporting the chronograms. Although the evaluation of dating 212	  

methodologies and assumptions will certainly continue for the foreseeable future, based on these 213	  

considerations few would contest that estimated ages from different studies are not directly 214	  

comparable. This crucial realisation suggests that dated phylogenies cannot be reliably ‘pasted 215	  

together’ in a similar way as traditional supertrees. Moreover, this cautions against the 216	  

increasingly widespread use of dated phylogenies of various sources in meta-analyses, despite 217	  

their potential as a powerful way of studying macroevolutionary processes, including the 218	  

historical assembly of biomes (Crisp et al. 2009; Hoorn et al. 2010), dispersal across biotic 219	  

barriers (Cody et al. 2010), or correlations between lineage age and diversity (Rabosky et al. 220	  

2012). It remains to be assessed to what extent meta-analyses of published chronograms are able 221	  

to identify significant signal amid the expected background ‘noise’ of erroneous dating estimates. 222	  

 223	  

Dealing with conflict. There is an ongoing paradigm shift in evolutionary biology, where single 224	  

gene trees, consensus, and concatenation approaches are replaced by integrative species tree 225	  

thinking (Edwards 2009). Although the distinction between gene and species trees is not new 226	  

(Pamilo & Nei 1988), many species phylogenies published to date are based on single gene trees 227	  

or trees derived from the concatenation of two or more alignments from different linkage groups 228	  

(e.g. as in the supermatrix approach). However, models and methods have been developed to 229	  

account for the fact that gene trees can differ in topology and branch lengths due to population 230	  
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genetics processes that can be modelled with the multispecies coalescent (Rannala & Yang 2003). 231	  

Ignoring conflict may influence not only tree topologies but also branch lengths, measured in 232	  

time. Splits in gene trees overestimate species divergence times, and the size of this bias is 233	  

determined by ancestral effective population sizes and branch lengths of the species tree. One 234	  

accurate Bayesian implementation where species trees can be inferred directly from aligned 235	  

sequence data is the multi-species, multi-marker approach implemented in *BEAST (Heled & 236	  

Drummond 2010). For larger taxon sets, however, simpler approaches where gene trees are used 237	  

as input data may be required (Bayzid & Warnow 2012). 238	  

 239	  

DATA QUALITY CONCERNS 240	  

 241	  

As the volume of data grows, it is not always possible to verify the quality of biological data 242	  

manually, such that much of the quality control has to be handed over to algorithms. However, 243	  

some aspects of biological research are not readily amenable to algorithmic quality control, such 244	  

as the concepts of species and species delimitation (Chesters & Vogler 2013), although there are 245	  

new promising developments in this field (Fujita et al. 2012). Thus, data growth in itself is not 246	  

tantamount to an immediate corresponding growth in knowledge. 247	  

 248	  

Genetic data. Fungi provide a compelling example: more than half of all ~350,000 fungal 249	  

ribosomal ITS sequences – the formal fungal barcode – are annotated to various uninformative 250	  

levels such as “Uncultured fungus” (Bengtsson-Palme et al. 2013). Of the fungal ITS sequences 251	  

that do have a species name, more than 10% carry an incorrect name due to misidentification, 252	  
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contamination, or technical complications; similar estimates have been produced for other groups 253	  

of organisms (Valkiunas et al. 2008; de Mendonça et al. 2011). The situation with annotating 254	  

sequences to gene level is often not much better: the ribosomal small subunit (16S) forms the 255	  

standard marker in prokaryote molecular ecology, yet anyone who seeks to manually download 256	  

16S sequences from INSDC will have to explore a near-endless array of orthographic and 257	  

conceptual variations such as “16 S”, “16S”, “17S”, “SSU”, “ribosomal small subunit”, and 258	  

“ribosomal small sub-unit”. Many sequence authors are slow to update their records with recent 259	  

and correct information, forming an additional obstacle for anyone using these databases (Hyde 260	  

et al. 2013). 261	  

  262	  

Species distributions. Data quality concerns are not unique to repositories of molecular 263	  

sequences; they are at least as serious for other core biological data such as species occurrences. 264	  

The Global Biodiversity Information Facility (GBIF; http://www.gbif.org), the main portal for 265	  

accessing locality data worldwide, aggregates numerous databases of natural history collections 266	  

and species observations, of which about 85% (c. 381 million) are currently geo-referenced (Fig. 267	  

1B). At least five potential problems prevent the widespread use of this vast amount of data: 268	  

incorrectly geo-referenced records; lumping of native and non-native occurrences; erroneous 269	  

taxonomic identifications; name synonymisation issues; and sampling biases. Some of these 270	  

issues are easier to tackle than others. Terrestrial plants appearing in the middle of the ocean due 271	  

to a switch in latitude/longitude (or due to the use of different coordinate projection systems) are 272	  

easier to spot than animals in a zoo or cultivated plants in a botanical garden outside of their 273	  

native ranges (Yesson et al. 2007). The data cleaning workflow implemented in the Biology 274	  
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Virtual e-Laboratory platform (http://www.biovel.eu) is one example of how bioinformatics may 275	  

aid researchers to visualise and clean species locality data. It is important to realise, however, 276	  

that the level of spatial resolution required by different scientific questions varies greatly. For 277	  

instance, whereas very precise and verified records are required by ecological niche modelling of 278	  

species distributions (Duputié et al. 2014), biogeographic analyses at the continental level would 279	  

be much less sensitive to imprecise georeferencing. With more than one billion biological 280	  

specimens currently stored in the world’s natural history collections, this means that even a 281	  

rough and automated tagging of those collections may greatly contribute to biodiversity research 282	  

(Guralnick et al. 2006) and hopefully ameliorate the serious spatial, taxonomic, and temporal 283	  

biases in currently available species occurrence data (Boakes et al. 2010). 284	  

 285	  

Fossils. The deposition of fossil information in open data repositories has not been as successful 286	  

as for genetic data, rendering palaeobiological databases such as the Paleobiology database 287	  

(http://fossilworks.org; Fig. 1C), New and Old Worlds (NOW, 288	  

http://www.helsinki.fi/science/now/index.html), and the Neotoma Paleoecology Database 289	  

(http://www.neotomadb.org) apparently even more taxonomically and geographically biased 290	  

than INSDC and GBIF. This is partly due to the fact that several paleontological journals still 291	  

lack strong data deposition policies (or fall short of enforcing them), but also because some 292	  

important works have not yet been digitized, e.g. the Cenozoic Mammals of Africa (Werdelin & 293	  

Sanders 2010). One must also keep in mind that data may have been entered for different reasons. 294	  

While some fossil records in the Paleobiology Database will stem from meticulously undertaken 295	  

taxonomic studies, e.g. using scanning electron microscopy techniques for the identification of 296	  
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fossil pollen, others derive from ecological quantitative studies where identification was done 297	  

under simpler, less precise methods using different species concepts or identified only at high 298	  

taxonomic levels such as genus, family, or order (Johnsrud et al. 2013). In most instances, such 299	  

records were never entered with the intention of being used as calibration points for molecular 300	  

dating analyses, a procedure that requires careful examination of the phylogenetic relationships 301	  

of fossil taxa, in particular the distinction between stem vs. crown-group lineages (e.g., Sauquet 302	  

et al. 2012). 303	  

 304	  

‘Large and dirty’ or ‘small and clean’? Given the data quality concerns outlined above, 305	  

managers of current and new biological databases face a hard decision: to either enable an easy 306	  

but poorly controlled input of new data, or to enforce control measures that maintain a higher 307	  

quality level but may lead to reduced data influx. As an example, Ksepka et al. (2011) proposed 308	  

a new fossil data resource – the Fossil Calibration Database – specifically aiming at selecting 309	  

fossils suitable for molecular dating analyses, where fossils included need to comply with a set of 310	  

five pre-defined criteria and are subjected to peer-review in the form of manuscripts sent to the 311	  

Paleontologia Electronica (PE) journal (Parham et al. 2012a). The Fossil Calibration Database 312	  

will not only contain information on adequate fossils for calibration but also their phylogenetic 313	  

placement and age. Other examples of open databases that are ‘clean’ and curated include 314	  

UNITE for molecular identification of fungi (http://unite.ut.ee) and the Map of Life initiative 315	  

(http://www.mappinglife.org) and their data providers. Data cleaning usually involves a 316	  

combination of automated tools and manual expert curation. For instance, automated algorithms 317	  

are now available to resolve common synonymisation issues, such as the Taxonomic Name 318	  
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Resolution Service (TNRS; Boyle et al. 2013) and TaxoSaurus (Stoltzfus et al. 2013), but these 319	  

rely on stable lists of accepted names for all species (e.g. http://www.catalogueoflife.org) – 320	  

something that is fundamentally a taxonomic/nomenclatural challenge, not a technological issue. 321	  

However, even if this would be achieved, it is now clear that taxonomic names cannot be used 322	  

unambiguously, requiring biodiversity scientists to agree on and eventually fully adopt unique 323	  

taxonomic identifiers (Kennedy et al. 2005). 324	  

 325	  

THE PROMISES AND CHALLENGES OF BIODIVERSITY WORKFLOWS 326	  

 327	  

The deluge of biological data and publications (e.g. Fig. 1) has been followed by a corresponding, 328	  

albeit more modest, software development in ecology and evolution. This means that addressing 329	  

relatively simple scientific questions may require researchers to master dozens of different 330	  

analytical tools, often written in different programming languages and sometimes only available 331	  

for select operating systems or programming environments. The complexity of the task increases 332	  

as each tool is constantly updated, improved, and made more complex, or superseded by better 333	  

methods. To tackle this problem, there is an increasing tendency to create integrative analytical 334	  

platforms for ecological and evolutionary research. This is seen in a number of popular software 335	  

packages, e.g. available in the R programming language (http://cran.r-project.org) and the Bio* 336	  

toolkits in the Python, Ruby, Java, and Perl programming languages (http://open-bio.org), as 337	  

well as stand-alone and on-line workflows (e.g. http://www.arborworkflows.com and 338	  

http://www.biovel.eu). 339	  

 340	  
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There is no such thing as a ‘standard analytical procedure’ to investigate ecological and 341	  

evolutionary processes. On the contrary, the choice of methodology will always depend on the 342	  

research question, nature of the data, and the researcher’s individual skills and knowledge to 343	  

select and carry out analyses. This lack of procedural consensus might at first be perceived as 344	  

problematic, but in reality it fuels scientific advancement and can be expected to occur in every 345	  

step in a modern study of any noteworthy scope – from data acquisition to analysis and 346	  

interpretation. In practice, it means that any bioinformatic platform to handle large amounts of 347	  

biodiversity data needs to be highly modular and flexible. Researchers should be allowed to 348	  

make their own choices concerning for instance the inclusion/exclusion of species, the choice of 349	  

genetic markers, what fossils and methodology to employ for molecular dating, the delimitation 350	  

of areas for biogeographic and diversification analyses, and what analytical tools to use. 351	  

 352	  

The point of departure for any rigorous analysis should be that all available data of adequate 353	  

quality should be included unless there are specific reasons to warrant the exclusion of parts of 354	  

the data. It is, in fact, hard to justify why an ecological, phylogenetic, or biogeographic study of a 355	  

given group (i.e. family or order) should not include all high-quality sequences, geo-referenced 356	  

specimens, and fossil calibrations available for the group. Nevertheless, the great majority of 357	  

analytical platforms currently available (e.g. the CIPRES gateway at 358	  

http://www.phylo.org/portal2) require users to upload their own data for analysis, rather than 359	  

providing datasets for the group or question of interest. The practical and theoretical challenges 360	  

highlighted in this paper, and the time required for data assembly and cleaning, imply that 361	  
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researchers are most likely missing valuable data, or even including data not properly assembled 362	  

(e.g. without adequate assessments of gene orthology or verification of species distributions). 363	  

 364	  

Modern biodiversity tools should thus tackle a moving target – the needs of the modern 365	  

scientist interested in addressing crucial ecological and evolutionary questions in the face of 366	  

rapid data growth and methodological development. 367	  

 368	  

PRESENTING THE SUPERSMART APPROACH 369	  

 370	  

Here we introduce a new conceptual and bioinformatic approach: SUPERSMART (Self-371	  

Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of 372	  

Taxa, http://www.supersmart-project.org). SUPERSMART aims at tackling the main problems 373	  

outlined above by estimating continuously updated, time-calibrated molecular trees for all 374	  

species, and providing researchers with a flexible, modular, integrative, and open-source 375	  

platform for hypothesis-driven research in ecology and evolutionary biology. Thanks to a user-376	  

friendly platform, with only a few configuration steps any user will be able to either pull out 377	  

custom-made sets of robustly inferred, dated trees for further analyses, or to assemble aligned 378	  

DNA datasets representing any combination of sequenced genes/markers and taxa, and (in 379	  

upcoming versions) along with data on their ecology, distribution, fossil records, and climatic 380	  

characteristics. Our aim is that SUPERSMART will provide an “integrative biogeography 381	  

solution” envisioned by Wen et al. (2013), ultimately aimed at elucidating the evolution of past 382	  
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and present species distributions, guiding conservation efforts, and visualizing these data in a 383	  

comprehensive way. 384	  

 385	  

Overview. SUPERSMART consists of a set of programs that use the functionality provided by a 386	  

common modular programming framework. The framework forms the bridge between the logical 387	  

concepts that feature in the pipeline (sequences, taxa, fossils, and trees), the records in a 388	  

relational database that contains local copies of a number of public resources, and the operations 389	  

needed to assemble these records into tailored datasets and analyse them. The pipeline can be 390	  

installed in environments that support the hosting and provisioning of free operating systems of 391	  

the UNIX family. A web-based graphical user interface is planned, which will not require the 392	  

local installation of any software. 393	  

 394	  

In practice, a user infers arbitrary-sized, multi-marker, recursive phylogenies for large collections 395	  

of species of interest (or one or more higher taxa) based on all suitable genes/genetic markers. 396	  

An overview of how SUPERSMART relates to available supermatrix and supertree approaches 397	  

is shown in Fig. 2. In SUPERSMART, the included genetic markers may typically comprise 398	  

DNA barcodes (Hebert et al. 2003), i.e. COI, rbcL, matK, and ITS, as well as select markers 399	  

known to perform particularly well in specific groups of organisms, including those generated 400	  

with next-generation sequencing techniques. To enable the inclusion of arbitrarily many species 401	  

in the final results – potentially spanning the whole tree of life – we employ a three-step 402	  

approach (Fig. 3): 403	  
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1. We initially build a backbone, higher-level tree that features an optimally distributed 404	  

set of broadly sequenced exemplar species. This backbone tree (a phylogram) is time-405	  

calibrated using all suitable fossils from a fossil calibration table (see below for 406	  

details);  407	  

2. We decompose this ‘mega-chronogram’ into subclades (typically equivalent to 408	  

families or genera) that are strongly supported and contain a manageable number of 409	  

descendent species. All descendant taxa and their genetic markers are added to these 410	  

subclades. By default, SUPERMART selects one terminal per species, but users may 411	  

chose to include all intra-specific taxa down to the level of individuals. Time-412	  

calibrated species trees are then inferred under the multi-species, multi-marker 413	  

coalescent model (as implemented in *BEAST). These trees are re-calibrated (scaled) 414	  

to the posterior age obtained for the clade in Step 1; 415	  

3. The dated species-level trees are then grafted into a complete species-level 416	  

chronogram of directly comparable ages. These trees can now be used for various 417	  

post-tree spatial and temporal analyses, including inferrences of e.g. migration, 418	  

diversification, and niche evolution (some of which are already implemented at 419	  

http://www.biovel.eu and are planned to be integrated with SUPERSMART). 420	  

 421	  

Data mining. SUPERSMART mines public databases for suitable DNA sequences by way of 422	  

their globally unique taxonomic identifiers. Our present proof of concept adopts those defined by 423	  

Federhen (2012), but this could be extended to recognize other unambiguous identifiers, such as 424	  

internet addresses or uniform resource identifiers (URIs). All species names the user is interested 425	  
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in are mapped onto such unambiguous identifiers, before downstream analyses take place. This 426	  

is accomplished in one of two ways: i) by the user preparing and providing a mapping that 427	  

contains, for each name of interest, the corresponding identifier; or ii) by an automated step that 428	  

prepares such a mapping, which is done by querying the Taxosaurus service 429	  

(http://taxosaurus.org) for each user-supplied input name and attempting to resolve it, accounting 430	  

for synonyms and misspellings in the process. 431	  

 432	  

SUPERSMART compiles plausible candidate sets of DNA sequences for alignment, orthology 433	  

assessment, and subsequent phylogenetic inference by querying a local, modified version of the 434	  

PhyLoTA database (Sanderson 2008; Sanderson et al. 2008). In brief, this database is the 435	  

product of a process that crawls all taxonomically organized GenBank sequence divisions and at 436	  

certain strategically chosen nodes performs all-versus-all similarity searches of the sequences 437	  

subtended by that node. The sets of search hits are then grouped into single linkage clusters. Due 438	  

to the care with which the PhyLoTA browser has optimized the search parameters used in this 439	  

process, the sequences that are grouped in these clusters are generally a good starting point for 440	  

phylogenetic inference, although several further data processing steps are necessary. These are 441	  

described below. 442	  

 443	  

Data reduction. Many PhyLoTA clusters contain multiple sequences from the same species, 444	  

often with extensive sampling bias towards “model organisms” (sensu PhyLoTA). As the 445	  

standard goal of SUPERSMART is to infer species-level trees (although lower taxonomic levels 446	  

are also supported), these masses of sequences must be reduced (dereplicated) to more 447	  
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manageable datasets, containing approximately equal numbers of sequences for each species. 448	  

The current approach is therefore to select the most complete sequences, i.e. the one with the 449	  

fewest DNA ambiguity symbols (Cornish-Bowden 1985) and that most closely approaches the 450	  

median length of all sequences for that species in that cluster. The goal is to avoid overly short 451	  

sequence fragments for markers for which longer stretches are readily available for the same 452	  

species. In addition, we also want to avoid considerably longer stretches where the marker has 453	  

been sequenced as part of, e.g. a mitochondrial or chloroplast genome. Even though instances of 454	  

either scenario are generally avoided due to the minimum requirements that PhyLoTA imposes 455	  

on overlap of reciprocal hits, these additional steps make SUPERSMART produce even cleaner 456	  

datasets – which are more representative for intra-specific sequence variation and contain less 457	  

missing data. 458	  

 459	  

Data merging. PhyLoTA clusters consist of sets of putatively homologous sequences grouped at 460	  

a taxonomic level deemed appropriate (depending on size these may be e.g. genera, families, or 461	  

orders). Therefore, multiple “sister clusters” may exist for the same marker. For SUPERSMART 462	  

to infer phylogenies that span several of these low taxonomic levels, such sister clusters need to 463	  

be merged correctly. There is no consensus in the scientific community on how to tackle this 464	  

issue, but we have identified three possible approaches: 465	  

1. to make use of curated annotations of seed sequence metadata such that all candidate 466	  

clusters whose seed sequence is annotated are merged into a single alignment, e.g. for 467	  

rbcL or COI. This would be a feasible option for a limited number of markers with 468	  

standardized naming conventions (such as DNA barcodes). However, our evaluation 469	  
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of the heterogeneity of names applied to non-standardized markers suggests that this 470	  

is an impractical approach for most other markers, despite community initiatives to 471	  

address this (e.g. see http://genenames.org); 472	  

2. to identify orthology among candidate sister clusters by searching for the protein 473	  

translation of the seed sequence of each candidate cluster against the InParanoid 474	  

database (O'Brien et al. 2005). InParanoid assigns orthology for all protein-coding 475	  

genes in the genomes of a large number of model organisms. If the best hits of 476	  

queried sequences are each other’s orthologs according to InParanoid, then, 477	  

transitively, so are the PhyLoTA clusters to which the query sequences belong. This 478	  

approach, however, can only be applied to protein-coding genes; 479	  

3. to run all-vs-all similarity searches among the set of seed sequences that represent the 480	  

clusters that are candidates for merging. In essence, this is the procedure also used by 481	  

PhyLoTA to select higher taxonomic levels to form “super clusters”. This has proved 482	  

to be the most successful approach, and one that can be applied also to non-coding 483	  

regions as well as regions that lack standardized names. It is therefore included in the 484	  

standard implementation of SUPERSMART. 485	  

 486	  

Multiple sequence alignment. The DNA sequences as stored in our database are unaligned. As 487	  

merged clusters can ultimately grow to very large numbers of sequences, we designed the 488	  

pipeline in such a way that multiple sequence alignment takes place as a two-step process. First, 489	  

the clusters as assigned by PhyLoTA are aligned (after data reduction). Second, orthology among 490	  

clusters at taxonomic levels higher than PhyLoTA can manage is identified using the approach 491	  
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described above and “sister clusters” are subsequently merged using profile alignment, as is also 492	  

the case with the Phylogenetic Dataset Construction toolkit (PHLAWD; http://phlawd.net/). By 493	  

default, the first alignment step uses MAFFT (Katoh & Standley 2013) and the second, profile 494	  

alignment, uses MUSCLE (Edgar 2004), although the system can be configured to use any of a 495	  

range of other alignment programs. Wrappers are provided for several other alignment programs.  496	  

 497	  

Marker and taxon selection. The data compilation steps outlined above provide a wealth of data, 498	  

although not all of them may be suitable for producing a backbone tree. An optimal balance must 499	  

be found between taxon sampling, taxon overlap, sequence divergence, and overall size (and 500	  

sparseness) of the combined data. In our multi-step approach, this optimum is further influenced 501	  

by which exemplar species are selected for the backbone inference step. Researchers who have 502	  

not attempted to assemble similar datasets may probably not realise the non-triviality of the task, 503	  

which is directly related to the classical “knapsack problem” (Martello & Toth 1990) (Fig. 4A). 504	  

Our approach for exemplar selection is to select, for each higher taxon to be represented, 505	  

the two species that most frequently form the most distal pair when computing all pairwise 506	  

sequence distances within the higher taxon. This is done iteratively for each candidate alignment. 507	  

During this step we weigh the occurrence of distal pairs by n-1, where n is the number of 508	  

pairwise comparisons within each alignment. The rationale is that the most distal pair among a 509	  

large number of comparisons is more likely to “cross the root” of the containing higher taxon (or 510	  

at least, represent a deep split) than in smaller alignments. For the trivial case of an alignment 511	  

only including two species, the pairwise distance between them is consequently (n-1=0) and thus 512	  

discarded as uninformative. 513	  
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 514	  

Once all exemplar species are identified, candidate alignments are selected for 515	  

concatenation as input in the backbone analysis. For this step the user can define a maximum 516	  

amount of average pairwise sequence divergence (to prevent the inclusion of saturated 517	  

alignments) and a minimum number of alignments within which each species must occur. We 518	  

then attempt to solve the “knapsack problem” of packing the required number of suitable 519	  

alignments into a minimally sparse supermatrix. The greedy approximation approach we take 520	  

(Fig. 4B) is to sort the exemplar species in increasing order of participation in candidate 521	  

alignments (i.e. rarely sequenced species are treated first). We then sort the alignments in 522	  

decreasing taxon coverage. Finally, we iteratively visit the species and for each of them, add its 523	  

available alignments to the supermatrix, until the focal species’ minimum participation threshold 524	  

has been breached. During this process we increment the occurrence counts for all other species 525	  

that also occur in the alignments that are added to the supermatrix, so that frequently sequenced 526	  

species have likely already exceeded their minimum occurrence threshold without requiring 527	  

separate treatment. 528	  

 529	  

Using the supermatrix of concatenated alignments for the exemplar species, we then infer 530	  

a backbone phylogeny. Given that the supermatrix may span several thousand taxa, we employ 531	  

highly scalable tree inference methods, providing end users with a choice between ExaML 532	  

(Stamatakis & Aberer 2013), which is based on a maximum likelihood algorithm, and ExaBayes 533	  

(http://sco.h-its.org/exelixis/web/software/exabayes) based on Bayesian inference. 534	  

 535	  
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Time calibration using fossils. Until the Fossil Calibration Database linked to Paleontologica 536	  

Electronica (Ksepka et al. 2011; Parham et al. 2012b) becomes fully operational and 537	  

taxonomically well-sampled, we have created a provisional database of fossil calibration points. 538	  

In addition, we introduce an index termed ‘best practice score’ calculated based on the five 539	  

criteria set up by Parham et al. (2012a). One advantage of this reliability index is to allow the 540	  

user to decide whether to use only the most expertly assessed (but fewer) fossils as calibrations, 541	  

or to experiment with additional fossils of lower confidence. These may include fossils whose 542	  

phylogenetic placement may be more tentative, but which might better inform the true age of the 543	  

calibrated nodes (Sauquet et al. 2012). This database is a cloned subset of a module implemented 544	  

in PROTEUS (http://eflower.myspecies.info/proteus), which offers an ideal setting for entering 545	  

data, keeping track of changes (which, by whom, and based on what), and data-mining. An 546	  

example of a fossil calibration record in this module is shown in Supplementary Fig. S1. 547	  

 548	  

On the resulting backbone tree inferred in the previous step, SUPERSMART then maps 549	  

all suitable fossils belonging to the focal clade, as directly exported from PROTEUS. This is the 550	  

stage at which fossils can be filtered based on a user-defined reliability score. The tree is then 551	  

dated using the relaxed clock algorithm Penalized Likelihood (Sanderson 2002) further 552	  

developed and implemented in treePL (Smith & O'Meara 2012), which can handle very large 553	  

numbers of terminals. Other popular dating tools such as BEAST (Drummond & Rambaut 2007) 554	  

are not yet feasible for more than a few hundred taxa. In upcoming versions, this module is 555	  

planned to handle samples of trees as input, and thereby produce confidence intervals of node 556	  

ages rather than point estimates. 557	  
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 558	  

Species-level analyses. Using the backbone topology, SUPERSMART assesses whether the 559	  

selected exemplar species are recovered as monophyletic pairs. If this is not the case, it traverses 560	  

up the backbone until a larger assemblage is formed that is, in total, monophyletic with respect to 561	  

all outgroup taxa (although its members may be paraphyletic with respect to each other). For 562	  

these assemblages we then select all available alignments. The user is provided the option to 563	  

define a maximum for the average pairwise sequence divergence within each alignment (to avoid 564	  

saturated alignments) and a minimum amount of alignment density, i.e. the minimum fraction of 565	  

the total number of species in the assemblage that must be represented in the candidate alignment 566	  

to warrant inclusion. The set of alignments selected for the focal assemblage of species is then 567	  

analysed under the multi-species, multi-marker coalescent implemented in *BEAST (Heled & 568	  

Drummond 2010). 569	  

 570	  

The resulting ultrametric species-level subtree is then grafted back onto the backbone 571	  

chronogram. First, all branch lengths on the subtree are re-scaled such that the most recent 572	  

common ancestor of the exemplars in the subtree is set to the same age-before-present (distance 573	  

to the tips) as the equivalent node in the backbone tree. As both trees are ultrametric, this 574	  

distance can be directly compared. If the exemplar species in the subtree are on either side of the 575	  

root, then the pair of exemplars in the backbone can simply be replaced by the subtree. If not, 576	  

then the distance between the most recent common ancestor of the exemplars in the subtree and 577	  

the root of the subtree is computed. This difference is then subtracted from the branch leading up 578	  

to the exemplar pair in the backbone, and from that point onwards the subtree is grafted in place 579	  
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of the exemplar pair. The result is a species-level dated phylogeny with directly comparable 580	  

clade ages, including all suitable species and genetic markers publicly available, and any 581	  

additional data provided by the user – all done with no more than a few clicks. 582	  

 583	  

EMPIRICAL EXAMPLES 584	  

 585	  

We present the functionality of SUPERSMART in its current implementation on two empirical 586	  

datasets: the mammalian order Primates and the plant order Gentianales. These taxa provide 587	  

contrasting examples commonly encountered in eco-evolutionary research. Primates have been 588	  

extensively studied by the scientific community, leading to a massive accumulation of sequences, 589	  

which are however highly biased towards our own species and near relatives. Even so, the 590	  

estimated number of living species range from 249 (http://www.catalogueoflife.org) to 376-450 591	  

(Springer et al. 2012), showing how the classification of even such a charismatic clade remains a 592	  

topic of debate. The Gentianales, despite comprising a much larger number of extant species (c. 593	  

22,237 according to Catalogue of Life) and several economically important genera such as 594	  

Coffea, Catharanthus, Cinchona, and Strychnos, have received considerably less attention and 595	  

are therefore the subject of much lower genetic coverage in public sequence databases. Table 1 596	  

shows summary statistics for these two taxa as well as core parameter values used during Steps 1 597	  

and 2 of their SUPERSMART analyses. 598	  

 599	  

Gentianales. Figure 5 shows the final time-calibrated species level tree comprising 701 species 600	  

in all five families of the order: Apocynaceae, Gentianaceae, Rubiaceae, Loganiaceae and 601	  
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Gelsemiaceae (see Fig. S2 for a fully annotated tree). The Step 2 analysis included as many as 54 602	  

different genetic markers, thus providing the hitherto most comprehensive species-level analysis 603	  

of the order to date. The group is estimated to have originated c. 103 million of years ago (Ma). 604	  

All families form distinct monophyletic groups, and their relationship corroborates previous 605	  

phylogenetic estimates, e.g. showing Rubiaceae as sister to the rest of the order (e.g. Backlund et 606	  

al. 2000; Jiao & Li 2007). Higher-level relationships within the Rubiaceae, the largest family 607	  

with 13,514 species, are also in large agreement with the recent family-level phylogenetic 608	  

analysis of Bremer & Eriksson (2009): subfamilies Cinchonoideae, Ixoroideae, and Rubioideae 609	  

are found to be monophyletic, with Rubioideae as sister to the others. Furthermore, inter-tribal 610	  

relationships within Rubioideae are largely consistent with their findings.  611	  

 612	  

Primates. Figure 6 shows the results from the analysis of this order using another way of 613	  

visualising large trees, while figure S3 presents the fully annotated species tree comprising 178 614	  

species. The topology of the extant lineages Strepsirrhini (78 Ma), Tarsiers (69 Ma), New World 615	  

monkeys (50 Ma), Old World monkeys, and apes (33 Ma) is correctly reconstructed. The 616	  

phylogeny is based on more than 20 markers (see Table 1), of which three had to be available for 617	  

a species to be included in Step 1 of the analyses. The relationships among the families within 618	  

the New world monkeys (Platyrrhini) are still unclear (Opazo et al. 2006), but all genera are 619	  

supported here as monophyletic. Our results suggest an initial split of the family Pitheciidae and 620	  

a close relationship between the families Atelidae and Cebidae. The Old World monkeys 621	  

(Cercopithecidae) comprise the two monophyletic subfamilies Colobinae and Cercopithecinae 622	  
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which is in agreement with previously published primate trees (Vos 2006). The Hominoidea is 623	  

well resolved, including the resolution of the hominoid trichotomy. Relatively less data were 624	  

available for the inference of the Taarsiformes and the Strepsirrhini. The Strepsirrhini split into 625	  

Malagasy and non-Malagasy species. The lemurs, native to Madagascar, are represented by four 626	  

families that are well resolved in our tree. However, due to low sequencing data coverage, many 627	  

Strepsirrhini genera are represented by only their two respective exemplar species. 628	  

 629	  

Interactions with other initiatives. Figure 7 outlines some of the anticipated interactions and 630	  

data exchange during different operational levels. SUPERSMART is designed as a community-631	  

based platform, which will complement and interact (rather than compete) with many ongoing 632	  

initiatives worldwide. For instance, a related application is the Phylogenetic Dataset 633	  

Construction toolkit (PHLAWD; http://phlawd.net/), which efficiently assembles sequence data 634	  

for a pre-specified list of target species (Zanne et al. 2014). SUPERSMART has similar goals 635	  

but differs from PHLAWD by dealing more extensively with name resolution, homology 636	  

assessment, optimal taxonomic vs. genetic coverage, and time-calibration through a native 637	  

curated fossil table and plugged-in tools, among other differences in scope and functionality. 638	  

Two other recent projects have similarities with SUPERSMART, although their scope is more 639	  

limited. PUmPER (Izquierdo-Carrasco et al. 2014) assembles multiple sequence alignments for a 640	  

given group in the NCBI taxonomy, but it constructs maximum likelihood gene trees, omitting 641	  

the Bayesian multi-species, multi-marker coalescent approach we present, the time calibration 642	  

step, and the outlook towards integration with other data by way of taxonomic name resolution. 643	  

In addition, the PUmPER approach is designed to construct a single tree, which may pose 644	  
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scalability problems for very large numbers of taxa, in contrast with the recursive approach we 645	  

present here. Huerta-Cepas et al. (2014) present such a recursive approach through their Nested 646	  

Phylogenetic Reconstruction (NPR) methodology, but the end result, like PUmPER, is a 647	  

maximum likelihood gene tree whose branch lengths are not proportional to time. Crucially, in 648	  

both cases, the resulting estimate of phylogeny is not an ultrametric species tree, which notably 649	  

hampers their application in phylogenetic, diversification, and ecological comparative analyses. 650	  

 651	  

On-going developments. The version of SUPERSMART released with this publication contains 652	  

a fully functional set of tools for performing Steps 1 and 2 described above (Fig. 3). In the next 653	  

version, we will implement several post-tree tools (i.e., Step 3). These will include mapping 654	  

distribution data into phylogenies (SpeciesGeoCoder; https://github.com/mtop/geocoder), 655	  

extracting subtrees from global species-level chronograms (http://phylotastic.org), estimating 656	  

area-specific migration and diversification rates under a Bayesian framework (FitzJohn 2010; 657	  

Silvestro et al. 2011), and integrating the SUPERSMART tools with the workflows at BioVeL 658	  

(http://www.biovel.eu). Many enhancements are planned and will be successively added, 659	  

including visually appealing and flexible Graphical User Interfaces (GUI). Anyone can join the 660	  

users’ list and request additional features, and those wishing to contribute to the code and project 661	  

may also request to join the developers’ list at https://github.com/naturalis/supersmart. 662	  

 663	  

 664	  

 665	  

 666	  
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CONCLUSION AND PROSPECTS 667	  

Biological research has arguably never been as exciting – but also as challenging – as today. We 668	  

have entered the era of Big Data and cannot ignore its potential impact on the questions we 669	  

address. As an evolutionary perspective (e.g. phylogenetic signal) is increasingly acknowledged 670	  

as an essential component of ecological studies at various scales (Srivastava et al. 2012; Chave 671	  

2013), integrative bioinformatic solutions such as SUPERSMART will aid researchers to tackle 672	  

the ‘moving target’ of data accumulation, methodological development, and theoretical advances. 673	  

 674	  

AVAILABILITY 675	  

All source code underlying this project is freely accessible under an MIT license at 676	  

http://www.supersmart-project.org and http://antonelli-lab.net, where tutorials, example files, 677	  

and other relevant information will be continuously made available. Access to the fossil 678	  

calibration module in PROTEUS may be requested at http://eflower.myspecies.info/proteus. 679	  

 680	  
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FIGURES 694	  

Fig 1. Biodiversity research has entered the era of Big Data. A: Growth of the number of 695	  

scientific publications in ecology and evolution (search for subject headings in the PubMed 696	  

database). B: Snapshot of species occurrence records in the Global Biodiversity Information 697	  

Facility. C: Fossil occurrences available from the Paleobiology Database. D: Growth of 698	  

molecular data deposited in GenBank. 699	  

 700	  

Fig 2. Methods for inferring large (dated) phylogenies. Schematic comparison of the supertree, 701	  

supermatrix, and the SUPERSMART approaches (presented in this paper). 702	  

 703	  

Fig. 3. Basic overview of SUPERSMART. Step 1: a hypothetical, dated backbone phylogenetic 704	  

tree comprising 16 genera, each represented by a single species. The dating employs all available 705	  

fossils suitable for time calibration. Step 2 depicts a clade (2 genera with 11 species in total) for 706	  

which no direct fossil calibration is available. Divergence times can nevertheless be confidently 707	  

estimated by re-calibrating (scaling) the branches with the posterior clade ages obtained in Step 1. 708	  

Step 3: The fine-level, dated trees are then grafted together and made available for various post-709	  

tree analyses in ecology and evolution, relying on directly comparable divergence times. 710	  

 711	  

Fig. 4. Illustration of the classic knapsack problem, applied to the optimal choice of species and 712	  

alignments (markers) for compiling DNA alignments. A: Combinatorial problem of maximizing 713	  

the amount of money in the knapsack with a maximum capacity of 15 kg. B: Seven exemplar 714	  

species (S1-S7) are put in ascending order by their occurrence in the candidate alignments (A1-715	  
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A7) which are in turn ordered by taxon coverage. In this example, the minimum number of 716	  

alignments per species is set to two. The supermatrix is then compiled as described in the text. 717	  

The resulting matrix consists of five alignments and only six species, since the number of 718	  

alignments in which species S4 occurs does not meet the required minimum.  719	  

 720	  

Fig. 5. Time-calibrated phylogeny of the plant order Gentianales constructed using 721	  

SUPERSMART, including 701 species and calibrated using 10 fossils. The five families are 722	  

outlined. Internal concentric circles represent 10 Ma bins. See Fig. S2 for a fully annotated tree. 723	  

The figure was generated with FigTree (http://tree.bio.ed.ac.uk/software/figtree/). 724	  

 725	  

Fig. 6. Molecular chronogram of Primates constructed with SUPERSMART, shown in the tree 726	  

visualisation tool OneZoom (Rosindell & Harmon 2012; http://www.onezoom.org/). Top left: 727	  

Full tree; top right: zoom to the genus Saguinus; bottom: zoom to a branch comprising four 728	  

species. An interactive image is available at http://www.supersmart-project.org/p/example.html. 729	  

See also Fig. S3 for the fully annotated tree in classical style. 730	  

 731	  

Fig. 7. Proposed interactions with other initiatives at different analytical stages. “Global 732	  

analyses” will provide continuously updating, dated phylogenies of all species with publicly 733	  

available molecular sequences, and (in upcoming versions) estimates of diversification and 734	  

migration rates among and within a set of pre-defined GIS polygons (such as WWF’s realms and 735	  

biomes). The results may be retrieved by other initiatives and will be deposited in data 736	  

repositories. “User-defined analyses” are influenced by individual choices, including user-737	  
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defined polygons (areas), taxa of interest, and fossil records. The user may also include data that 738	  

are not yet published or are not public. A series of post-tree analyses will be available, mainly 739	  

through BioVeL workflows, and new ones will be incorporated continuously. 740	  

741	  
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ONLINE SUPPLEMENTARY MATERIAL 742	  

 743	  

Supplementary Fig. S1. Example of a fossil entry in the PROTEUS database. Relevant 744	  

information such as the taxon name (here Endressinia brasiliana), age boundaries, and ‘best 745	  

practice scores’ (see text for explanation) can be exported and directly used for time calibration 746	  

in SUPERSMART. 747	  

 748	  

Supplementary Fig. S2. Phylogeny of Gentianales. The final tree inferred using the 749	  

SUPERSMART pipeline comprises the five families Apocynaceae (blue), Gentinaceae (yellow), 750	  

Rubiaceae (red), Loganiaceae (green), and Gelsemiaceae (turquoise). Node labels and branch 751	  

widths represent posterior support values for inferences of individual clades. The figure was 752	  

generated with FigTree. 753	  

 754	  

Supplementary Fig. S3. Fully annotated phylogeny of Primates inferred using SUPERSMART. 755	  

Node labels represent posterior support values for inferences of individual clades. The figure was 756	  

generated with FigTree. 757	  

 758	  
TABLES 759	  

 760	  

Table 1. Summary statistics for SUPERSMART Steps 1 and 2 of the orders Gentianales and 761	  

Primates. 762	  

763	  
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FIGURES 1032	  

Fig 1. Biodiversity research has entered the era of Big Data. A: Growth of the number of 1033	  

scientific publications in ecology and evolution (search for subject headings in the PubMed 1034	  

database). B: Snapshot of species occurrence records in the Global Biodiversity Information 1035	  

Facility. C: Fossil occurrences available from the Paleobiology Database. D: Growth of 1036	  

molecular data deposited in GenBank. 1037	  

 1038	  

 1039	  
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Fig 2. Methods for inferring large (dated) phylogenies. Schematic comparison of the supertree, 1040	  

supermatrix, and the SUPERSMART approaches (presented in this paper). 1041	  
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Fig. 3. Basic overview of SUPERSMART. Step 1: a hypothetical, dated backbone phylogenetic 1048	  

tree comprising 16 genera, each represented by a single species. The dating employs all available 1049	  

fossils suitable for time calibration. Step 2 depicts a clade (2 genera with 11 species in total) for 1050	  

which no direct fossil calibration is available. Divergence times can nevertheless be confidently 1051	  

estimated by re-calibrating (scaling) the branches with the posterior clade ages obtained in Step 1. 1052	  

Step 3: The fine-level, dated trees are then grafted together and made available for various post-1053	  

tree analyses in ecology and evolution, relying on directly comparable divergence times. 1054	  

 1055	  

1056	  
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Fig. 4. Illustration of the classic knapsack problem, applied to the optimal choice of species and 1057	  

alignments (markers) for compiling DNA alignments. A: Combinatorial problem of maximizing 1058	  

the amount of money in the knapsack with a maximum capacity of 15 kg. B: Seven exemplar 1059	  

species (S1-S7) are put in ascending order by their occurrence in the candidate alignments (A1-1060	  

A7) which are in turn ordered by taxon coverage. In this example, the minimum number of 1061	  

alignments per species is set to two. The supermatrix is then compiled as described in the text. 1062	  

The resulting matrix consists of five alignments and only six species, since the number of 1063	  

alignments in which species S4 occurs does not meet the required minimum.  1064	  

 1065	  

1066	  
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Fig. 5. Time-calibrated phylogeny of the plant order Gentianales constructed using 1067	  

SUPERSMART, including 701 species and calibrated using 10 fossils. The five families are 1068	  

outlined. Internal concentric circles represent 10 Ma bins. See Fig. S2 for a fully annotated tree. 1069	  

The figure was generated with FigTree (http://tree.bio.ed.ac.uk/software/figtree/). 1070	  

 1071	  

 1072	  

1073	  
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Fig. 6. Molecular chronogram of Primates constructed with SUPERSMART, shown in the tree 1074	  

visualisation tool OneZoom (Rosindell & Harmon 2012; http://www.onezoom.org/). Top left: 1075	  

Full tree; top right: zoom to the genus Saguinus; bottom: zoom to a branch comprising four 1076	  

species. An interactive image is available at http://www.supersmart-project.org/p/example.html. 1077	  

See also Fig. S3 for the fully annotated tree in classical style. 1078	  

 1079	  

1080	  

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.501v1 | CC-BY 4.0 Open Access | rec: 15 Sep 2014, publ: 15 Sep 2014

P
re
P
rin

ts



The SUPERSMART approach	  
	  

	  

  Page 52 (56) 
	  

 

Fig. 7. Proposed interactions with other initiatives at different analytical stages. “Global 1081	  

analyses” will provide continuously updating, dated phylogenies of all species with publicly 1082	  

available molecular sequences, and (in upcoming versions) estimates of diversification and 1083	  

migration rates among and within a set of pre-defined GIS polygons (such as WWF’s realms and 1084	  

biomes). The results may be retrieved by other initiatives and will be deposited in data 1085	  

repositories. “User-defined analyses” are influenced by individual choices, including user-1086	  

defined polygons (areas), taxa of interest, and fossil records. The user may also include data that 1087	  

are not yet published or are not public. A series of post-tree analyses will be available, mainly 1088	  

through BioVeL workflows, and new ones will be incorporated continuously. 1089	  

1090	  
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TABLES 1091	  

 1092	  

Table 1. Summary statistics for SUPERSMART Steps 1 and 2 of the orders Gentianales and 1093	  

Primates. 1094	  

 1095	  

1096	  

GENTIANALES STEP%1%(Backbone%tree) STEP%2%(Species7level%subclades)
Families Genera Species Terminals Loci base%pairs %%gaps Calibrations CPU%time Subclades Total%species Min7Max%bp CPU%time

Total%(included%in%SUPERSMART%analysis)

5*%5†%(5) 945*%317†%(904) 6702*%22237†%(5124) 461

18S,%5.8S,%5S,%accD,%atbB,%atpB,%atpB7rbcL,%atpE,%atpF,%cox1,%CrN1,%IGS,%ITS1,%ITS2,%LFY,%
matK,%matR,%nad5,%nadhF,%ndhF,%PepC,%petB,%petN,%petN7psbM,%phya,%progesterone57
beta7reductase,%psbA,%psba7trnH,%psbM,%rbcL,%RPB2,%rpl16,%rpoB,%rpoC1,%rpoC1,%rps16,%
rps3,%rps4,%tnrC7GCA,%tnrC7petN,%tnrC7rpoB,%tnrE,%tnrG,%tnrH,%tnrK,%tnrS7tnrG,%tnrY,%Tpi,%

tRNA7Met,%tRNA7Ser7GCU,%tRNA7Val,%trnG,%trnK,%trnL,%trnS7Ycf9

1609382 54 10§ ~80h 16 701 59373611 ~60h

PRIMATES STEP%1%(Backbone%tree) STEP%2%(Species7level%subclades)
Families Genera Species Terminals Loci base%pairs %%gaps Calibrations CPU%time Subclades Total%species Min7Max%bp CPU%time

Total*%(included%in%SUPERSMART%analysis)

16*%14†%(16) 73*%60†%(67) 494*%249†%(201) 93
TrpC2,%G6PD,%FGA,%NPAS3,%PNOC,%CXCR4,%cytochrome%b,%alpha72%c2,%GPR33,%SRY,%

androgen%receptor,%12S,%ADORA3,%thimidylate%synthase,%toll7like%receptor%5,%NEGR1,%
ZFY,%CD44,%MC1R,%MM1,%MM2,%St1,%TTR,%DRB,%BDNF,%CCR5,%irbp,%CXCR4%

664892 23 8‡ ~8h 20 178 9374288 ~60h

*Statistics%from%the%NCBI%taxonomy%database%(http://www.ncbi.nlm.nih.gov/taxonomy)
†%Statistics%from%the%Catalogue%of%Life%(http://www.catalogueoflife.org,%June%8,%2014)
‡Vos,%2006
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ONLINE SUPPLEMENTARY MATERIAL 1097	  

 1098	  

Supplementary Fig. S1. Example of a fossil entry in the PROTEUS database. Relevant 1099	  

information such as the taxon name (here Endressinia brasiliana), age boundaries, and ‘best 1100	  

practice scores’ (see text for explanation) can be exported and directly used for time calibration 1101	  

in SUPERSMART. 1102	  

 1103	  

  1104	  
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Supplementary Fig. S2. Phylogeny of Gentianales. The final tree inferred using the 1105	  

SUPERSMART pipeline comprises the five families Apocynaceae (blue), Gentinaceae (yellow), 1106	  

Rubiaceae (red), Loganiaceae (green), and Gelsemiaceae (turquoise). Node labels and branch 1107	  

widths represent posterior support values for inferences of individual clades. The figure was 1108	  

generated with FigTree (http://tree.bio.ed.ac.uk/software/figtree/).  1109	  

1110	  
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Supplementary Fig. S3. Fully annotated phylogeny of Primates inferred using 1111	  

SUPERSMART. Node labels represent posterior support values for inferences of individual 1112	  

clades. The figure was generated with FigTree. 1113	  
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Eulemur_mongoz

Cercopithecus_petaurista

Callicebus_torquatus

Callicebus_donacophilus

Callithrix_kuhlii

Loris_tardigradus

Rhinopithecus_brelichi

Macaca_assamensis

Cebus_apella

Arctocebus_calabarensis

Callithrix_jacchus

Pan_paniscus

Cercopithecus_cephus

Hylobates_muelleri

Galagoides_demidoff

Propithecus_verreauxi

Hylobates_lar

Tarsius_tarsier

Callicebus_caligatus

Cercocebus_galeritus

Propithecus_tattersalli

Rhinopithecus_roxellana

Ateles_belzebuth

Macaca_arctoides

Perodicticus_potto

Pithecia_irrorata

Cercopithecus_mona

Avahi_laniger

Cebus_albifrons

Nasalis_larvatus

Saguinus_midas

Callicebus_moloch

Eulemur_fulvus

Cercopithecus_lhoesti

Macaca_maura

Saguinus_geoffroyi

Symphalangus_syndactylus

Propithecus_diadema

Cebus_capucinus

Macaca_mulatta

Ateles_geoffroyi

Chlorocebus_aethiops

Aotus_azarai

Miopithecus_talapoin

Microcebus_rufus

Pongo_pygmaeus

Alouatta_caraya

Alouatta_seniculus

Aotus_nancymaae

Hylobates_klossii

Cercopithecus_diana

Presbytis_comata

Macaca_tonkeana

Theropithecus_gelada

Macaca_nemestrina

Lophocebus_albigena

Rhinopithecus_avunculus

Macaca_thibetana

Procolobus_verus

Nomascus_leucogenys

Leontopithecus_rosalia

Semnopithecus_entellus

Cercopithecus_preussi

Macaca_cyclopis

Brachyteles_arachnoides

Lepilemur_mustelinus

Allenopithecus_nigroviridis

Callithrix_penicillata

Papio_hamadryas

Trachypithecus_francoisi

Pan_troglodytes

Lepilemur_dorsalis

Callithrix_argentata

Eulemur_rubriventer

Nomascus_concolor

Chiropotes_satanas

Cercopithecus_neglectus

Presbytis_melalophos

Macaca_nigra

Hylobates_agilis

Nomascus_gabriellae

Colobus_guereza

Alouatta_guariba

Homo_sapiens

Cercopithecus_erythrotis

Nycticebus_pygmaeus

Ateles_fusciceps

Macaca_sinica

Cebus_olivaceus

Gorilla_gorilla

Erythrocebus_patas

Colobus_polykomos

Trachypithecus_geei

Cercopithecus_nictitans

Macaca_silenus

Macaca_ochreata

Hylobates_moloch

Mandrillus_sphinx

Trachypithecus_johnii

Cheirogaleus_major

Cercopithecus_wolfi

Lagothrix_lagotricha

Saguinus_leucopus

Alouatta_pigra

Nycticebus_coucang

Eulemur_macaco

Callicebus_personatus

Callithrix_geoffroyi

Trachypithecus_cristatus

Callicebus_cupreus

Aotus_lemurinus

Galago_moholi

Otolemur_garnettii

0.2198

0.967

0.5604

Cercopithecidae

0.6703

0.5934

0.4396

0.4615

1

1

0.4615

Cercopithecinae

0.7033

0.2308

Strepsirrhini

0.5934

0.5055

1

0.4176

Lepilemuridae

0.4505

0.3407

0.5495

0.3626

1

Cebidae

Hominidae

0.9451

Atelidae

0.9231

0.8462

0.6813

1

0.6374

Cheirogaleidae

1

0.7912

0.5385

1

0.7473

1

0.3846

1

0.8901

0.3187

0.5385

0.3626

0.5934

Pitheciidae

1

0.5385

0.978

0.5604

0.3297

0.5714

Colobinae

Lemuriformes

0.989

0.1319

0.4615

1

1

0.4835

0.5385

0.3407

1

0.1538

0.8242

0.956

0.989

Tarsius

0.9451

1

0.2418

0.9121

Hominoidea

0.8901

0.2637

0.956

1

1

0.8242

0.4286

0.9451

0.4066

0.8132

0.5824

0.8571

Indriidae

0.989

0.989

0.2857

0.8352

0.9011

1

1

0.9341

0.4835

0.8791

0.7253

0.7253

0.4615

Hylobatidae

0.5275

Lemuridae
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