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Connectance and degree distributions are important components of the structure of eco-4

logical networks. In this contribution, we use a statistical argument and simple network5

generating models to show that properties of the degree distribution are driven by net-6

work connectance. We discuss the consequences of this ûnding for (1) the generation of7

random networks in null-model analyses, and (2) the interpretation of network structure8

and ecosystem properties in relationship with degree distribution.9
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1 Introduction10

Ecologists developed a strong interest for network theory, as it allowed to make sense of some of the11

complexity of ecological communities. In contrast to early approaches on ‘‘communitymodules’’12

(groups of a few species within a large community, Holt, 1997) a network level approach allows13

one to account for the whole community scale (J. A. Dunne, 2006), thus integrating all direct and14

indirect interactions (Berlow et al., 2009). Ecological networks have o�en been called ‘‘complex’’15

(R. J. Williams & Martinez, 2000), on account of the fact that they represent objects (ecological16

communities) with complex dynamics (i.-e. non-linear, sensitive to indirect interactions). Because17

networks aremulti-faceted objects with a rich range of structure, ecologists have been looking for18

emerging properties that can be easilymeasured and analyzed, and that relate to ecological properties19

and processes.20

Early in the ecological network literature, connectance, i.e. the proportion of realized ecological21

interactions among the potential ones (most o�en the squared species richness), has been recognized22

as a central network property (May, 1972; Yodzis, 1980;N.D. Martinez, 1992). In part, this success can23

be attributed to the relationship between connectance and early deûnitions of network complexity24

(Pimm, 1982), and to the fact that connectance predicts reasonably well key dynamical properties of25

ecological networks (J. A. Dunne, Williams, &Martinez, 2002; 2002) including their stability (May,26

1972). More recently, attention shi�ed from connectance, a community-averaged property, to the27

degree distribution, that is the statistical properties of the distribution of number of interactions28

per species. Variation of degree distribution among networks has o�en been taken as evidence that29

assembly or interaction mechanisms diòer (Vázquez, 2005;Williams, 2011), and increasingly reûned30

methods to estimate degree distribution have been devised (Williams, 2009). Some authors proposed31

that degree distribution, rather than connectance, is driving higher level network properties such as32

nestedness ormodularity, which are important drivers of network dynamics (Miguel Angel Fortuna33

et al., 2010).34

However, it is worth asking if we were not too quick in focusing most of our research eòort on degree35
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distribution, in detriment to more fundamental work on connectance and its eòects. A network,36

ecological or otherwise, can be viewed as a physical space that edges (interactions) occupy. he size37

of this space is limited by the number of nodes. hismeans that there are physical constraints on the38

ûlling of a network, due to the fact that placing the ûrst edge will limit the number of ways to place39

the remaining edges, and so on. For example, there is only one way to have a fully connected network,40

and there are a limited number of ways to have a network with the lowest possible connectance. For41

this reason, and given the rising importance of degree distribution in the literature, it is important that42

we clearly understand how constrained this distribution actually is in relation to connectance. In this43

contribution, using an argument from combinatorial statistics and simulations of pseudo-random44

networks under two diòerentmodels, we present strong evidence that degree distribution, along with45

other emerging network properties, are constrained (and can be predicted to a certain extent) by46

connectance. We discuss the consequences of our results for the comparison of diòerent ecological47

networks, and for the generation of random networks in null-model analyzes.48

2 Statistical argument49

Assuming an ecological network made of n species, and assuming undirected interactions with no50

self-edges (e.g. no species can interact with itself), there can be atmost M = n(n − 1)/2 interactions51

in this network, in which case it is a complete graph (the results presented below hold qualitatively for52

both directed graphs, and graphs in which self-edges are allowed). We note thismaximal number of53

links Mn. With this information in hand, it is possible to know the total number of possible networks54

given a number l of interactions. Ecologists are o�en more familiar with networks being represented55

as their adjacencymatrix, i.e. (withminimal simpliûcations) amatrix with asmany rows and columns56

as there are species, and a 1 at the intersection of two species that interact. In an undirected network,57

the existence of an edge between species A and B imply two interactions (i.e. A→ B and B ← A), and58

so assuming no self-edges, the total number of ones in the adjacencymatrix of a complete, undirected59

graph, is n(n − 1). hroughout this paper, we represent networks as graphs, and not as adjacency60

3

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.50v4 | CC-BY 3.0 Open Access | rec: 23 Dec 2013, publ: 23 Dec 2013



matrices. We consider only the situation of unipartite networks, i.e. that can be represented by a61

squarematrix. While the shape of thematrix (i.e. the ratio of columns numbers over rows number)62

will have an impact on the results, we conducted preliminary simulations showing that the results63

hold qualitatively in bipartite networks of varying shapes.64

If we term Sn the set of all possible Mn edges in a n-node network, then the number Gn,l of possible65

networks with l links is the number of l-combinations of Sn, i.e. howmany possibilities are there66

to pick l edges among Mn. Formally, this is expressed as Gn,l = CMn

l , (where C
y
x is the binomial67

coeõcient, i.e. the number of possible ways to pick x elements among a set of y elements) or68

Gn,l =
Mn!

l !(Mn − l)!

Note that this number of possible networks include some graphs in which nodes have a degree of 0,69

and that in most ecological studies, such nodes will be discarded. We therefore have to evaluate how70

many of such networks will be found withing Gn,l . In addition, in a null-model context (Bascompte71

et al., 2003;Miguel A. Fortuna & Bascompte, 2006), having unconnected nodes in random replicates72

will change the richness of the community, thus possibly biasing the value of randomized emerging73

properties. As somemeasures of network structure covary with species richness, if one is to generate74

a randomly expected distribution of the values of these properties, then it is important to hold75

species richness constant. Finding out the number of networks in which a given node has a degree76

of 0 is similar to ûnding out how many networks exist with l links between the n − 1 nodes. If77

one node is removed from the network, there are Cn
n−1 possible combinations of nodes (which is78

(n)!/((n− 1)!(n−(n− 1))!),which further simpliûes to n). For each of these, there areGn−1,l possible79

networks conûgurations. Note that these networks will also include situations in whichmore than80

one species has a degree of 0, so that by recurrence, evaluating Gn−2,l and so forth is not necessary81

(all networks with more than one node of null degree are within the set of the networks with at least82

one node of null degree). Calling Rn,l the number of networks with n nodes and l edges in which83

all nodes have at least one edge attached, we can write that the number of networks with all nodes84
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having at least one edge is the total number of networksminus the number of networks having at85

least one node of null degree (evaluated for each node), or86

Rn,l = Gn,l − Cn
n−1 ×Gn−1,l

We call the quantities R and G, respectively, the realized and total network space. heymeasure how87

many networks of n nodes and l edges exists, either allowing or preventing the existence of nodes88

with no interactions. Based on this reasoning, we can make two predictions.89

Prediction 1: Because C
y
x = C

y
y−x , it comes that the total network space is largest when l = Mn/2. As90

in this context themaximal number of edges is Mn, we deûne eòective connectance as Co = l/Mn,91

so max(Gn,l) is reached at Co = 1/2. he algebraic expression of themaximum value of Rn,l is hard92

to ûnd, but simulations show that it also occurs around Co = 1/2. In other words, regardless of the93

number of nodes in a network, the ‘‘degrees of freedom’’ of network structure, as indicated by the94

size of the realized and total network spaces, ismaximized at intermediate connectance.95

Prediction 2: Rn,l will become asymptotically closer to Gn,l when l is close to Mn. In other words,96

there is only one way to ûll a network of n nodes with Mn interactions, and in this situation there97

is no possibility to have nodes with a degree of 0. In the situation in which l = Mn, Gn,l = CMn

Mn
= 1,98

given that Mn > Mn−1, it comes that Gn,l = Rn,l = 1. Intuitively enough, this implies that ecological99

systems in which connectance is high will display very little variation from one another, as far as the100

distribution of emergent network properties (e.g. variance of the degree distribution, nestedness, . . . )101

is concerned.102

We now illustrate these predictions using networks of 10 nodes, with a number of edges varying from103

10 to M10 (i.e. 45 edges). As illustrated in Fig. 1, the size of the network space has a hump-shaped104

relationship with connectance, and the size of the realized network space becomes closer to the size105

of the total network space when connectance increases.106

In Fig. 2, we show that regardless of the network size, the relative size of the realized network space107

increases with connectance. he rate at which it occurs increases with network size. However, in all108
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Figure 1: Size of the total and realized network space for n = 6. As predicted in the main text, (1)
the size of network spaces peaks at Co = 1/2, and (2) the size of the realized network space becomes

asymptotically closer to the size of the total network space when connectance increases.
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cases, when connectance is low, there are only a very small proportion of the total network space in109

which all nodes have at least one edge. his suggest that the structure of extremely sparse networks is110

also strongly constrained. his is congruent with historical ûndings by Erdos & Rényi (1959), namely111

that the probability of each node being connected to the graph largest connected component (i.e. any112

set of vertices of which any two are connected by at least one path) increases with average degree113

(thus for high connectances, all nodes are likely to be connected to the giant component, hence no114

node has a degree of 0). In the context of ecology, in which most networks have a low connectance, it115

implies that generating random networks to test null hypotheses can be a computationally intensive116

task, as the realized network space is (proportionally) small.117

Figure 2: Relative size of the realized network space compared to the total network space when
connectance increases, for four diòerent network sizes.
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3 Simulations118

In the previous part, we showmathematically that connectance (the number of realized vs. possible119

interactions), relative to the network size, determines the size of the network space, i.e. howmany120

possible network combinations exist. Based on this, we can therefore expect that the degree distri-121

bution will be contingent upon network connectance. Speciûcally, we expect that the variance of122

the degree distribution, which is o�en related to ecosystem properties and other network structures123

(Miguel Angel Fortuna et al., 2010), will display a hump-shaped relationship with connectance. he124

mean, kurtosis, and skewness of the degree distribution should all vary in amonotonous way with125

connectance.126

In the simulations below, we use networks of 30 nodes, ûlled with 35 to M30 interactions, by steps of127

10. We use two diòerent routines to generate random networks, that are contrasted in the way they128

distribute edges among nodes. First, we generate Erdős-Rényi (ER, undirected) graphs, meaning129

that every potential interaction has the same probability of being realized (Erdos & Rényi, 1959). We130

use an algorithm inspired by Knuth (1997), allowing to ûx the number of edges in the graph rather131

than the probability of an edge occurring, although the generated graphs have the same properties as132

the original ERmodel. A total of 19000 networks are generated this way. Second, we use the niche133

model of food webs (R. J.Williams &Martinez, 2000), which generates (directed) networks under134

rules representing hypothesizedmechanisms of prey-selection in empirical ecosystems (Gravel et al.,135

2013). his particularmodel assumes that the existence of interactions is constrained by the position136

of species along a ‘‘niche’’ axis, for example body size. Other randomization methods for food webs137

exists, but given that Stouòer et al. (2005) showed that they yield similar degree distributions to the138

nichemodel, we will not use them here. A total of 500 replicates for each value of l are generated. All139

networks generated with the two models are free of self-edges and nodes with a null degree.140

For each replicate, wemeasure the degree distribution and report its variance, coeõcient of variation,141

kurtosis, and skewness. In addition, for each network, we ût a power-law distribution on the sorted142

degree distribution using the least-squaresmethod; we report the power-law exponent.143
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Figure 3: Statistical descriptors of the degree distribution of randomized networks, n = 30, increasing
connectance. hese results show that central properties of the degree distribution are contingent upon
connectance, at a given network size, and under a given network generation model. ER networks are
in blue, niche-model networks are in red. Each point represent a single generated network.
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Qualitatively, the random graphs and the niche networks behave exactly the same. With the exception144

of the kurtosis, all statistical descriptors of the degree distribution were in�uenced by the eòective145

connectance (Fig. 3). As predicted in the previous part, variance of the degree distribution is hump-146

shaped with regard to connectance, which implies that as average degree increases with connectance,147

the coeõcient of variation of the degree distribution decreases at high connectances. Note also that148

the range of variances in the degree distribution is higher at intermediate connectances, but lower at149

the extreme. Due to the fact that the Erdős-Rényi graphs we simulate are essentially Poisson random150

graphs, it is expected that the variance of their degree distribution would be lower than for the niche151

model, which in contrast forces strong diòerence in the degree of species according to their niche152

position.153

To quantify the impact of connectance on the diòerent network properties, wemeasured the pro-154

portion of variance explained by the linear regression of a given property against connectance (in155

such cases as had a linear relationship between the two, i.e. all measures but variance). Kurtosis is156

independent of connectance (R2
niche = 0.04, R2

ER = 0.06), while skewness decreases with connectance,157

although moremarkedly so in the nichemodel (R2
niche = 0.66, R2

ER = 0.26). his result is expected.158

Positively skewed distribution have longer or fatter right tails, indicating mostly low values (low159

degree): unconnected networks aremademostly of species with a weak generality (Schoener, 1989).160

On the other hand, negative skewness indicate thatmost of the values in the distribution are high.161

Ecologically, itmeans thatmost species are wide-range generalists, which happens in densely con-162

nected networks. his bears important ecological consequences, as it indicates that due to physical163

constraints acting on the ûlling of interactions within the graphs, networks with intermediate con-164

nectances are expected to have species with both low and high generality (Schoener, 1989). he165

coeõcient of variation of the degree distribution is extremely well predicted by connectance alone166

(R2
niche = 0.91, R2

ER = 0.87).167

he estimate of the power-law exponent increases when connectance increases (Fig. 4, R2
niche = 0.91,168

R2
ER = 0.70). his indicates that the degree distribution �attens when connectance increases. Taken169

with the elements presented above, we show that all of the estimators of the degree distribution vary170
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Figure 4: he estimate of the power-law exponent increases with connectance, reaching a �at distri-
bution for complete graphs.
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strongly with connectance of the network. Although power-laws should be truncated as soon as the171

probability of a species having a degree of 2 × n (or n in undirected networks) is not negligible, and172

as such the ûtting of power-laws should not be done on highly connected networks for practical173

purposes, this result emphasizes the key role of connectance in driving central network structure174

properties.175

4 Practical consequences176

Randomized null models are o�en used to estimate howmuch a given network property deviates177

from its random expectation (Flores et al., 2011). Our results show two things. First, except for178

extremely high or low connectance, the proportion of the network space that will be explored using179

103 or 104 replicates (typical values in null models analyzes) is orders of magnitude smaller than180

the realized network space. Although this is somewhat compensated by the fact that a part of these181

networks are isomorphic, the risk of inferring deviation from the random expectation based on a182

drastically small sampling of the network space is real, and un-addressed; at the very least, it seems183

that that intensity of the replication should be dependent upon the connectance of the network one184

tries to replicate. On the other hand, when connectance is high, the number of unique network185

combinations decreases, and there is a risk to generate a number of replicates that is larger than the186

realized network space, thus decreasing the information content of the randomizations. To the best187

of our knowledge, these issues have seldom be addressed in the literature on ecological network188

randomization. Another problem thatmight be considered is that some, but not all, of these graphs189

will be isomorphics. For example, although there are ûve ways to distribute two edges between three190

nodes (assuming undirected edges), all ûve graphs can be perfectlymatched to one another. his will191

not be the case in more complex networks, i.e. with more nodes and intermediate connectance. he192

consequence of this is that even though itmay be possible to generate a large number of randomized193

networks, in a context where species identity do notmatter (which is o�en the case in null model194

analyzes in ecology), several of these ‘‘replicates’’ can actually be the same, and thus the power of null195
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model analyzes at connectances where the network space is increasingly constrained (i.e. extremely196

high and low connectances) should be carefully evaluated.197

Second, generating null models with a low connectance is a computationally intensive task. When198

connectance decreases, the realized network space decreases faster than the total network space,199

meaning that the probability of picking a network with no 0 degree nodes (which is simply Rn,l/Gn,l)200

goes toward zero. For this reason, classical rejection sampling (accept the random network if no201

nodes have no edges, reject it if not) is bound to take an unreasonable amount of time in networks202

with low connectance. In addition, there is a risk of selecting some particular types of networks. It203

makes intuitive sense that networks with extremely skewed degree distributions have less chance of204

being generated this way, as when a few nodes collect most of the edges, the probability than the205

remaining nodes each have at least one edge decreases. To the best of our knowledge, this source of206

bias has not received important attention in the literature. For this reason, using a purely random207

matrix shuøing as a starting point, then swapping interactions until no free nodes remain, seems208

to be a promising way to address this problem. Given the important of null-model approaches in209

network analysis, the generation of eõcient and unbiased algorithms is a fruitful research avenue.210

5 Conclusions211

Connectance is an extremely intuitive property of network, expressing howmuch of the potential212

interactions are realized. hrough statistical reasoning and simple simulations using models of213

random networks, we show that for a given number of species, connectance drives (i) howmany214

diòerent networks exist, and (ii) some key elements of the degree distribution. We observed both215

among and between model quantitative changes in degree distribution along a connectance gradient.216

he nichemodel is a particularly striking example of this, with the variance in the degree distribution217

increasing 50-fold when connectancemoves from 0.1 to 0.5. his result has practical implications218

for network comparisons. As descriptors of degree distribution vary with connectance, connectance219

should be factored out from all analywes. So as to avoid colinearity issues, this can be done by either220
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working on the residuals of the degree distributions’ property of interest. To some extent, the impact221

of connectance is lesser in the 0.05-0.3 range wheremost empirical food webs lies (although bipartite222

networks can havemuch higher connectances), but the eòect is high enough that it should not be223

ignored: at equal number of species, networks with diòerent connectances are expected to have224

diòerent degree distributions.225

Finally, this analysis raises interesting ecological questions. Early analyzes focusing on degree distri-226

bution argued that ecological mechanismswere responsible for the shape of the distribution (Vázquez,227

2005; Miguel Angel Fortuna et al., 2010; Williams, 2011). In this contribution, we show that con-228

nectance will impose a lower and higher limit for the shape of the degree distribution. Given this229

information, it is time to bring the debate full-circle: is connectance the cause of observed network230

properties, or an emergent property of pairwise species interactions? As the later seems farmore231

likely, it nowmakes sense to focus on why some networks deviate, or not, from the expected degree232

distribution knowing their connectance. As the density of interaction plays such a central role in233

May’s criteria for stability (May, 1972), clarifying how connectance is shaped bymechanisms regulat-234

ing pairwise species interactions oòers the opportunity of integrating the eòects of thesemechanisms235

up to their impact on emergent,community-wide properties. Okuyama &Holland (2008) showed236

that in mutualistic systems, resilience (to perturbation) is aòected both by degree network size and237

interaction strength, but also by the degree distribution and connectance of the network; we show238

here that degree distribution and connectance are tightly linked, and alternative approaches to the239

question of resilience can focus on the deviation of degree distribution knowing the connectance,240

rather than the ‘‘raw’’ degree distribution. In keeping with the results we present in the ûrst part of241

the paper, Rozdilsky& Stone (2001) report that there is a inverted hump-shaped relationship between242

connectance, and the proportion of ‘‘feasible and stable’’ systems, with the lowest proportion of such243

systems being found at Co ≈ 0.5. his strongly suggests that the same mechanisms that limit the244

realized network spacemay aòect ecological properties, thus emphasizing the need not to discard245

connectance in proût ofmore emerging properties in future ecological network analyzes.246
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