Different running in shod vs. minimal footwear/barefoot runners - adaptions for prevention of injuries

Martin Daumer, Paul Subkowski, Michael Trost, Christoph Stolle, Christine Kleinmond, Matthias Fasching, Markus Walther, Christian Lederer

In the last years the number of long distance runners who wear minimal footwear or run completely barefoot increased considerably. There is an ongoing debate about the benefits and risks of running in minimal footwear/barefoot instead of running in conventional running shoes. The objectives were to investigate the effect of different types of shoes as well as of different running techniques on acceleration of centre of gravity and to explore a potential link to injuries (subjects are described in table 1). We assessed data with a mobile accelerometry device (actibelt ®, http://www.actibelt.com) during competition. Three runners were additionally investigated during a treadmill test using a high speed camera system simultaneously coupled to a wireless stream of acceleration data. Acceleration raw data was analysed with standardized algorithm packages using R software environment.
Different running in shod vs. minimal footwear/barefoot runners – adaptations for prevention of injuries

Results of an exploratory study under laboratory conditions and during competition

M. Daumer1,2, P. Subkowski3, M. Trost2, C. Stolle, C. Kleinmond4, M. Fasching2, M. Walther5, C. Lederer1

1 SLOMSR e.V. - The Human Motion Institute - Munich; 2 Team Analysis Online - Munich; 3 TU Munchen - Fakultät für Elektrotechnik und Informationstechnik - Munich; 4 ClinProject UG – Eutelsburg; 5 Schön Klinik München Harlaching - Munich

Background and scientific question

In the last years the number of long distance runners who wear minimal footwear or run completely barefoot increased considerably. There is an ongoing debate about the benefits and risks of running in minimal footwear/barefoot instead of running in conventional running shoes [1-4].

Methods

The objectives were to investigate the effect of different types of shoes as well as of different running techniques on acceleration of centre of gravity and to explore a potential link to injuries (subjects are described in table 1). We assessed data with a mobile accelerometry device (actibelt, http://www.actibelt.com) during competition. 3 runners were additionally investigated during a treadmill test using a high speed camera system simultaneously coupled to a wireless stream of acceleration data. Acceleration raw data was analysed with standardized algorithm packages using R software environment.

Table 1: Participations in competitions and related injuries.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Distance</th>
<th>Participation in laboratory testing</th>
<th>Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 barefoot (male)</td>
<td>24h ultra-marathon – 128km</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1 shod (female)</td>
<td>24h ultra-marathon – 92km</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>12 subjects shod (male/female)</td>
<td>relay runners – 232km</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>15 subjects barefoot/minimal footwear (male/female)</td>
<td>relay runners – 243km</td>
<td>No (1 injury not related to race: One barefoot runner was hospitalized and underwent surgery (implant) some weeks after the 24h race. In a follow-up phone call after 6 months the runner reported full recovery and that the event was not related to participation in the race.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Author (MD) minimal footwear (Vibram Five Fingers)

ultra-marathon/mountain run “Karwendelmarsch”
(54km, 2200m up and down) – 6:40
Yes No

Author (MD) minimal footwear (free heel running pad)

ultra-marathon/mountain run “Karwendelmarsch”
(54km, 2200m up and down) – 7:57
Yes (minor – in sole & DOMS, spontaneous recovery in 2 weeks)

Author (MD) minimal footwear (Vibram Five Fingers)

mountain run “Zugspitzauf” (19km, 2000m up)
3:37:43
Yes

Author (MD) minimal footwear (Vibram Five Fingers)

mountain run “Zugspitzauf” (19km, 2000m up)
3:32:03
Yes

Author (MD) normal running shoes

1 marathon – 3:31:42
Yes (minor – toe nail off)

Author (MD) minimal footwear (Vibram five fingers)

1 marathon – 3:24:17
Yes

Author (MD) minimal footwear (free heel running pad)

1 marathon – 3:24:17
Yes

Author (MD) minimal footwear (free heel running pad)

1 marathon – 3:22:51
Yes (minor – blister)

Author (MD) minimal footwear (Vibram Five Fingers)

half marathon – 1:31:23
Yes

Author (MD) minimal footwear (free heel running pad)

half marathon – 1:33:19
Yes

No severe injuries occurred during the races described (details see table 1.). Another individual known by one of the authors (MD) developed severe pain in one metatarsal joint after having changed to minimal footwear running that needed surgery twice with ongoing limitations in sports participation.

Conclusions

Mobile accelerometry is a feasible technology to explore different running patterns outside of gait laboratories. We found that MF/B running was typically associated with different running patterns (higher step frequency, reduced stride length, and reduced smoother up-down peak accelerations at “belt” position) indicating a more effective use of evolutionary damping system. Well trained barefoot runners can run long distances without injuries, but others may face the risk of severe injury. More research is needed to translate biomechanical findings from laboratory and empirically observed injury rates into individual evidence based recommendations about running style and footwear.

References