
Transferability and scaling of soil total carbon prediction 
models in Florida

The applicability, transfer, and scalability of visible/near-infrared (VNIR)-derived soil models 

are still poorly understood. The objectives of this study in Florida, U.S. were to: (i) compare 

three methods to predict soil total carbon (TC) using five fields (local scale) and a pooled 

(regional scale) VNIR spectral dataset, (ii) assess the model’s transferability among fields, 

and (iii) evaluate the up- and down-scaling behavior of TC prediction models. A total of 560 

TC-spectral sets were modeled by Partial Least Square Regression (PLSR), Support Vector 

Machine (SVM), and Random Forest. The transferability and up- and down-scaling of models 

were limited by the following factors: (i) the spectral data domain, (ii) soil attribute domain, (iii)

methods that describe the internal model structure of VNIR-TC relationships, and (iv) 

environmental domain space of attributes that control soil carbon dynamics. All soil logTC 

models showed excellent performance based on all three methods with R2 > 0.86, bias < 

0.01%, root mean square prediction error (RMSE) = 0.09%, residual predication deviation 

(RPD) > 2.70% , and ratio of prediction error to inter-quartile range (RPIQ) > 4.54. PLSR 

performed substantially better than SVM to scale and transfer models. Upscaled soil TC 

models performed somewhat better in terms of model fit (R2), RPD, and RPIQ, whereas 

downscaled models showed less bias and smaller RMSE based on PLSR. Given the many 

factors that can impinge on empirically derived soil spectral prediction models, as 

demonstrated by this study, more focus on the applicability and scaling of them is needed.
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1. Introduction

The assessment of soil total carbon (TC) across large land areas is critical to derive global

and regional soil carbon budgets and better understand the interactions between carbon and other

biogeochemical cycles. But the cost and time involved in measurements of TC with standard

laboratory methods are  impractical.  Research has suggested that  visible/near-infrared (VNIR)

diffuse reflectance spectroscopy can provide robust and accurate estimations for TC and carbon

fractions (McCarty et al., 2002; Reeves III, McCarty and Mimmo, 2002; Viscarra Rossel et al.,

2006; Vasques, Grunwald and Sickman, 2009; Vasques, Grunwald and Harris, 2010; Nocita et al.,

2011; Chaudhary et al., 2012; McDowell et al., 2012b). It is a fast, cheap, and non-destructive

approach  to  characterize  soil  properties  (Shepherd  and  Walsh,  2002).  To  promulgate  the

application of locally calibrated spectral soil carbon prediction models in other regions and at

much larger spatial scales typically involves model transfer and/or scaling. Spectral soil carbon

models are poised to contribute to spatially explicit regional and global carbon assessment and

monitoring of soil carbon evolution. However, uncertainties in regard to prediction quality across

different soils and landscapes, transferability, and scalability of such models are still  eminent

(Grunwald et al., 2011).

‘Scaling’ in ecology and earth sciences refers to the translation of information between or 

across spatial and temporal scales of organizational levels (Turner et al., 1989; Blöschl and 

Sivapalan, 1995). ‘Scale transformation’ denotes the across-scale translation of information 

through explicit mathematical expressions and statistical relationships (scaling equations) or 

process-based simulation (Blöschl and Sivapalan, 1995; Wu et al., 2006). ‘Scaling up’ (or up-

scaling) translates information from finer scales (smaller grain sizes or extents) to broader scales 

(larger grain sizes or extents), whereas ‘scaling down’ (or down-scaling) translates information 

from broader scales to finer scales (Blöschl and Sivapalan, 1995; Wu et al., 2006). As the spatial 

scale increases from fine (field) to coarser scales (region, continent, and globe), the increasing 
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extent and geographic domain space translates into increased variance of soil attributes 

(McBratney, 1998). Scale-independent behavior (i.e., self-similar behavior) assumes that the 

coarser scale system behaves like the average finer scale system, which implies that processes are

linear. Non-linear dynamics (i.e., scale dependent behavior) are still poorly investigated in the 

soil science discipline (Grunwald et al., 2011). The distinction between scaling and transfer of 

soil models is critical because they entail inter- and extrapolations to varying degrees impacting 

the uncertainty in model predictions.

Based on  a broader definition, ‘transfer’ can be understood as applying a method/model 

derived from one set of empirical observations onto another set (or population). For instance, 

model transfer involves applying a calibrated VNIR-based soil prediction model to an 

independent validation spectral set to make predictions of soil carbon within a given geographic 

domain. ‘Transfer’ may also refer to the application of a soil model developed in one region 

(represented by a specific soil-spectral dataset) to another region (i.e., another spectral dataset) to 

predict soil properties of interest. In this case, the transfer of a model typically entails 

extrapolation and its degree of extrapolation increases as the taxonomic distance of soils between 

the regions of ‘model development’ and ‘model application’ increases. Mallavan, Minasny and 

McBratney (2010)  asserted that the more similar regions are in terms of soil-environmental 

properties the more likely it is to successfully transfer a soil prediction model. Several methods 

have been utilized to assess the similarity among soil ecosystems, among them the Gower 

similarity index (Gower, 1971) and soil taxonomic distance metrics (Minasny and McBratney, 

2007). 

A review of spatial scaling concepts and procedures used in digital soil mapping (DSM) 

was provided by Malone, McBratney and Minasny (2012). Vasques, Grunwald and Myers 

(2012a)  assessed the scaling effects of soil carbon models considering the  geographic extent and

grain size of models in Florida, U.S. Vasques, Grunwald and Myers (2012b) investigated multi-
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scale behavior of soil carbon and identified those environmental factors that imposed most effects

on the predictions of soil carbon at three nested spatial scales. But scaling studies of VNIR soil 

prediction models are rarely found in the literature. For example, Brown, Bricklemyer  et al. 

(2005) found that about half of the transferred VNIR soil carbon models did not perform well in 

Montana, U.S. despite pre-screening for spectral similarity. Minasny et al. (2009) transferred 

mid-infrared (MIR) spectral models that provided excellent performance to predict soil organic 

carbon (SOC) and TC, but severely degraded when applied to other regions in eastern Australia. 

They asserted that local calibration of spectral models is preferable to avoid the measurement 

biases between laboratories in different regions. In addition, they argued that the calibrated 

spectral-soil functions are specific to the soil types in an area limiting their transferability to other

application sites. 

Shepherd and Walsh (2002) initiated the idea of ‘ubiquitous’ spectral libraries to predict 

soil properties. After once developed (calibration phase) and validated these spectral soil libraries

can be applied elsewhere, similar to pedo-transfer functions (PTF). Brown, Bricklemyer and 

Miller (2005) presented such an ‘ubiquitous’ global soil spectral library derived from VNIR 

spectra using a large soil dataset of 3768 samples from the U.S. and additional 416 samples from 

36 different countries in Africa, 104 from Asia, 75 from the Americas, and 112 from Europe. 

They obtained a validation root mean squared error (RMSE) of 7.9 g kg-1 for SOC on samples 

ranging from 0.0 to 536.8 g kg-1 SOC and a median of 4.7 g kg-1. They suggested that VNIR soil 

characterization has the potential to replace or augment standard soil characterization techniques 

where rapid and inexpensive analysis is required. One limitation of VNIR soil carbon modeling is

that predictions are relatively poor in the low soil carbon attribute domain space (McDowell et 

al., 2012b; Vasques, Grunwald and Harris, 2010). 

There are numerous factors that potentially influence the prediction performance of 

transfer and scalability of spectral soil models. Among them are the (i) number of samples used to
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build the spectral model, (ii) range of observed soil carbon concentrations that is influenced by 

the different environmental factors that control pedogenic processes to store or lose carbon in 

soils, (iii) other soil properties (such as minerals, sesquioxides, and texture) that may mask, 

interfere or amplify the identification of spectral predictors to infer on soil carbon, (iv) 

differences in measurement protocols of soil carbon and spectral data, (v) spectral instruments, 

(vi) statistical methods used to develop soil carbon predictions, and (vii) the (dis)similarity 

between soil samples used to develop the spectral prediction model and those that are used to be 

estimated. Given the multitude of potential factors that may impact the application of VNIR soil 

carbon models to make predictions for unknown samples the underlying motivation for this 

research was to design an experimental study to investigate the transfer and up- and down-scaling

behavior. 

The specific objectives were to (i) compare the performance of three modeling types to

predict soil TC using five fields (local) and a pooled (regional) VNIR spectral dataset, (ii) assess

the model’s transferability among five representative field sites in Florida, (iii) evaluate the up-

scaling behavior of TC prediction models from local (field) to regional scale, (iv) evaluate the

down-scaling behavior of TC prediction models from regional to local scale, and (v) examine the

constraining factors in model transferability and scaling. 

2. Materials and Methods

2.1. Study Area

Five fields (each of size ~0.25 km2) were selected that represent prominent soil-landuse

types in Florida, U.S. (see Xiong, 2013). Table 1 provides a description of the main landscape

characteristics of each field. 

2.2. Field Sampling
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Soil samples were collected in each of the five fields with the same unbalanced nested

spatial sampling design (Lark, 2011) as described by Xiong (2013). In each field, at first, nine

main  centers  gridded  at  200  m intervals  were  chosen  to  constitute  the  highest  level  of  the

hierarchy. Secondly, at each main center, one additional sampling point (sub-node) was collected

67 m away in a random direction. In similar pattern the 2nd, 3rd and 4th hierarchical sampling point

were fixed at locations 22, 7, and 2 m away from their parent nodes, respectively. A total of 112

samples were collected at the depth of 0-20 cm in each field totaling 560 samples within all five

fields.  The approximately 3-fold  hierarchy has  been proven to  be  effective  in  capturing  soil

variation and avoiding overlaps among different branches (Webster and Oliver, 2007). 

2.3. Laboratory Analysis

Soil total carbon content was measured by dry combustion method in the laboratory. The

soil  cores were air  dried in a drying room for five days at  the temperature of 45-50°C, then

ground and passed through a 2-mm sieve. Around 50 g of each sample was ball-milled for 3

minutes, from which ~500 mg was combusted at 900°C for about 3 minutes on a Shimadzu TOC-

5050 analyzer to measure the TC. There are miniscule amounts of inorganic carbon found in

Florida soils and soil organic carbon constitutes TC at many sites (Vasques, Grunwald and Harris,

2010). Since soil moisture can impact the soil spectral reflectance (Lobell and Asner, 2002), the

ball-milled samples were oven dried at 40-45°C for 12 h before scanning. After cooling for 1h,

they were scanned using the QualitySpec Pro Spectroradiometer (Analytical Spectral  Devices

Inc., Boulder, CO) in the VNIR spectral range of 350-2,500 nm with a 1-nm interval spectral

resolution. For each sample, four replicate scans were taken at each of the four quadrants of a

petri dish by rotating the sample at angles of 90°. The spectrometer was recalibrated to remove

the  baseline  at  every 10  samples  with  white  spectralon  (LabSphere,  North  Sutton,  NH).  An
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average reflectance spectral curve was obtained for each sample for further transformation and

modeling.

2.4. Pre-processing Transformations

The laboratory measured TC in the five fields was positively skewed (Table 2). In order to

reduce the skewness of the TC distributions and the model standard error of prediction (Bellon-

Maurel  et  al.,  2010),   the  TC  data  were  logarithm-transformed  to  approximate  normal

distributions. Before constructing models, two pre-processing transformations were applied to the

soil reflectance curves.  For all VNIR spectra, we used the pre-processing methods that worked

best  in  a  previous  study  in  Florida (Vasques,  Grunwald  and  Sickman,  2008).    First,  the

reflectance curves were smoothed across a moving window of nine nm using the Savitzky-Golay

algorithm with a third-order polynomial to reduce the random noise (Savitzky and Golay, 1964).

Second, the first-degree Savitzky-Golay derivative, with a search window of seven measurements

and second-order polynomial, was applied to the smoothed curves.

2.5. Regression Techniques

In order to compare the predictive performance of the three different VNIR diffuse reflectance

models  to  predict  TC  in  Florida,  the  Whole  TC  dataset  (n=560)  was  randomly  split  into

calibration set  (CAL) (70%) with n=392 and validation set  (VAL) (30%) with n=168. Three

different multivariate regression techniques were applied to develop spectral models that  were

consequently  evaluated  to  predict  soil  TC  using  the  VNIR  spectra:  Partial  Least  Square

Regression (PLSR) (Martens and Næs, 1989), Support Vector Machine (SVM) (Vapnik, 2000),

and Random Forest (RF) (Breiman, 2001). The Partial Least Square Regression approach is well

suited for the prediction of regression models with a large number of highly collinear predictor

variables (Garthwaite, 1994). In PLSR, the target variable (e.g., TC) and predictor variables (e.g.,
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spectral data) are simultaneously decomposed into orthogonal principal components (PCs) and a

set  of  specific  loadings  such  that  these  PCs  explain  as  much  as  possible  of  the  covariance

between the  target  and predictor  variables.  The predictions  were obtained by multiple  linear

regression of the target variable on the selected PCs, and the number of PCs was chosen by

minimizing the RMSE of cross-validation on the calibration set.  In  this  paper, 15 PCs were

employed, which represented over 90% of the soil samples’ variation. Support Vector Machine

was originally proposed by Vapnik (2000) within the area of statistical learning theory. To address

non-linearity in input-output data relationships, SVM employs a kernel to project the data into a

high dimensional space before performing the regression. In this study, the radial basis function

kernel  was  applied,  and  a  ‘grid  search’ method  was  performed  to  find  the  best  choices  for

parameters ‘Cost’ and ‘Sigma’ for the kernel. Random Forest is a learning ensemble consisting of

a bagging of un-pruned decision tree learners, with randomized selection of predictor variables at

each split (Breiman, 2001). All three regression methods were employed to relate spectral data to

the  logTC  transformed  data.  First,  leave-one-out  (LOO)  cross-validation  was  employed  to

evaluate the model performance of the CAL datasets. Second, independent validation was used to

assess the model performance using the VAL datasets. 

The coefficient of determination (R2) was used as the goodness-of-fit statistic. The 

RMSE, residual prediction deviation (RPD) (Williams, 1987), ratio of performance to 

interquartile distance (RPIQ) (Bellon-Maurel et al., 2010), and bias (Davies and Fearn, 2006) 

were provided as complementary error statistics to evaluate the performances of different 

prediction models.

2.6. Model Transferability and Scaling Analysis

In  this  study,  only  PLSR  and  SVM  regression  models  were  used  in  the  model

transferability  and  scaling  analysis  to  exemplify  the  effects  of  a  method  that  models  linear
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relationships (PLSR) and one that models non-linear relationships (SVM). Since the behavior of

SVM and RF were very similar in terms of transferability and scalability this paper only presents

the results derived from SVM.

In this study, the definitions of ‘model transfer’, ‘scale transformation’ and ‘up-/down-

scaling’ as provided by Turner et al. (1989), Wu et al. (2006), and Blöschl and Sivapalan (1995) 

were adopted. Hence, ‘transferability’ denotes the transfer (or application) of a VNIR-based soil 

TC prediction model (Models 1 to 5) developed (calibrated) and validated at one field site (Fields

1, 2, 3, 4, and 5, respectively) to another field site (Fields 1, 2, 3, 4, and 5, respectively) (Fig. 1-

b). Note that all the field sites were of equal size and contained the same number of observations 

to build models. This process does not entail scaling of neither grain size nor extent, which is 

commonly denoted as ‘extrapolation’ (Wu et al., 2006). The five models developed in the five 

fields were denoted as Model 1 to Model 5. The model performance at calibration sites was 

assessed using LOO cross-validation reporting R2 and RMSE and transferability was assessed 

using R2, RMSE, RPD, and RPIQ. 

In this paper, ‘scalability’ denotes a change in the extent (size) of the geographic area

represented by models, ‘up-scaling’ refers to an escalation of the area (i.e., from smaller to larger

extent),  and ‘down-scaling’ refers  to  the  contraction  of  the  area  (i.e.,  from larger  to  smaller

extent)  (after  Wu et  al.,  2006)  (Fig.  1-c  and  1-d).  To assess  the  down-scaling  behavior,  the

regional SUB-W models (representing the pooled field areal coverage of ~1.25 km2) were applied

to each of the five fields (each ~0.25 km2 in size) (Fig. 1-c). And vice versa, to assess the up-

scaling performance, the TC models using PLSR and SVM developed for each of the five fields

were applied to the regional SUB-W dataset (Fig. 1-d). To exclude the impact of observation size

from the scaling procedure the observation size was kept constant at n = 112 for SUB-W and

each of the five field models during the scaling procedure. The same error statistics as outlined

above were used to evaluate scaling behavior of TC models.
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In the scaling analysis, a pooled subset-whole (SUB-W) dataset was created (with n =

112) from the five field dataset (with n = 560). The observation size of the SUB-W was equal to

that of each field, eliminating any bias or negative effects on the comparative analysis. The SUB-

W dataset was randomly selected from the pooled (112 x 5 = 560) field set with 1/5 random

samples contributed from each of the five fields. The selection process of the SUB-W dataset is

shown in Fig. 1-a. The models calibrated by the spectral SUB-W data were evaluated using LOO

cross-validation.

2.7. Similarity of Soil-environmental Conditions among Fields and across Scales

To examine the constraining effect of soil-environmental conditions on the transfer of soil

spectral  models  across  fields  and  scales  similarities  among  fields  and  across  scales  were

characterized by the SCORPAN factors (McBratney, Mendonça Santos and Minasny, 2003). The

SCORPAN factors include soil characteristics (S), climate (C), organism, vegetation, land use

(O), relief (R), parent material (P), age (A), and space (N). Assuming homology of soil-forming

factors between a calibration area and the region of interest, Mallavan, Minasny and McBratney

(2010) proposed that the smaller the taxonomic distances of the SCORPAN factors, the more

similar  the  soil  characteristics.  The Gower  similarity coefficient  (Gower, 1971;  Booth  et  al.,

1987), as outlined in Mallavan, Minasny and McBratney (2010), was employed to measure the

similarity in soil-forming factors among fields according to Eq. (1). Important variables that were

included in the similarity analysis are shown in Table 1.

S ij=
1
p
∑
k=1

p

(1−
|x ik−x jk|
range k

)                                                                                      (1)

where S ij  is the Gower similarity coefficient between two sites i and j; k represents the 

SCORPAN variables; p is the number of variables; range k  is the value range of variable k in 
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the whole study area. The Gower similarity coefficients were compared with models’ prediction 

performance.

3. Results

3.1. Descriptive Statistics

The TC of the total 560 soil samples collected from all the five fields, showed a positively

skewed distribution, with mean 1.18%, median 1.04%, and range between 0.31% and 3.55% 

(Table 2). The minimum and maximum values of logarithm transformed TC were -0.5% and 

0.55%, with a mean of 0.01% and median of 0.02%. The descriptive statistics of CAL, VAL, and 

SUB-W dataset were similar to the Whole dataset (n: 560), indicating that they all appropriately 

represented the population of the whole study region. Among all soil samples, the highest TC 

values occurred in Fields 2 and 5. 

The soil TC mean and median (%) was highest in Fields 2 and 5 and declined in Fields 4, 

3, and 1 (Table 2) resembling a hydrologic gradient as indicated by the available water capacity 

(AWC) with highest values in Fields 4 and 2, and declining in Fields 5, 3, and 1 (Table 1). The 

trajectory of soil TC values mirrors also the land use / land cover gradient with highest soil TC 

found under Mesic Upland Forest and Rangeland and lowest soil TC occurring in Xeric Upland 

Forest.

3.2. Assessment of Prediction Performance for Soil Total Carbon 

The  results  of  predicting  soil  logTC in  calibration  and  validation  modes  using  three

different methods are shown in Table 3. The performance of SVM and RF models was very

similar in both LOO cross-validation and validation modes. In LOO cross-validation, the PLSR

models performed slightly better, with the highest R2 (0.88) and lowest RMSE (0.08%) compared

with the SVM (with R2 = 0.87 and RMSE = 0.09%) and RF (with R2 = 0.87 and RMSE = 0.08%)
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models. In validation mode, the PLSR models had a smaller bias, although the R2 was slightly

lower, compared with the other two methods. The predicted vs. observed TC in the VAL dataset

matched well for all three methods with values aligned close to the 1:1 line (Fig. 2). However, the

SVM and RF models tended to slightly over-predict when logTC was smaller than zero, and

under-predict  in  the  high  logTC  data  range.  The  points  of  the  PLSR  models  were  almost

homogenously distributed along the 1:1 line. The high RPD (≥ 2.70), RPIQ (≥ 4.54) values for all

three models confirmed their excellent prediction accuracies.

3.3. Transferability and Scaling Analysis

The TC prediction performances declined at varying degrees when the PLSR and SVM

models  were  transferred  to  the  field  outside  the  calibration  geographical  area  (Fig.  1-b),

downscaled (Fig. 1-c), and upscaled (Fig. 1-d). Overall, the PLSR model showed better down-

scaling and up-scaling performances than those derived from SVM. In the SVM model set, only

down-scaling  produced  acceptable  TC  predictions.  Although  the  SUB-W  (with  n  =  112)

prediction performance (R2 of 0.82 for PLSR and 0.84 for SVM) and RMSE of 0.10% for both

PLSR and SVM decreased slightly (see Table 4) compared to the calibration models (with n =

392) in Table 3, the Model SUB-W could still effectively represent the VNIR-TC relationship at

the regional scale. The goodness-of-fit statistics for Models 1 to 5 at field scale ranged from 0.46

to 0.69 R2 (PLSR) and 0.33 to 0.59 R2 (SVM) (Table 4), indicating that the performance of

models developed at field scale were not as good as the regional scale model using the same size

of calibration sample (n = 112). 

3.3.1. Transferability of Soil Carbon Prediction Models among Field Sites 

In order to test the model transferability at field scale PLSR and SVM models developed

and cross-validated at one field were applied to the other four fields. Results of the transferability

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.494v1 | CC-BY 4.0 Open Access | rec: 10 Sep 2014, publ: 10 Sep 2014

P
re
P
rin

ts



of PLSR models are summarized in Table 5 and the SVM models in Table 6. The R2 values of

PLSR models were below 0.39, except when Model 1 was applied to predict the TC of Field 2

(R2 = 0.53) and Field 3 (R2 = 0.51). The predicted TC of Field 1 by Models 3, 4, and 5 were

severely biased  (0.37%).  The  high  bias  and  RMSE values  with  low RPD and  RPIQ values

suggested the transferability among field sites was severely constrained using PLSR models. The

R2 values  derived  from the  SVM models  were  much  lower  than  those  derived  from PLSR

models, with several values even smaller than 0.01, indicating that the SVM model transferability

among field sites was severely constrained (Table 6). The limited transferability using SVM was

confirmed by high bias and prediction errors (Table 6). Interestingly, when two models calibrated

in different  fields were transferred to  each other, the models  behaved in different  ways.  For

example, although Model 1 predicted the TC in Field 2 well with R2 0.53, the performance of

Model 2 was poor when transferred to Field 1.

3.3.2. Down-scaling of Soil Carbon Prediction Models

To test the down-scaling performance the regional pooled model (SUB-W) was applied to

predict  the  TC  of  the  five  fields  (Tables  7  and  8).  Both  of  the  PLSR  and  SVM  models

successfully predicted the TC of Field 2 and Field 4 with R2 larger than 0.47, but the performance

in Field 1 and Field  3 was limited  with  R2  smaller  than  0.42.  The PLSR and SVM models

predicted the TC of Field 5 differently. The PLSR model fit was constrained (R2 = 0.20), while

the SVM model performed well (R2 = 0.50). In general, the RPD and RPIQ values of both PLSR

and SVM models suggest that their down-scaling behaviors were acceptable, but far from stellar

performance of models. Important to note is that down-scaling behavior from regional to field

scale differed substantially among fields.

3.3.3. Up-scaling of Soil Carbon Prediction Models
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Tables 9 and 10 show the up-scaling behavior of the five field models (Models 1 to 5) to

predict the TC of SUB-W at the regional scale. The performance of the five PLSR field scale

models, except for Model 3, was as good as the downscaled models using PLSR. The R2 of

upscaled PLSR Models 1, 2, and 4 were all above 0.50 and the RPIQ values higher than 1.84,

suggesting moderately good up-scaling performance (Table 9).  The PLSR Model  3  failed  to

predict TC of SUB-W, which was due to its poor performance in LOO cross-validation mode

(Table 4). Although the PLSR Models 1, 2, 4, and 5 had high R2 values, the large bias and RMSE

values  showed that  up-scaling  did not  perform as  well  as  down-scaling.  In  contrast,  the up-

scaling of SVM models was very poor. The field scale SVM models predicted the TC of the

SUB-W dataset with R2 below 0.19 and RMSE higher than 0.23%, and RPIQ values were slightly

lower than that of PLSR models. 

3.4. Gower Similarity Coefficient

The  Gower  similarity  coefficients  were  all  above  0.50  (Table  11).  The  coefficients

between SUB-W dataset and each of the five fields were higher than those between the five

fields. Correspondingly, down-scaling performance of the SUB-W models using PLSR and SVM

outperformed the field models when transferred to other fields.

4. Discussion

4.1. Prediction Performance of Spectral Prediction Models

The TC predictions derived from all three multivariate methods (PLSR, SVM, and RF) at 

the five field sites showed good performance within the observation range of 0.31 to 3.55 % 

which was slightly narrower than in other studies (McCarty et al., 2002; Vasques et al., 2008; 

Sarkhot et al., 2011). Brown, Bricklemyer and Miller (2005) found that VNIR models developed 

using boosted regression trees (BRT) outperformed PLSR to predict SOC and soil TC, while 
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McDowell et al. (2012b) found no significant difference among PLSR and RF ensemble 

regression trees to predict soil TC on Hawaiian soils. Minasny and McBratney (2008) and 

Minasny et al. (2009) in Australia found excellent predictions for SOC and TC using regression 

rules (Cubist approach). In contrast, Vasques, Grunwald and Harris (2010) identified SOC 

predictions made by ensemble regression trees as more accurate than those derived from PLSR in

an investigation in Florida. This points to the fact that depending on the geographic soil region 

one method may outperform several others to make SOC or TC predictions from VNIR spectra. 

4.2. Factors that impact the Transferability and Scalability of Prediction Models

Overall, PLSR models performed better to transfer and scale than SVM models. This 

implies that linear relationships between VNIR spectra and soil TC (quantified by PLSR) were 

more pronounced than non-linear, complex relationships (quantified by SVM). Reasons that 

constrain the transferability and scaling of soil prediction models may be explained by 

differences in the: (i) spectral data domain space, (ii) soil attribute domain space, (iii) methods 

that determine the internal model structure of VNIR-TC relationships, and (iv) environmental 

domain space of attributes that control soil carbon dynamics (i.e., SCORPAN factors). In this 

study, the number of observations to build models was kept constant in the experimental setup to 

avoid bias and allowed comparing models from a statistical perspective. One factor that may have

impacted the up-scaling and down-scaling behavior of TC models is the sampling density that 

differed among the field sites (each ~0.25 km2 with a density of observations of ~448 per km2) 

and the SUB-W regional set (representing an area of ~1 km2 with a density of observations of 

~112 per km2). In essence, the sample number of the field model and regional model was the 

same (n = 112), while the geographical area of the regional model was five times larger than each

of the field models. According to McBratney et al. (1998) up-scaling to larger geographic extent 

(i.e., increase in study area) inherently increases the variance and upper and lower bounds of both
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soil properties and soil forming factors. This effect of increasing variances was also observed by 

Vasques, Grunwald and Myers (2012b) who scaled soil TC from small region (5.6 km2), 

intermediate  region (3,500 km2) to coarse scales (150,000 km2) in Florida.

4.2.1. Spectral Data Domain Space

The transferability and scaling of models may be also dependent on the spectral data 

domain. The VNIR models to predict TC selected variables in the spectral regions of the 

absorption features of C-H, N-H and O-H groups, similar to the VNIR models presented by 

Vasques, Grunwald and Sickman (2008; 2009) and Vasques, Grunwald and Harris (2010). These 

spectral signatures are produced by the overtones and combinations of absorption molecular 

vibrations (e.g., C-H, O-H, H2O and CO3
-) in mid-infrared regions (Brown, Bricklemyer and 

Miller, 2005). The features associated with TC can be masked or distorted by Fe-oxides and 

secondary clays which are commonly found in soils (Hunt, 1989; Clark, 1999). This alludes to a 

critical issue of VNIR-modeling that other soil properties, such as texture, nutrient content, and 

minerals may mask or interfere with the prediction of a given property of interest (e.g., soil TC); 

and thus, impact the transferability of models. In this study the soil texture differed only slightly 

among the five sites with sand content ranging between 90.8 to 98.6% and clay content between 

1.2 to 5.2%. Hence, the effect of soil texture imposed on TC spectral signatures was likely minor. 

Since soil samples were dried and scanned under controlled laboratory conditions the impact of 

differences in soil moisture among sites were excluded from this study. The soil suborders 

differed among sites (Table 1), with Entisols (Psamments), Ultisols (Aquults, Udults), Inceptisols 

(Udepts), and Spodosols (Aquods), suggesting that the mineralogy, sesquioxides, and other 

chemical and physical soil properties differed substantially among sites. This may have 

constrained the transfer and scalability of VNIR-based TC prediction models due to masking or 

distortion effects in the spectral data domain.
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4.2.2. Soil Attribute Domain Space

The soil attribute space, i.e., the upper and lower bounds and dispersion of soil TC used to 

build spectral-based prediction models (Table 2), may explain some of the transferability and 

scalability behavior of models. Typically the soil attribute domain space expands as the 

geographic size of the modeled region increases (Grunwald et al., 2011). The range of soil TC 

values of CAL, VAL, and the SUB-W sets matched reasonably well the minimum of 0.31% and 

maximum of 3.55% of the Whole data set. However, the differences in soil TC among field sites 

were profound (Table 2). The transferability of a TC prediction model to other sites may lead to 

an extrapolation outside the soil attribute observation range of the original field data which may 

impacts its performance. Ideally the boundary conditions of attributes used for model 

development of a transfer function (or calibration spectral model) matches the boundary 

conditions of a transfer set. Brown et al. (2005) demonstrated the implications of spectral-based 

model transfer to predict soil carbon in other fields in Montana, U.S. where the SOC values 

differed widely among field sites (minimum of 1.93 g kg-1 to maximum of 15.82 g kg-1). In their 

study they found that PLSR could effectively model individual field sites located within the same

physiographic region. However, when they attempted to predict SOC for each of the six sites in 

turn using the remaining five sites for calibration, the models failed completely at two of the six 

sites and gave inconsistent results at a third site despite pre-screening for spectral similarity.

In this study Models 1, 3, and 4, that resembled the TC range of SUB-W most closely with 

TC minimum of 0.32% and TC maximum of 2.85%, did not show persistent responses in terms 

of transferability based on PLSR (Table 5). For example, Model 3 (developed in Pineland and 

Psamments) failed to transfer well to Field 4, whereas the opposite was found for the transfer 

behavior of Model 4 (developed in Improved Pasture and Udults) to Field 3. The models that 

exceeded the upper bound TC of SUB-W (Model 2 developed in Mesic Upland Forest and 
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diverse soil suborders; and Model 5 developed in Rangeland and Aquods) transferred somewhat 

equally well to other fields, suggesting that the attribute domain range did not substantially 

impact model transferability. These findings were confounded in down-scaling mode. The SUB-

W Model (with min. TC = 0.32% and max. TC = 2.85) degraded substantially more when applied

to Field 5 with a mismatched attribute domain space (with min. TC = 1.02% and max. TC = 

3.55%) than to field sites with similar attribute domain space (e.g., Field 4 with min. TC = 0.56%

and max. = 2.84%) or field sites with narrower attribute domain space (e.g., Field 1 with min. TC

= 0.32% and max. = 1.12%) (Tables 2 and 7). In up-scaling mode the models that showed a wider

or matching attribute domain space (Models 1, 2, and 4) compared to SUB-W performed 

reasonably well to scale, whereas Model 3 that matched the TC upper and lower bounds of SUB-

W failed to scale, and Model 5 degraded somewhat when upscaled to SUB-W (Tables 2 and 9). 

These findings substantiate that no clear conclusions emerge that link the attribute domain 

boundaries to the transferability and scalability of models.

Besides the upper and lower bounds of attributes that matter for successful model transfer 

and scaling, it is also the internal variability (variance) of soil attributes that potentially impacts 

behavior. Addiscott, Smith and Bradbury (1995) pointed out that an increase in parameter 

variance may cause problems by interacting with the linearity / non-linearity in the process 

represented by the model. McBratney (1998) and Grunwald et al. (2011) asserted that an increase

in the variance of soil attributes can impact the model building process, transferability, and 

scalability of soil properties. In this study the coefficient of variation (CV) ranged from 0.26%  

(Field 5) to 0.42% (Field 3) which was lower than in the pooled sets (0.53% in SUB-W and 

0.55% in Whole, respectively). The low CV in Field 5 limited somewhat the transferability of TC

models to other field sites, more so than the transferability of other models to field sites (Table 5).

It is interesting to note that Model 3 (developed in Pineland and Psamments), which had the 

highest variability in TC among field sites, performed poorest in terms of transferability to other 
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field sites. In contrast, the SUB-W model with higher variability in TC than Model 3 performed 

substantially better suggesting that the internal variability in attributes are one but perhaps not the

most controlling factor that limits model transferability and scalability. The down-scaling 

performance of the SUV-W model with the highest CV of 0.53% had less impact on Field 3 (with

intermediate CV of 0.42%) but substantially degraded model performance when applied to Field 

5 (with the lowest CV of 0.26%) for PLSR and SVM models (Tables 7 and 8). These findings 

suggest that although the SUV-W model represented the variability in TC of the five fields it 

severely degraded the down-scaling to those fields that were more homogeneous in soil TC (e.g., 

Field 5). Up-scaling of Model 3 to SUB-W failed and was severely muted for Model 5, whereas 

Models 1, 2, and 4 were less impacted in terms of model performance. This confirms the 

assertion that the variance in TC plays a role in the scalability of models; however, there are other

substantial factors that confound findings. 

Spiking of a spectral model with local samples has been suggested to improve soil 

predictions (Sankey et al., 2008; Wetterlind and Stenberg, 2010) though its success is highly 

dependent on multiple factors including the ratio between the ‘number of spike samples’ and 

‘number of samples in the spectral library’, characteristics of the soil attribute and spectral 

domain spaces, and the methods used to develop spectral-based soil prediction models. Although 

the same constraints, mechanisms, and effects impact spiking and scaling of chemometric 

models, the aims are inherently different. Spiking aims to stabilize/improve predictions of soil 

properties by adding more observations to the dataset, whereas scaling aims to understand the 

factors and processes impacting the scaling behavior.

4.2.3 Methods (Model Types) 

Regression methods use different strategies to relate predictors (here: spectral data) and a 

response variable (here: soil TC). The underlying strategies for predictor selection are different 
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for PLSR and SVM as described in the methods section impacting transfer and scale responses. If

the internal model structure that describes the relationship between spectral predictors and soil 

TC is not stable when it is scaled, it suggests scale variant behavior. As expected, the PLSR (Fig. 

3-a) and SVM (Fig. 3-b) models showed differences in the selection of spectral predictors in 

Models 1 to 5 and the SUB-W Model. Thissen et al. (2004) has also found major differences in 

the selection of spectral predictors that are inherent to the modeling process of PLSR and SVM, 

specifically in cases where the physico-chemical composition of the soil samples differs. In this 

study PLSR was more robust than SVM to transfer models among sites. The PLSR models (Fig. 

3-a) mainly focused on three regions to identify spectral predictors: ~350 nm, ~1860 nm and 

~2200 nm, which represented the reflection region of organic matter (Galvao and Vitorello, 

1998); O-H-, water, C-H, C-N, C-O, N-H (Vasques, Grunwald and Sickman, 2008); and calcium 

carbonate (2206 nm and 2341 nm) (Lagacherie et al., 2008), M-OH, and various C-O (Brown, 

Bricklemyer and  Miller, 2005). On the other hand, the top 50 important spectral wavelengths of 

the SVM models (Fig. 3-b) were found around ~670 nm, ~1400 nm, ~1800 nm and ~2200 nm. In

particular, 670 nm is indicative of iron oxide features (McDowell et al., 2012b) and 1400-1900 

nm are absorption regions of O-H and water showing that iron oxide and crystallization water 

impacted the TC predictions. In the VNIR spectral range only overtones are mapped, which 

differs from other spectral methods, such as mid-infrared sensing, that more directly respond to 

the chemical composition of samples (McDowell et al., 2012a; b). 

Although SVM is advantageous to model complex, high-dimensional spectral datasets 

because it can model nonlinear structures it performed poorly to transfer and scale models. This 

can be explained by the high susceptibility of SVM to overfitting (Hernández et al., 2009). The 

substantially larger amount of spectral values selected as important in the SVM model compared 

to the PLSR model suggests overfitting (Fig. 4). In the SVM model most of the spectral 

predictors were assigned large values compared with the PLSR and RF models (Fig. 4). In 
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addition, non-linear relationships between spectral data and TC may be rather weak to limit its 

competitiveness when compared to a more robust, linear method such as PLSR (Hernández et al.,

2009).

 

4.2.4. Environmental Domain Space of Attributes 

Soil carbon gains/losses have been linked to various environmental factors such as climate 

(Hook and Burke, 2000), land use/land cover (John et al., 2005; Rees et al., 2005), soil 

moisture/hydrology (Vasques, Grunwald and Myers, 2012b), and topography (Yimer, Ledin and  

Abdelkadir, 2006). Mallavan, Minasny and McBratney (2010) argued that soil attributes correlate

consistently with environmental factors assuming homology of soil-forming factors. The concept 

of homosoil asserts that soil TC in an unsampled area can be inferred from the modeled 

relationships of soil TC and environmental covariates derived from a sampled area, under the 

condition that both areas are similar in terms of the environmental factors (Minasny and 

McBratney, 2010). 

The environmental factors (i.e., the soil-forming factors) of fields differed widely in terms 

of topography, climate, parent material, organism/biota, and soils (Table 1). The homology 

among environmental conditions explained a substantial amount of the ability to transfer TC 

models to other field sites and scales in this study (Fig. 5 and Table 11). Minasny et al. (2009) 

found that the transfer of MIR spectral SOC prediction models among three different regions in 

Australia did not perform well due to differences in parent material and climate in which soils 

have formed in Queensland, New South Wales, and Victoria. Unfortunately no explicit similarity 

analysis of environmental factors was presented in their study and relationships between soil-

environmental factors are not clear (Minasny et al., 2009). Although the R2 of transferred models 

were still moderate all models showed significant bias. Studies that test not only for similarity in 
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soil TC (or other soil properties) among sites, but also consider the similarity in environmental 

factors that form those soil properties are still rare in the soil science literature.

5. Conclusions

This study showed that, although spectral models to predict soil TC with three different 

methods (PLSR, SVM, and RF) were successful in calibration and validation modes at five 

different fields nested within a large sand-dominated region in the U.S., the transferability and 

up- and down-scaling of models were limited by the following factors: (i) the spectral data 

domain space, (ii) soil attribute domain space, (iii) methods that describe VNIR-TC relationships,

and (iv) environmental domain space of attributes that control soil carbon dynamics. All of these 

four factors interacted with each other impacting the transferability of models among field sites, 

up-scaling, and down-scaling behavior of spectral soil prediction models. 

Overall, the transferability and scalability of prediction models derived from PLSR were 

better and more robust than those derived from SVM. But no universal trend was found 

indicating which of the four investigated factors (i to iv) had the most impact that constrained 

transferability and scalability. Interestingly, up-scaling of soil TC models performed somewhat 

better than down-scaled models in terms of model fit (R2), RPD, and RPIQ, whereas down-scaled

models showed less bias and smaller RMSE derived from PLSR. These findings have 

implications for the development of ‘universal’ spectral-based soil models aiming to predict soil 

properties for a diverse set of different soils formed in different environmental conditions 

covering a wide range of geographic settings, at its extreme the whole globe. Those ‘universal’ 

spectral libraries are based on the premise that soil predictions (e.g., soil TC) can be made 

anyplace because they are built using soil spectral datasets that characterize exhaustively the 

attribute feature space. This assertion is limited by the fact that a large number of interacting 
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factors of soils, spectra, and environmental properties are needed to represent the exhaustive 

sample population which has not materialized yet.

Furthermore, the stationarity in mean and variance in local (field) calibrations of spectral 

soil prediction models are usually easier to meet though can have severe effects on scale-variant 

behavior of models at escalating spatial scales. The confounding trends in SOC up- and down-

scaling behavior found in this study suggests that scale matters indicating the need for further soil

scaling studies.

 Findings from this study purport the idea that the selection of representative soils (Model 

SUB-W) spanning across the attribute and spectral domains of local sites outperform predictive 

capabilities of local models (Fields 1 to 5) (Table 4). However, this is confounded by the fact that 

the SUB-W Model when applied to local fields substantially degraded in terms of performance 

(Table 7). In analogy, a ‘universal’ spectral library may also suffer from severe degradation 

effects predicting at local (site-specific) scale. Specifically, if ‘universal’ soil spectral libraries are

created using crawling approaches (e.g., assembling soil-spectra data from publicly available 

databases irrespective of quality) or spiking/pooling of soil-spectral data that is random instead of

strategic (e.g., based on funded projects that generate data) leading to extremely unbalanced 

datasets where one geographic region is over- and others underrepresented. Given the many 

factors that can impinge on empirically derived soil spectral prediction models, as demonstrated 

by this study, more focus on the applicability and scaling of them is needed. This study 

juxtaposed local and regional predictions, transferability, and scalability of soil TC models 

derived from VNIR spectra within a subtropical region in the southeastern U.S. The constraints 

and limitations of soil spectral models identified in this research may also be found in other 

regions and spectral libraries that intent to have universal applicability.
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Table 1. Characteristics of the five fields.

  Variables Study Areas

  Field 1 Field 2 Field 3 Field 4 Field 5

Sampling 
location

Ordway-
Swisher 
Biological 
Station

San Felasco 
Hammock 
Preserve State 
Park

Econfina 
Creek Water 
Management 
Area

Santa Fe 
River 
Ranch 

Myakka River
State Park

Longitude 81°59'9"W 82°27'31"W 85°33'51"W
82°29'40"
W 82°17'16"W

Latitude 29°41'23"N 29°43'59"N 30°26'42"N
29°55'45"
N 27°11'22"N

Topogr
aphy Elevation (m)† 42.8 43.5 23.9 28.8 8.7

Slope (%)† 1.2 1.2 2.9 2.4 0.2

Climate

Max temperature 
(°C)‡ 27.5 27.1 26.3 27.2 29.2
Min temperature 
(°C)‡ 14.0 13.8 12.9 13.6 16.3
Precipitation 
(mm)‡ 1325 1345 1634 1360 1464

Parent 
Materia
l

Surficial 
geology§ Cypresshead Coosawhatchie Citronelle

Coosawhat
chie

Shelly 
sediments of 
plio-
pleistocene

Organis
m

Land use¶
Xeric upland 
forest

Mesic upland 
forest Pineland

Improved 
pasture Rangeland

NPP (kg C m-2)# 7.91 13.60 9.07 7.50 8.13

NDVI# 3.81 7.90 3.81 9.50 4.31
Dry biomass (kg 
m-2)†† 2.76 12.50 5.53 - 6.68

Soil

Soil suborder‡‡ Psamments

Aquults-
Psamments-
Udepts-Udults Psamments Udults Aquods

AWC (cm cm-

1)‡‡ 1.2 2.1 1.5 2.2 1.7
Clay content 
(%)‡‡ 1.2 5.2 3.7 4.6 1.9
Sand content 
(%)‡‡ 98.6 93.2 93.1 90.8 96.8

Variable descriptions, abbreviations and sources: †  National Elevation Dataset (NED), United States Geological 
Survey (USGS),1999; ‡ long term maximum and minimum annual average temperature, long term annual average 
precipitation between 1971-2000 from Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
climate group; § USGS, 1998; ¶ Florida Fish and Wildlife Conservation Commission, 2003; # net primary 
productivity (NPP), normalized difference vegetation index (NDVI) from Moderate-Resolution Imaging 
Spectroradiometer (MODIS) for North American Carbon Project, 2005; †† National Biomass and Carbon Dataset 
(NBCD), 2000; ‡‡ soil suborder, available water holding capacity at 0-25cm (AWC), clay content and sand content 
at 0-20cm from Soil Survey Geographic Database (SSURGO), Natural Resources Conservation Service (NRCS), 
2009.

532

533
534
535
536
537
538
539
540
541
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Table 2. Descriptive statistics of measured soil total carbon (original values: TC, logarithm-
transformed values: logTC). 
  TC (%)  logTC (log %)  

Datasets n Min. Median Mean Max. CV Skew.  Mean SD CV Skew.

Whole 560 0.31 1.04 1.18 3.55 0.55 0.99 0.01 0.24 30.56 0.06

Field 1 112 0.32 0.56 0.59 1.12 0.28 1.02 -0.24 0.11 -0.47 0.37

Field 2 112 0.70 1.63 1.77 3.35 0.36 0.78 0.22 0.15 0.68 0.15

Field 3 112 0.31 0.62 0.68 2.32 0.42 3.28 -0.20 0.14 -0.70 1.28

Field 4 112 0.56 1.05 1.10 2.84 0.30 2.25 0.030 0.11 4.48 0.74

Field 5 112 1.02 1.69 1.76 3.55 0.26 0.80 0.23 0.11 0.47 0.09

CAL 392 0.33 1.02 1.17 3.55 0.55 1.06 0.01 0.23 31.77 0.11

VAL 168 0.31 1.07 1.19 3.21 0.55 0.86 0.01 0.24 28.53 -0.02

SUB-W 112 0.32 1.04 1.20 2.85 0.53 0.69  0.02 0.24 15.29 -0.04
CAL = the data set used to calibrate the models; VAL = the data set used to validate the models; SUB-W = the 112 
observations randomly chosen from the five fields (Fig. 1); n = number of observations; SD = standard deviation, CV
= coefficient of variation, skew. = skewness.
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Table 3. Summary statistics for the spectral models of logTC produced by Partial Least Square 
Regression (PLSR), Support Vector Machine (SVM), and Random Forests (RF) derived from 
calibration (CAL) using 70% of all the samples (n = 392) and validation using 30% of the 
samples (n = 168).

 LOO Cross-Validation using CAL  Validation using VAL

 R2 RMSE (log %)  R2 Bias (log %)
RMSE (log

%) RPD RPIQ

PLSR 0.88 0.08 0.86 0.004 0.09 2.70 4.54

SVM 0.87 0.09 0.88 0.01 0.09 2.78 4.67

RF 0.87 0.08  0.88 0.01 0.09 2.80 4.70
LOO cross-validation = leave-one-out cross-validation; R2 = coefficient of determination; RMSE = root mean 
squared deviations; RPD = residual prediction deviation; RPIQ = ratio of prediction error to inter-quartile range.
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Table 4. Summary statistics of leave-one-out cross-validation for Partial Least Square Regression 
(PLSR) and Support Vector Machine (SVM) models of logTC (log %) developed in SUB-W and 
the five field datasets.

Models 

PLSR  SVM

R2 RMSE (log %)  R2 RMSE (log %)
Model SUB-W 0.82 0.10 0.84 0.10

Model 1 0.69 0.06 0.55 0.08
Model 2 0.62 0.10 0.59 0.11
Model 3 0.46 0.10 0.33 0.11
Model 4 0.56 0.07 0.59 0.08
Model 5 0.61 0.07  0.52 0.08

R2  = coefficient of determination; RMSE = root mean squared deviations; RPD = residual prediction deviation; 
RPIQ = ratio of prediction error to inter-quartile range; SUB-W = the 112 observations randomly chosen from the 
five fields (Fig. 1).
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Table 5. The transferability of Partial Least Square Regression (PLSR) models developed in one 
of the five study fields to predict the soil logTC (log %) of the other four fields.

Models
Validation datasets

R2 Bias RMSE
RPD RPIQ

(n = 112) (log %) (log %)

Model 1

Field 2 0.53 -0.15 0.19 0.83 1.27
Field 3 0.51 -0.16 0.21 0.66 0.68
Field 4 0.17 -0.34 0.36 0.32 0.33
Field 5 0.11 0.01 0.17 0.64 0.95

Model 2

Field 1 0.15 0.01 0.11 0.99 1.36
Field 3 0.39 -0.10 0.18 0.74 0.77
Field 4 0.15 -0.01 0.17 0.67 0.70
Field 5 0.17 -0.23 0.27 0.40 0.59

Model 3

Field 1 0.12 0.28 0.31 0.37 0.51
Field 2 0.09 -0.46 0.58 0.28 0.42
Field 4 0.02 -0.21 0.34 0.34 0.35
Field 5 0.02 0.01 0.20 0.54 0.80

Model 4

Field 1 0.34 0.34 0.35 0.32 0.44
Field 2 0.29 0.05 0.15 1.09 1.67
Field 3 0.32 0.19 0.23 0.59 0.61
Field 5 0.34 0.19 0.21 0.51 0.75

Model 5

Field 1 0.24 0.37 0.39 0.29 0.41
Field 2 0.28 0.05 0.16 0.98 1.49
Field 3 0.25 -0.23 0.28 0.48 0.50
Field 4 0.22 0.07 0.14 0.82 0.85

R2 = coefficient of determination; RMSE = root mean squared deviations; RPD = residual prediction deviation; RPIQ
= ratio of prediction error to inter-quartile range.
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Table 6. The transferability of Support Vector Machine (SVM) models predicting soil logTC (log 
%) developed in one of the five study fields to predict the soil logTC (log %) of the other four 
fields.

Model
Test datasets

R2 Bias RMSE
RPD RPIQ

(n = 112) (log %) (log %)

Model 1

Field 2 0.13 -0.47 0.49 0.32 0.49
Field 3 0.12 -0.06 0.15 0.93 0.96
Field 4 <0.01 -0.28 0.30 0.38 0.39
Field 5 0.31 -0.48 0.49 0.22 0.33

Model 2

Field 1 0.06 0.39 0.40 0.28 0.39
Field 3 0.17 0.37 0.39 0.35 0.36
Field 4 <0.01 0.14 0.18 0.62 0.65
Field 5 0.21 -0.06 0.12 0.88 1.30

Model 3

Field 1 0.33 0.09 0.14 0.81 1.12
Field 2 0.01 -0.38 0.41 0.39 0.60
Field 4 0.02 -0.19 0.22 0.52 0.54
Field 5 0.27 -0.39 0.41 0.27 0.40

Model 4

Field 1 <0.01 0.28 0.30 0.38 0.52
Field 2 <0.01 -0.18 0.24 0.67 1.02
Field 3 0.06 0.23 0.27 0.51 0.53
Field 5 0.18 -0.20 0.22 0.49 0.72

Model 5

Field 1 0.04 0.46 0.47 0.24 0.33
Field 2 <0.01 0.00 0.16 1.00 1.53
Field 3 0.05 0.41 0.43 0.32 0.33
Field 4 <0.00 0.19 0.22 0.51 0.53

R2 = coefficient of determination; RMSE = root mean squared deviations; RPD = residual prediction deviation; RPIQ
= ratio of prediction error to inter-quartile range.
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Table 7. The down-scaling performance of the Partial Least Square Regression (PLSR) model 
predicting soil logTC (log %) developed at regional scale (SUB-W) predicting samples at field 
scales. 

R2 = coefficient of determination; RMSE = root mean squared deviations; RPD = residual prediction deviation; RPIQ
= ratio of prediction error to inter-quartile range; SUB-W = the 112 observations randomly chosen from the five 

fields (Fig. 1).

Model
Validation
datasets

(n = 112)
R2

Bias
(log
%)

RMSE
(log %)

RPD RPIQ

Model SUB-W
(n = 112) 

Field 1 0.42 <0.01 0.11 1.07 1.47
Field 2 0.47 -0.02 0.13 1.27 1.93
Field 3 0.32 0.07 0.16 0.87 0.90
Field 4 0.51 -0.04 0.10 1.10 1.14
Field 5 0.20 -0.03 0.16 0.68 1.00
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Table 8. The down-scaling performance of the Support Vector Machine (SVM) model predicting 
soil logTC (log %) developed at regional scale (SUB-W) predicting samples at field scales. 

Model
Validation
datasets

(n = 112)
R2 Bias

(log %)
RMSE
(log %)

RPD RPIQ

Model SUB-W
(n = 112)

Field 1 0.35 0.08 0.12 0.92 1.26
Field 2 0.55 -0.08 0.13 1.19 1.81
Field 3 0.26 0.08 0.14 0.95 0.99
Field 4 0.65 0.01 0.07 1.63 1.69
Field 5 0.51 -0.03 0.08 1.32 1.94

R2 = coefficient of determination; RMSE = root mean of the squared deviations; RPD = residual prediction deviation;
RPIQ = ratio of prediction error to inter-quartile range; SUB-W = the 112 observations randomly chosen from the 
five fields (Fig. 1).
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Table 9. The up-scaling performance of the Partial Least Square Regression (PLSR) models 
predicting soil logTC (log %) developed at field scale predicting samples at regional scale (SUB-
W).

Models Validation dataset R2 Bias
(log %)

RMSE
(log %)

RPD RPIQ

Model 1

SUB-W
 (n = 112)

0.53 -0.12 0.22 1.09 1.97
Model 2 0.64 -0.03 0.15 1.58 2.87
Model 3 <0.01 -0.17 0.50 0.48 0.86
Model 4 0.57 0.18 0.23 1.02 1.84
Model 5 0.36 0.06 0.23 1.02 1.86

R2 = coefficient of determination; RMSE = root mean squared deviations; RPD = residual prediction deviation; RPIQ
= ratio of prediction error to inter-quartile range; SUB-W = the 112 observations randomly chosen from the five 
fields (Fig. 1).
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Table 10. The up-scaling performance of the Support Vector Machine (SVM) models in 
predicting soil logTC (log %) developed at field scale predicting samples at regional scale (SUB-
W).

Models Validation dataset R2 Bias
(log %)

RMSE
(log %)

RPD RPIQ

Model 1

SUB-W
(n = 112)

0.08 -0.27 0.35 0.67 1.22
Model 2 0.19 0.15 0.27 0.90 1.63

Model 3 0.04 -0.18 0.29 0.81 1.48

Model 4 0.11 0.03 0.23 1.05 1.91
Model 5 0.15 0.21 0.31 0.77 1.40

R2 = coefficient of determination; RMSE = root mean of the squared deviations; RPD = residual prediction deviation;
RPIQ=ratio of prediction error to inter-quartile range; SUB-W = the 112 observations randomly chosen from the five
fields (Fig. 1).
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Table 11. Gower similarity coefficients of environmental factors among fields and across scales 
(SUB-W).

Field 1 Field 2 Field 3 Field 4 Field 5 SUB-W
Field 1 1.00 0.64 0.68 0.73 0.71 0.78
Field 2 - 1.00 0.72 0.76 0.66 0.81
Field 3 - - 1.00 0.62 0.69 0.80
Field 4 - - - 1.00 0.63 0.81
Field 5 - - - - 1.00 0.80
SUB-W - - - - - 1.00

SUB-W = the 112 observations randomly chosen from the five fields (Fig. 1).
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Figure 1. The principle scheme of the transferability and scaling analysis: a) the sample source of 

SUB-W dataset; b) transferability at field scale; c) down-scaling analysis; d) up-scaling analysis. 

Note: S23 in Fig.1-a represented the 23 samples randomly chosen from each of the five fields to 

calibrate the regional model.
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Figure 2. Predicted vs. observed logarithm transformed soil total carbon (logTC) of VAL dataset 

derived from: a) Partial Least Square Regression (PLSR), b) Support Vector Machine (SVM), and

c) Random Forest (RF). R2 = relation of the coefficient; RMSE = root mean of the squared 

deviations.
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Figure 3. The importance values of top 50 predictors (wavelengths) derived from the models with

a) Partial Least Square Regression (PLSR) and b) Support Vector Machine (SVM) methods: 1 is 

developed from the pooled SUB-W dataset; 2, 3, 4, 5, and 6 are developed from datasets of Field 

1, 2, 3, 4, and 5 respectively.
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Figure 4. Variable importance values of a) Partial Least Square Regression (PLSR), b) Support 

Vector Machine (SVM) and c) Random Forests (RF) models derived from CAL dataset.
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Figure 5. The coefficient of determination (R2) of each model transferred to other fields and scale 

vs. the Gower similarity coefficient between the model development field/scale and the model 

application field/scale: a) Partial Least Square Regression (PLSR); b) Support Vector Machine 

(SVM).
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Figure captions:

Figure 1. The principle scheme of the transferability and scaling analysis: a) the sample source of 

SUB-W dataset; b) transferability at field scale; c) down-scaling analysis; d) up-scaling analysis. 

Note: S23 in Fig.1-a represents the 23 samples randomly chosen from each of the five fields to 

calibrate the regional model.

Figure 2. Predicted vs. observed logarithm transformed soil total carbon (logTC) of VAL dataset 

derived from: a) Partial Least Square Regression (PLSR), b) Support Vector Machine (SVM), and

c) Random Forest (RF). R2 = relation of the coefficient; RMSE = root mean of the squared 

deviations.

Figure 3. The importance values of the top 50 predictors (wavelengths) derived from the models 

with a) Partial Least Square Regression (PLSR) and b) Support Vector Machine (SVM) methods: 

1 is developed from the pooled SUB-W dataset; 2, 3, 4, 5, and 6 are developed from datasets of 

Field 1, 2, 3, 4, and 5 respectively.

Figure 4. Variable importance values of a) Partial Least Square Regression (PLSR), b) Support 

Vector Machine (SVM) and c) Random Forests (RF) models derived from CAL dataset.

Figure 5. The coefficient of determination (R2) of each model transferred to other fields and scale 

vs. the Gower similarity coefficient between the model development field/scale and the model 

application field/scale: a) Partial Least Square Regression (PLSR); b) Support Vector Machine 

(SVM).
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