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Abstract –Global change will cause species range shifts, affecting species interactions. The 13 

conservation implications of species range shifts are widely unknown. Through forming an 14 

ecology-bioinformatics partnership at the National Evolutionary Synthesis Center-Encyclopedia 15 

of Life-Biodiversity Heritage Library Research Sprint, we developed an analytical pipeline to 16 

test whether global trends are forcing shifts of mutually dependent species in different spatial 17 

directions. We calculated potential overlap between dependent species across climate scenarios 18 

within protected areas. We selected the Great Green Macaw (Ara ambiguus) and its nesting host 19 

tree the Giant Almendro (Dipteryx panamensis) as a proof-of-concept species pair that will be 20 

affected by range shifts. We demonstrate with modeling that the Great Green Macaw will lose 21 

approximately 64.0% of suitable habitat in future scenarios, while the Giant Almendro will lose 22 

59.7% of suitable habitat. Species habitat overlaps across 85.3 % of its currently predicted 23 

distribution and 69.07% of the remaining habitat predicted in future scenarios. After accounting 24 

for spatially explicit protected areas networks, only 20.3% and 40.2 % of remaining habitat 25 

persists within protected areas across climate scenarios for the Almendro and Macaw, 26 

respectively, and 19.9 % of that habitat overlaps between the species. Currently, we are 27 

conducting a literature review to select and expand our list of species for use in the pipeline to 28 

detect trends for climate readiness planning in protected areas networks. The analytical pipeline 29 

will produce habitat suitability maps for multiple climate scenarios based on current 30 

distributions, and these maps will potentially be embedded into the Encyclopedia of Life as free, 31 

downloadable files. This is just one of several broader impact products from the research. This 32 

work demonstrates that modeling the future distribution of species is limited by biotic 33 

interactions and that conservation planning should account for climate change scenarios. 34 
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Introduction 39 

Species and communities are in continuous interaction, with species among trophic levels 40 

driving selective processes and affecting the ability of other species to adapt to climate change. 41 

Creating self-sustaining populations through management action requires an understanding of 42 

ecological settings, including species interactions (Van der Putten, Macel, and Visser, 2010). 43 

Habitat ranges will expand or contract due to changing climates, and we will see new species 44 

assemblages and interactions (Carvalho et al., 2011; Araújo and Guisan, 2006; Raxworthy et al., 45 

2008; Williams and Jackson 2007). A clear example of this scenario is the warming of ocean 46 

temperatures, which allowed for a range shift of sea urchins in Tasmania. The urchins shifted to 47 

a region without natural predators, causing an estimated net loss of 150 taxa within Tasmanian 48 

macroalgal beds (Ling et al., 2009).  Biotic interactions have proven to significantly affect both 49 

the explanatory and predictive power of bioclimatic envelope models not only at local and 50 

regional scales but also at macro scales thus it is critical to include them when modeling potential 51 

effects of climate change in species distributions (Araújo & Luoto, 2007; Araújo & Rozenfeld, 52 

2014). By modeling future climate change scenarios and predicting new species assemblages, we 53 

can determine if current protected areas networks will cover future ranges and the probable 54 

species overlap zones for management (Redford, et al., 2011).  This is complex, and may be best 55 

completed for species pairs before incorporating multiple species assemblages. For example, will 56 

the mutualism between the endangered Great Green Macaw (Ara ambiguus) and the Almendro 57 

tree (Dipteryx panamensis) continue if their ranges counter shift?(Monge et al., 2003), and how 58 

much will these species’ ranges differ comparatively throughout present and future scenarios? 59 

(Dunn et al., 2009; Kiers et al., 2010). We predict that global climate change trends are forcing 60 

range shifts of the mutually dependent species Great Green Macaw and the Almendro tree in 61 
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different spatial directions and outside of protected area networks, which could easily be 62 

calculated after estimating the species ranges with distribution models. However, our primary 63 

interest is academic; how can we easily transfer our findings for one set of species interactions to 64 

other academic researchers and managers? 65 

  66 

 Studying species interactions specifically for conservation planning and climate change 67 

readiness will require access to species distribution models. Currently, a suite of programs exist 68 

to estimate future changes in species distributions but the reality is that these programs take a 69 

significant amount of  time to implement or the models are behind paywalls (Walsh, Dicks, and 70 

Sutherland, 2014). Indeed, conservation managers worldwide have access to less than 9% of all 71 

conservation science publications (Fuller, Lee and Watson, 2014). To address this need, we 72 

attended a workshop pairing biologists with computer programmers to improve data usage in the 73 

Encyclopedia of Life (EOL). The EOL integrates multiple networks and databases into a single 74 

free user interface under the leadership of the Smithsonian Institution (Parr et al., 2012). 75 

Functionality in EOL is added to increase its ease-of-use, practicality, and content. Content is 76 

curated by biodiversity experts. A priority of EOL is to increase the number of biodiversity 77 

experts who can implement complex computer programs and also provide in-depth knowledge 78 

for specific taxa. Few biodiversity experts have both skill sets,meaning therefore collaborative 79 

projects provide prolific additions to EOL through harvesting multiple databases. 80 

 81 

In our project, we developed a tool to automate species distribution models, analyze overlap in 82 

up to two species distribution models, and allow current and future spatial data to be made freely 83 

available in EOL. We used a popular species distribution modeling algorithm, Maxent, to create 84 
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testable predictions to query and demonstrate functionality. We had a priori identified the 85 

endangered Great Green Macaw (Ara ambiguus) and the Giant Almendro tree (Dipteryx 86 

panamensis) as appropriate mutualistic species. The tree is the primary nesting and feeding 87 

source for the macaw in Costa Rica, and the macaw disperses the seeds of the tree. We asked 88 

whether land reserved for conservation protection will include one, both, or neither of the 89 

mutually dependent species in the future. The pipeline was used to estimate the species’ habitat 90 

overlap now and in the future. We expected that most habitat currently overlaps. Our main 91 

concern was with future overlap and future conservation management areas; are current 92 

protected areas adequate to sustain this bird-tree relationship? Herein, we describe a proof-of-93 

concept tool to automate and make freely available species distribution models. We evaluate our 94 

tool by predicting that these species will overlap in current predictive models and they will 95 

overlap less across climate regimes and also shift their overlap outside of protected areas. 96 

 97 

 Methods 98 

We wrote a script that automates species distribution models harvested from online databases. 99 

We based the development of this script on the premise of full automation, with the entire 100 

pipeline executed on a single command. The pipeline can be implemented to produce species 101 

distribution models for species in large database servers, specifically the Encyclopedia of Life. 102 

 103 

Tool: All the code and the data to perform this analysis is stored in the GitHub repository 104 

‘EOLBHL’ (Otegui, 2014). 105 

 106 
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Study system: We completed a literature review to select a mutualistic species familiar to the 107 

public. We selected the Great Green Macaw (See Ara ambiguus at EOL: < 108 

http://eol.org/pages/311764/overview>) and the Giant Almendro tree (See Dipteryx panamensis 109 

at EOL: < http://eol.org/pages/11245372/overview>). Almendro trees and fruits support more 110 

than 90% of nests and 85% of the birds’ diets (Powell et al., 1999; Chassot et al., 2002), although 111 

subspecies report alternate breeding and feeding roosts tree species (Berg et al., 2007). 112 

Consequent recovery plans for this species identified species persistence as contingent on its co-113 

occurrence with Almendro trees (Arndt, et al., 2000). To identify conservation priority areas, one 114 

study used remote imagery to estimate that 2 trees/ha occur across 140,178 ha of land in northern 115 

Costa Rica, and ~67, 000 ha of this land is suitable habitat for the Great Green Macaw (Chun, 116 

2008). Approximately 76% of habitat suitable for the Great Green Macaw overlaps with regions  117 

determined to contain >50 % intact forest cover. Most of these areas were in biological reserves. 118 

In this study, we identify habitat within protected areas throughout the Americas. 119 

 120 

Species locality data: In our first step we dynamically accessed species’ occurrence data from 121 

the GBIF occurrence application programming interface and performed quality control of GBIF 122 

data (<http://www.gbif.org/developer/occurrence>). We found 900 records for Ara ambiguus 123 

and 95 records for Dipteryx panamensis. We removed incomplete or duplicate records, and 124 

confirmed whether species had 20 or more verified points with georeferencing accuracy greater 125 

than 900 square meters (Hernandez et al., 2006; Phillips, S., and M. Dudík. 2008). We found 775 126 

locality points for Ara ambiguus that fit our criteria and we added those to the Macaw model. We 127 

used 68 Dipteryx panamensis locality points that fit our quality control criteria and added those 128 

to the Almendro model. 129 
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 130 

 Protected areas layers: We used spatial data from the World Database on Protected Areas 131 

(WDPA) at (<http://protectedplanet.net/>). For this project, we selected only protected areas 132 

from the Americas for the spatial overlap of protected areas and habitat suitability of the Great 133 

Green Macaw and the Almendro tree. 134 

 135 

Environmental data layers: We used abiotic data from WorldClim (<www.worldclim.org>) for 136 

species distribution models (Hijmans et al., 2005). Climatic and elevation data was downloaded 137 

from the WorldClim data set at 2.5 degree resolution, which is approximately a 4.5 by 4.5 km 138 

grid at the equator. For future climate scenarios, we used the Community Climate System Model 139 

4.0 with the representative concentration pathway of 2.6 W/m , the most conservative estimate 140 

from the IPCC AR5 (<http://www.ipcc.ch/report/ar5/>).  For both present and future systems, we 141 

used each of the annually derived bioclimatic values (11 variables).  142 

 143 

Species Distribution Models: The species distribution algorithm Maxent is a density estimator 144 

(Phillips et al., 2006). Using known presence points, the relative proportion of occurrence is 145 

estimated across large areas. The available habitat for an organism, given its current distribution, 146 

is calculated using static environmental predictor variables.  The availability of fairly small (400 147 

+ square km) environmental data cells from WorldClim for past, present, and future climate 148 

scenarios has proliferated the use of this algorithm in generating predictive maps for species used 149 

in conservation management and biodiversity research (Peterson et al., 2011).  150 

We integrated our python pipeline with the R modeling environment using the rPy2 package 151 

(<https://pypi.python.org/pypi/rpy2/2.2.6>). This allowed us to run Maxent models directly 152 
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through Python, without having to ask for user input or having to run two different scripts in two 153 

different languages. Maxent scenarios were generated for current and future climate scenarios in 154 

the R package ‘dismo’ (Hijmans et al., 2013). We assessed model performance using: 1) A 155 

conservative threshold of 0.9 for the test area under the receiver operating characteristic curve 156 

(ROC AUC) where closer to 1 is optimal (Elith et al., 2006), and 2) A p-value <0.05 for the eight 157 

internal training and test binomial test performed by Maxent (two each for minimum presence, 158 

10 percentile presence, equal sensitivity and specificity, maximum sensitivity plus specificity). 159 

We used the logistic output of Maxent using the default prevalence value of 0.5 which indicates 160 

the probability of presence at ordinary occurrence points, i.e. 50% chance of the species being 161 

present in suitable areas (Elith, et al., 2011). The output files of Maxent are not presence-absence 162 

maps (0-1 values) but rather maps of continuous data showing the probability distribution that a 163 

species occurs at a location. This represents the environmental similarity of that pixel with the 164 

pixels where the species is known to occur. Therefore to calculate overlap among species and 165 

within protected areas networks, we applied a threshold of probable occurrence. We coded each 166 

grid cell with a > 60% probability as a presence cell (1) and <60% probability as an absence cell 167 

(0).  168 

 169 

Data analysis: The following calculations were completed in R using a modified version of the 170 

‘ModelComparion.R’ script in the EOLBHL repository (Otegui, 2014). We calculated the 171 

overlapping number of 4.5 km2 grid cells from the resulting present and future Maxent map 172 

models for each species. We calculated the percent overlap habitat suitability between species’ 173 

current and future ranges and co-occurrence within protected areas. To compare range estimates 174 

from Chun (2008), we clipped the data to an outline of Costa Rica stored at 175 
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(<http://thematicmapping.org/downloads/world_borders.php>). We used QGis 2.2.0 (QGIS, 176 

2014) to convert the raster maps into vectors, and we calculated the area of present and future 177 

habitat suitability within protected networks of Costa Rica. 178 

 179 

Results 180 

Great Green Macaw: The Macaw model met the performance requirements (ROC AUC=0.987, 181 

p-value <0.05 for the eight internal training and test binomial).  Our models revealed 5406 grid 182 

cells with suitable habitat in current scenarios, but only 2603 grid cells in 2050 scenarios (Fig. 183 

1). The total habitat that occurred within protected areas networks in the Americas was 1468 184 

cells in the present scenarios, but future scenarios predict only 518 grid cells will remain in 185 

protected areas networks in the Americas. Of these cells, 20.3 % persist across scenarios 186 

meaning that after 64 % of suitable habitat within protected areas is lost by 2050, a fraction of 187 

that land occurs in the same place, consequently parrots need to move to take advantage of 188 

protected suitable areas in the future ( Fig. 1). 189 

 190 

Giant Almendro: The Almendro model met the performance requirements (ROC AUC=0.991, p-191 

value <0.05 for the eight internal training and test binomial). Our models revealed 6339 grid 192 

cells with suitable habitat in current scenarios, but only 1798 grid cells in 2050 scenarios (Fig. 193 

2). The total habitat that occurred within protected areas networks in the Americas was 1532 194 

cells in the present scenarios, but future scenarios predict 616 grid cells will remain in protected 195 

areas networks in the Americas.  The biology of this tree is such that it is unlikely to easily 196 

disperse to new areas. After 59.7% of habitat within protected areas networks is lost, 40.2% of 197 

that remaining habitat persists across scenarios (Fig. 1). 198 
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 199 

Species overlap: Our models revealed that the Great Green Macaw and Giant Almendro share 200 

85.3 % suitable habitat worldwide in current climate conditions. Currently, 28.4 % of co-201 

occurring suitable habitat happens within protected areas. In the future, 69.07 % of grid cells 202 

overlap among the species and 19.9 % of co-occurring suitable habitat  happens within protected 203 

areas. 204 

 205 

Discussion 206 

We predicted that global climate changes will force range shifts of mutually dependent species in 207 

different spatial directions, and outside of protected networks. We found that for at least one 208 

mutualistic species pair, ranges do shift when taking into account future climate scenarios.  209 

While Almendro currently have a greater range of suitable habitat (2,789,100 ha) than Macaws 210 

(2,378,640 ha), Almendro lose more future habitat (791,100 ha) than Great Green Macaw 211 

(1,145,300 ha). We hope to compare our model results with that of other mutualistic species 212 

pairs and determine if we get similar or dissimilar results among species with differing dispersal 213 

abilities as a useful step in understanding the general predictability of future species 214 

assemblages. For now, we can compare our study with the previous work we described to reveal 215 

the utility of our tool in characterizing current conservation networks. Regarding habitat 216 

remaining in the future, 40.2 % of persistent habitat for the Almendro will remain within 217 

protected areas, but much less habitat remains for Great Green Macaws (20.3%). The Chun 218 

(2008) model for Macaw/Almendro habitat suitability described an area that comprised 2.7% of 219 

Costa Rica where 48 % (67,271 ha) of habitat was suitable for macaws. According to this model, 220 

76 % of suitable habitat for macaws occurred in protected forests. We found that, in Costa Rica, 221 
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64.6% of 450,500 ha of future suitable habitat for the Macaw occurs in protected areas (Fig. 3).  222 

Our model used a standardized algorithm to estimate Macaw habitat suitability and was based on 223 

a simple understanding of one biotic interaction for the species, whereas the previous study used 224 

specialized remotely sensed data with a more specialized algorithm. Regardless, our models 225 

revealed similar results: most, but not all suitable habitat occurs in protected areas. The impetus 226 

to expand protected areas networks via corridors or land acquisition could benefit the species, 227 

even now.  228 

 229 

Species distribution models do not account for limited dispersal capabilities of Almendro trees or 230 

Great Green Macaws. We consider this a strength rather than weakness of our methodology; 231 

rates for dispersal are unknown or could only be poorly estimated for both species. Only 758 232 

species in EOL Traitbank have a mode of dispersal (‘dispersal vector’) and 144 species are listed 233 

with a dispersal age in the Traitbank (Parr et al., 2014). When the tool runs for the more than 1 234 

million taxa in EOL, it will be impossible to estimate probable dispersal bounds. Thus, we 235 

selected worldwide abiotic environmental coverage for the Maxent models. We choose this scale 236 

due to the number of species in the EOL and the potential applications of this work (Sidlauskas 237 

et al., 2009). In the case of range expansions and contractions, arbitrarily selecting areal range 238 

bounds for the maps may result in under-predicting the actual dispersal ability of an organism. 239 

Of course, species specific conservation action with regard to species distribution scenarios need 240 

to be used with caution and wisdom—maps are an abstraction of reality.  241 

 242 

If so desired, managers and scientists can clip the spatial rasters to their own specifications. In 243 

the same vein, some conservation advocates suggest that restoration set-points are inadequate 244 
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and arbitrary. A proposal for Pleistocene re-wilding suggests introducing megafauna to North 245 

America to restore wild places (Donlan et al., 2006). The species distribution maps could be 246 

downloaded from EOL and used to identify zones with the most habitat similarity outside of 247 

species’ current ranges if they are used as restoration and biocontrol agents. In another 248 

application, invasive species can be more effectively identified and fought if areas that naturally 249 

conform to their native range are displayed in the spatial maps resulting from our pipeline 250 

(Jiménez-Valverde et al., 2011). We have described reasons why we modeled habitat suitability 251 

worldwide. An unfortunate shortcoming of this decision is a tendency for diagnostic test results 252 

to indicate greater accuracy of the models than is actually inherent to those models (Lobo, et al., 253 

2008; Peterson, Papes and Soberón, 2008). However, even a brief idea of potential regions where 254 

species may be introduced and survive can provide powerful baseline insight into species 255 

biology to benefit and inform conservation sciences.  256 

 257 

In the future, protected areas network should include climate change readiness planning for 258 

mutualistic species that may need direct climate change assistance.  We determined that current 259 

protection does not adequately protect the overlapping range of Almendro trees and Great Green 260 

Macaws because much suitable habitat in future scenarios falls outside of current protected areas 261 

networks. Moreover, our models over-predicted the future range of Macaws by upwards of half, 262 

if it must co-occur with Almendro trees. Targeted protected area expansion outside of current 263 

protected areas that conforms to probable dispersal routes of focal species towards more suitable 264 

habitat would create dispersal corridors into the protected areas of the future. In addition, 265 

planting Almendro trees in protected areas suitable for the future distribution could contribute to 266 

the climate readiness and persistence of Great Green Macaws. 267 
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 268 

Future Directions: The goals of this research include creating a workflow to collate, model, and 269 

analyze multiple species distributions. We used support from the NESCent-EOL-BHL Research 270 

Sprint and a well-known online species database, EOL, to create a proof-of-concept tool to 271 

evaluate habitat suitability models within protected areas.  By publishing these analyses online, 272 

we can remove a technological barrier for conservation managers interested in conservation 273 

planning among changing climates scenarios. 274 

 275 

Highlights 276 

1. We created a pipeline for species distribution mapping. 277 

2. Our technical product is available freely, including command line code and example data. 278 

3.  We demonstrated the utility of increasing access to spatial models for climate readiness and 279 

conservation planning. 280 

4.  We found that Great Green Macaws will lose overlapping habitat with its main host tree, the 281 

Giant Almendro. We suggest strategies for this species’ conservation. 282 
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 392 

393 

 394 

Figure 1.  Loss of habitat across present (L) and future (R) climate scenarios will affect 395 

protected areas of the Great Green Macaw (top) and the Almendro tree (bottom). Habitat 396 

suitability colored as in Fig.2. Protected areas are filled in purple.  397 
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 398 

 399 

Figure 2. Worldwide spatial models for two species, the Great Green Macaw (L: Ara ambiguus) 400 

and the Giant Almendro (R: Dipteryx panamensis), resulting from the spatial map pipeline in 401 

each climate scenario. Maps colored according to probability that a species could occur in a 2.5 402 

arc-minute grid cell. Model specifications included in text. 403 

  404 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.492v2 | CC-BY 4.0 Open Access | rec: 15 Sep 2014, publ: 15 Sep 2014

P
re
P
rin

ts



20 
 

 405 

 406 

Figure 3. Current species distribution maps for the Great Green Macaw generated in the pipeline 407 

indicate more than 60 % of suitable habitat is protected in Costa Rica (top). Our study finds that 408 

only 20.3% of suitable habitat persists inside of current protected areas by 2050, assuming no 409 

human intervention (bottom). 410 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.492v2 | CC-BY 4.0 Open Access | rec: 15 Sep 2014, publ: 15 Sep 2014

P
re
P
rin

ts


