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Abstract 13 

Certain biological traits seem to predispose some species to greater extinction risk than others 14 

and, when vulnerability information is limited, could be used as proxies to identify understudied 15 

species likely in need of protection. In the past, identifying broadly applicable traits associated 16 

with extinction risk has been hampered by the difficulty of collecting information for a broad 17 

range of species (both geographically and taxonomically), with most comparative analyses 18 

focusing on regional and/or taxon specific patterns. However, efforts to collect and compile 19 

existing trait information from regional and taxon specific datasets into a single repository are 20 

making it possible to analyze patterns between traits and vulnerability on ever broader scales.  21 

We compared trait information from one such repository, the Encyclopedia of Life (EOL) 22 

TraitBank, to information on threat status from the International Union for the Conservation of 23 

Nature (IUCN) Red List to determine whether such consolidated data can help either clarify 24 
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previously identified associations or identify new associations between plant traits and threat risk. 25 

Using generalized linear mixed effects models (GLMM’s) we found five plant traits that could be 26 

used to predict whether a species is threatened or not: ‘plant growth form’, ‘life cycle habit’, ‘low 27 

temperature tolerance’, ‘soil depth’ and ‘foliage porosity in winter’. Threatened plant species 28 

tend to be trees rather than shrubs or grasses, live for more than one season (i.e. perennials), be 29 

less tolerant of cold temperatures, require deep soil for good growth, and have less dense foliage 30 

in the winter. Both ‘plant growth form’ and ‘life cycle habit’ have been identified as correlates of 31 

vulnerability in past studies and both are relatively easy to use as diagnostic characters, which is 32 

ideal for identifying understudied species of potential conservation concern. However, how these 33 

two traits relate to vulnerability seems context dependent, with opposite relationships in past 34 

regional or taxon specific studies. Unfortunately we could not identify further traits that could 35 

add explanatory power to those relationships with the existing data on EOL’s TraitBank but the 36 

repository is still growing and the inclusion of additional traits and/or species from other datasets 37 

could clarify these relationships further.  38 

 39 

Introduction 40 

Human activities are resulting in the loss of alarming numbers of species both regionally 41 

(extirpations) and globally (extinctions), with some scientists referring to the current era as the 42 

‘sixth mass extinction event’ in history (Pimm et al., 1995; Stork, 2010). The fossil record 43 

indicates that there have been fewer mass extinction events for plants than animals in the past 44 

(Willis & Bennett, 1995). However, since the arrival and settlement of humans, a combination of 45 

direct exploitation, habitat change (loss, degradation and/or fragmentation), invasive species 46 

introductions, and climate change has led to plant species declines, extirpations and extinctions 47 

worldwide (Thomas et al., 2004; Hahs et al., 2009; Stork, 2010). Given limitations in money and 48 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.491v1 | CC-BY 4.0 Open Access | rec: 8 Sep 2014, publ: 8 Sep 2014

P
re
P
rin

ts



time for conservation, it would be impossible to implement conservation measures for the 49 

298,000 plant species estimated worldwide (Mora et al., 2011), only a small proportion of which 50 

have been studied (Vié et al., 2009). To best conserve the plant species remaining, strategies are 51 

needed to identify and focus efforts towards those species that are likely to disappear fastest and 52 

therefore need help most urgently.  53 

 54 

Certain life history, ecological, and morphological traits appear to make some organisms more 55 

vulnerable to human activities than others and, where direct vulnerability information is limited, 56 

could be used as proxies to identify understudied plant species in need of conservation action. 57 

Although relationships between plant traits and vulnerability have not been studied as well as in 58 

other taxa, at least 80 of 118 plant traits assessed seem to have some relationship with at least one 59 

metric of vulnerability (plant species abundance, distribution, threatened status, or rarity) 60 

(reviewed in Murray et al., 2002; Walker & Preston, 2006; Stork et al., 2009; Neel & Che-61 

Castaldo, 2013; Musters et al., 2013; Bradshaw et al., 2008; Mcintyre et al., 2014). Many of these 62 

identified traits were only examined in a single study and, among those examined in multiple 63 

studies (e.g. plant height, seed size, growth form), their relationships with vulnerability seem to 64 

depend on the scale and context of the study (Murray et al., 2002). For example, shorter plant 65 

species were more likely to go extinct than taller species after European settlement in New 66 

Zealand (Duncan & Young, 2000), but taller species are more likely to have a threatened status 67 

among legumes (family Fabaceae) on a global scale (Bradshaw et al., 2008). Establishing general 68 

relationships between plant traits and vulnerability has been difficult partly because studies tend 69 

to be limited in scope either geographically (e.g. Duncan & Young, 2000; Walker & Preston, 70 

2006; Neel & Che-Castaldo, 2013; Musters et al., 2013), taxonomically (e.g. Bradshaw et al., 71 

2008), or both (e.g. Sodhi et al., 2008). A further difficulty is that most studies have only 72 
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analysed relationships with a single trait in isolation (reviewed in Murray et al., 2002), with some 73 

more recent notable exceptions (e.g. Duncan & Young, 2000; Walker & Preston, 2006; Neel & 74 

Che-Castaldo, 2013; Musters et al., 2013) and, therefore, may have missed important 75 

relationships among traits. The limited scope of past studies likely stems from the difficulty of 76 

collecting sufficient amounts of information about multiple traits for species from a broad 77 

taxonomic range and on a global scale. 78 

  79 

Efforts such as the Encyclopedia of Life’s (EOL) TraitBank are making it possible to compare a 80 

broader range of species (both geographically and taxonomically) and traits than was possible in 81 

the past, allowing for more thorough analyses of plant traits associated with vulnerability. The 82 

EOL TraitBank is “a searchable, comprehensive, open digital repository for organism traits, 83 

measurements, interactions and other facts for all taxa across the tree of life” 84 

(http://eol.org/info/516; Parr et al., 2014). The depository currently includes trait information for 85 

thousands of plant species, compiled from published studies (e.g. Chave et al., 2009), regional 86 

databases (e.g. the U.S. based USDA plants database (http://plants.usda.gov) and the 87 

Mediterranean based BROT Database (http://www.uv.es/jgpausas/brot.htm)), as well as 88 

databases specific to particular taxa (e.g. Shaw Nature Reserve Lily Database - 89 

http://www.missouribotanicalgarden.org/visit/family-of-attractions/shaw-nature-reserve.aspx) or 90 

biomes (National Wetland Plant List - http://rsgisias.crrel.usace.army.mil/NWPL/).  Our goal in 91 

this paper is to assess whether the consolidated data in EOL’s TraitBank can help clarify 92 

previously identified associations between plant species traits and their vulnerabilities and/or 93 

identify relationships with previously untested traits.  94 

 95 

Methods 96 
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Compiling plant trait and vulnerability data 97 

For plant species trait data we relied on EOL’s TraitBank (accessed on 15 July 2014), 98 

transforming and/or combining some of the traits to make analyses easier. We manually searched 99 

the TraitBank repository for all life history, morphological, or ecological traits that included 100 

information for any plant species (Kingdom Plantae). Three traits contained information about 101 

seed size (“seed mass”, “seeds per pound”, and “seeds per unit”) so we converted each into 102 

weight per seed (in grams) and combined them into a single “seed weight” trait, using averages 103 

for any species with more than one value. We also combined two traits that indicate whether a 104 

plant species has some commercial use (“commercial availability” and “uses”) into a single 105 

“commercially used” trait, assigning each species to a category of either “used” or “not used” 106 

based on their original categories.  Lastly, we converted the categorical “active growth period” 107 

trait (indicating the seasons in which plant growth occurs for a given species), into a numeric 108 

trait: “active growth duration”, that indicates instead the number of seasons in the year (1-4) with 109 

active growth.   110 

 111 

For our metric of plant species vulnerability, we categorized each plant species as either 112 

“threatened” or “lower risk”, using the IUCN Red List extinction risk categories (IUCN, 2014; 113 

accessed on 01 August 2014). The IUCN Red List assigns each evaluated species to one of nine 114 

ordered risk categories, using the best data available and standard, rigorous criteria: Data 115 

Deficient (DD), Least Concern (LC), Lower Risk (LR), Near Threatened (NT), Vulnerable (VU), 116 

Endangered (EN), Critically Endangered (CR), Extinct in the Wild (EW), or Extinct (EX). We 117 

searched the Red List for all assessed plant species and compiled information on their threat 118 

status and taxonomy (kingdom, phylum, class, order, family, genus, species), removing any 119 

species assessed as Data Deficient, since extinction risk is uncertain for those species. Since all 120 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.491v1 | CC-BY 4.0 Open Access | rec: 8 Sep 2014, publ: 8 Sep 2014

P
re
P
rin

ts



traits did not have representatives from each of the eight remaining extinction categories, we re-121 

assigned each species to one of two categories: “threatened” (VU, EN, CR, EW, EX), and “not 122 

threatened” (LC, LR, and NT). The IUCN Categories and Criteria manual (IUCN, 2012), 123 

indicates that three categories are “threatened” (VU, EN, CR). Although there were few species 124 

within the two extinct categories (EW and EX), we also assigned those to our “threatened” 125 

category, assigning all others to a “not threatened” category (LC, LR, NT).  126 

 127 

Analyzing relationships between plant traits and extinction risk categories 128 

To identify relationships between species plant traits and the probability of being in a threatened 129 

Red List category we used generalized linear mixed effects models (GLMM’s) and a stepwise 130 

model building approach. GLMM’s have been used to test relationships between plant traits and 131 

vulnerability in several previous studies (e.g. Bradshaw et al., 2008; Sodhi et al., 2008). One of 132 

its advantages is that GLMM’s can be used to test which combination of traits explain the most 133 

variance in extinction risk among plant species while controlling for the effect of phylogeny. 134 

Phylogenetically paired contrasts are another popular regression based method for comparing 135 

traits and vulnerability (Purvis, 2008), but are less appropriate when categorical variables are 136 

included in the analysis, as is the case for many plant traits in TraitBank. 137 

 138 

We fitted GLMM’s to the plant trait and vulnerability data using the ‘lmer’ function from the 139 

lme4 package in R (Bates et al., 2014). For each GLMM, we coded “threat” as a binomial 140 

response variable and each plant trait as a fixed effect, with a logit link function (Bates, 2010). To 141 

control for the fact that closely related species can have similar traits through shared evolutionary 142 

histories, we controlled for pseudoreplication stemming from phylogenetic influences by 143 
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including taxonomy as a nested random factor in each GLMM (phylum/class/order/family). We 144 

did not have sufficient replication within genera to include genus in the nested random factor. 145 

 146 

To identify individual plant traits associated with threat risk that should be considered in more 147 

complex models, we compared models with and without each trait. In each case, we compared 148 

full models (including the trait with taxonomy as a random factor) with reduced models 149 

(including only taxonomy as a random factor) using the ‘anova’ R function (R Core Team, 2013). 150 

We calculated the percent deviance explained by inclusion of each trait in the model and retained 151 

traits if their addition significantly reduced model deviance according to a Chi-squared test and 152 

false discovery rate corrected significance levels to account for multiple comparisons (Zuur et al., 153 

2009). To further assess the relative strength of each full model, we calculated conditional and 154 

marginal R2 values according to Nakagawa & Schielzeth (2013). Other studies have used 155 

Akaike’s Information Criteria (AIC) or Bayesian information criteria (BIC) to compare the 156 

strengths of evidence for competing models (e.g. Bradshaw et al., 2008; Sodhi et al., 2008). 157 

However, those criteria are less suitable for comparison among models built using different 158 

datasets and many of the EOL TraitBank traits had information for different subsets of species 159 

(Nakagawa & Cuthill, 2007).  160 

 161 

To test whether combined traits explain more of the deviance than any individual trait, we built 162 

GLMM’s with combinations of traits retained from the individual analyses and compared those 163 

with GLMM’s with individual traits. Starting with pairs of traits with the highest significance (i.e. 164 

lowest P-values), we used the ‘anova’ R function (R Core Team, 2013) to test for differences in 165 

deviance between models with and without each trait in combination (Zuur et al., 2009; Bates, 166 
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2010). Variables were only retained if they were not correlated with a trait already in the model 167 

and their inclusion significantly reduced model deviance according to a Chi-square test.  168 

 169 

To determine whether there were any relationships among traits that could confound comparisons 170 

with threat risk, we tested for correlations/independence using Spearman rank tests or Chi-square 171 

tests, depending on the trait. For traits with continuous and/or ordered categorical values we 172 

tested for covariance using Spearman correlations in the ‘rcorr’ function from the Hmisc package 173 

in R (Harrell, 2014). To test for associations among categorical traits (ordered or unordered), we 174 

used Chi-square tests of independence (‘chisq.test’ function in R; R Core Team, 2013). 175 

 176 

Results 177 

We found 92 life history, ecological, morphological, and usage traits on EOL’s TraitBank that 178 

include information for plant species, 47 of which were useful for our comparisons with threat 179 

risk (i.e. had a plausible relationship with threat risk and sufficient sample sizes). Several traits 180 

were management-based with no clear hypothesis for how they could relate to species 181 

vulnerability (e.g., garden persistent range, germination treatment). The number of records 182 

returned by our EOL TraitBank search ranged from 1 to 48973 for each of the plant traits we 183 

identified, with an average (mean) of 2917 records. Our search of the IUCN Red List returned 184 

19381 species, 1526 of which were assessed as Data Deficient, leaving 17856 species assessed in 185 

one of the categories informative for our analyses (i.e. could be assigned to a “threatened” or “not 186 

threatened category”. However, far fewer species (2340) had both threat risk information from 187 

the IUCN Red List and information for at least one of the 47 plant traits from EOL useful for our 188 

analysis, with each trait having information for a subset of those species (range = 1-1307 spp.; 189 

mean = 316 spp.). Consequently, several traits had information for too few species for analysis 190 
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(e.g. ‘submergence tolerance’). It was possible to fit GLMM’s using traits with information for as 191 

few as 14 species (i.e. ‘seed ripening date’). However, it was not possible to combine traits with 192 

such small sample sizes in more complex GLMM’s. 193 

 194 

According to GLMM analyses with individual traits, only five of the 47 traits we analyzed were 195 

significantly associated with variation in threat risk among plant species (Table 1). In 196 

comparisons of GLMM’s with and without each trait, ‘plant growth habit’, ‘low temperature 197 

tolerance’, ‘life cycle habit’, ‘foliage porosity in winter’, and ‘soil depth’  reduced between 2.7 198 

and 16.8% of the deviance in whether a plant species was threatened or not, significant even after 199 

correcting for multiple comparisons using the false discovery rate (P < 0.01). ‘Plant growth habit’ 200 

had the most significant influence on reduction in deviance (i.e. lowest P-value) and resulted in 201 

the GLMM with the highest relative strength in predicting threat risk (marginal and conditional 202 

R2 values > 0.98), indicating that trees have higher threat risk than shrubs and shrubs have higher 203 

threat risk than forbs/herbs or graminoids (Fig. 1a). However, low temperature tolerance 204 

explained more of the deviance in threat risk (17%) compared to its null model, indicating that 205 

plants that can withstand colder temperatures are less likely to be threatened (Fig 2a). 206 

Furthermore, plants that survive multiple seasons (perennials) were more often categorized as 207 

threatened than annual species (Fig. 1b) and those that have denser foliage in the winter were at 208 

greater risk than those with sparse foliage at that time of year (Fig. 1c). Finally, plants that need 209 

deeper soil for good growth had higher probabilities of being in a threatened IUCN Red List 210 

category (Fig 2b). 211 

 212 

None of the GLMM models with multiple traits performed significantly better than individual 213 

models, except for those containing correlated traits. The combination of foliage porosity in 214 
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winter and soil depth explained significantly more deviance than without either of those traits (p 215 

< 0.02). However, those two traits are linked. Plants that require deeper soil tend to have less 216 

foliage in the winter (Spearman rank test; p <0.0001). Likewise, a combined model including life 217 

cycle habit and low temperature tolerance explained significantly more deviance in threat risk 218 

than without either trait (p < 0.005), but those two traits are negatively correlated: perennial 219 

species tend to have lower temperature tolerances than annual or biennial species (Spearman rank 220 

test; p <0.0001). 221 

 222 

Discussion 223 

By comparing EOL TraitBank plant traits and IUCN Red List threat status information, we found 224 

evidence supporting associations between five traits and threat risk, two of which have been 225 

identified as correlates of vulnerability in the past: ‘plant growth habit’ and ‘life cycle habit’. 226 

Plant growth habit (or plant growth form, as it is sometimes termed), has been found to be 227 

associated with several metrics of vulnerability including distribution/rarity (reviewed in Murray 228 

et al., 2002), extinction proneness (Sodhi et al., 2008), and threatened status (Bradshaw et al., 229 

2008), so it is perhaps not surprising that we found such a strong relationship, with a conditional 230 

R2 value of 0.99. However, the direction of the relationship between plant growth form and 231 

vulnerability has differed somewhat among past studies. Our results are consistent with patterns 232 

reported for plants in central Australia and Sydney, where shrubs and trees were found to be rarer 233 

than herbs (Oakwood et al., 1993) and results among legume species, within which trees had 234 

higher probability of being threatened than shrubs or herbs and shrubs had higher probabilities of 235 

being threatened than herbs (Bradshaw et al., 2008). In contrast, our results differ from those 236 

reported for British plants, where trees are less likely to be rare (Kelly & Woodward, 1996), and 237 

for Australian Eucalyptus species in which trees are more common than shrubs (Murray et al., 238 
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2002). Our results for ‘life cycle habit’ (sometimes referred to as ‘longevity’) also differ from 239 

results reported for rarity in grassland plants, among which annuals and biennials were less 240 

abundant with narrower distributions than perennials (Eriksson & Jakobsson, 1998). Our hope 241 

was to clarify previously identified relationships between plant species traits and their 242 

vulnerabilities but it appears that these two traits may be context dependent. Since we were 243 

unable to find any associations with the other traits in our analysis that might account for some of 244 

this context, further analyses may be needed to explore additional factors. 245 

 246 

In addition to the two previously identified traits, we found associations between threat risk and 247 

three apparently untested traits: ‘low temperature tolerance’, ‘soil depth’ and ‘foliage porosity in 248 

winter’. Although we were unable to find any comparative analyses that examine relationships 249 

between low temperature tolerance and vulnerability, bioclimatic models predict that plant 250 

species with narrower tolerance ranges (including temperature tolerances) will be more 251 

vulnerable to anthropogenic climate change (Midgley et al., 2002). High temperature tolerance 252 

may be more important as warming continues, but low temperature tolerance may also impart 253 

some resilience to the increase in stochastic events predicted to occur with climate changes. 254 

Unfortunately we did not have access to high temperature tolerance data but it would be 255 

interesting to compare the two to determine their relative and combined influence on 256 

vulnerability. ‘Soil depth’ is essentially another measure of abiotic tolerance; plants requiring 257 

deeper soil should be more vulnerable as it could limit the possible range of environments they 258 

can inhabit, thus limiting their ability to spread into new areas when habitats are disturbed or 259 

altered through climate change. Possible mechanisms linking foliage porosity in winter and threat 260 

risk are less clear. In general, plants that can go through periods of dormancy can also withstand 261 

dramatic changes (Stork et al., 2009). High porosity in winter could be linked to a plant’s ability 262 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.491v1 | CC-BY 4.0 Open Access | rec: 8 Sep 2014, publ: 8 Sep 2014

P
re
P
rin

ts



to shed leaves during periods less suitable for growth. However, if that were the case we would 263 

expect to find a relationship between ‘shedability’ (deciduous or evergreen) and threat risk, but 264 

we did not. Since foliage porosity is correlated with soil depth, it could also be that it is this 265 

indirect connection that is responsible for the relationship with threat risk.    266 

 267 

Interestingly, we did not find significant relationships among other traits previously hypothesized 268 

to be predictive of plant vulnerability. In particular, plant height has been linked to vulnerability 269 

in at least three separate studies, with some indicating short plants are more vulnerable (Mitchley, 270 

1988; Duncan & Young, 2000; Walker & Preston, 2006), and another indicating tall species are 271 

at greater risk (Bradshaw et al., 2008). However, these studies were either regionally based 272 

(Mitchley, 1988; Duncan & Young, 2000; Walker & Preston, 2006) or focused on specific plant 273 

taxa (Bradshaw et al., 2008). If the direction of the relationships between plant height and 274 

vulnerability depends on the context, as suggested by these past studies, we may not have found a 275 

relationship with this trait because it is not generalizable on broader geographic and taxonomic 276 

scales. Seed production is another trait that has been linked to vulnerability in several studies but, 277 

unlike relationships with plant height, results have been consistent with more productive species 278 

being less vulnerable (reviewed in Murray et al., 2002). We did not find a significant relationship 279 

between the associated EOL trait ‘fruit/seed abundance’ and threat risk. However, our analysis 280 

was hampered by the limited number of species from a threatened category with this information 281 

(only 15 spp.).  282 

 283 

There are several possible reasons why we may not have found more significant relationships 284 

between extinction risk and the plant traits we used, including (1) choosing inappropriate traits, 285 

(2) biases or inconsistencies in either the predictive variables (traits) or the response variable 286 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.491v1 | CC-BY 4.0 Open Access | rec: 8 Sep 2014, publ: 8 Sep 2014

P
re
P
rin

ts



(threat risk), or (3) insufficient sample sizes for each trait and their combinations. We included a 287 

large number of potential traits, many of which were hypothesized to have an influence on 288 

vulnerability in previous studies. However, it is possible that we missed some other important 289 

traits or other related variables in our analysis. One of the drawbacks of our analysis (and many 290 

other similar analyses) is that we only had one trait value for each species. It could be that the 291 

variability in traits within a species is as important or more than the mean value for a species (e.g. 292 

phenotypic plasticity). However, trait databases rarely include intra-specific variability. In 293 

addition to intrinsic traits such as those that we used, other comparative analyses are including 294 

extrinsic factors (e.g. rainfall, human population density, invasive species) to identify correlates 295 

of vulnerability and extinction risk in other taxa (Murray et al., 2011; Tingley et al., 2013). While 296 

these extrinsic factors have proven useful for regional analyses, it could be difficult to summarize 297 

such spatially explicit factors for species with large ranges. In all broad comparative analyses of 298 

extinction risk, such as this one, there are also concerns about whether the data represent an 299 

unbiased sample (González-Suárez et al., 2012). In our data, for example, there could be more 300 

information for species that are more conspicuous or have commercial uses. However, as part of 301 

our analysis we examined the spread of the data among groups and found no obvious skew in the 302 

data.  In addition to biases, there could be important differences in the way variables are 303 

measured. For instance, other comparative analyses have included more categories in their ‘plant 304 

growth form’ trait than used in the EOL TraitBank (e.g. epiphytes: Sodhi et al., 2008; climbers: 305 

Bradshaw et al., 2008). Lastly, our analysis could have been limited by small sample sizes for 306 

each trait. It is interesting that the traits we found to be significant in our analysis tended to have 307 

information for more species than traits which were not significant (means = 631 spp. vs. 211 308 

spp.), but the difference was not significant (t-test, P>0.05).   309 

 310 
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The EOL TraitBank has information for a large variety of traits, covering a broad range of 311 

organisms (both taxonomically and geographically) but, unfortunately, that was not always the 312 

case for individual traits and when focusing on species with threat risk information from IUCN. 313 

The 47 traits we were able to use for our analysis is greater than almost all other comparative 314 

analyses of extinction risk for plant species (with the notable exception of Musters et al., 2013). 315 

Furthermore, even though the numbers of species with both trait and threat risk information was 316 

far fewer than the number for each, the mean number of species for each trait in our analyses 317 

(316 spp.) was still greater than used in many similar past studies (reviewed in Murray et al., 318 

2002). If we had included regional endangered species in our analyses we might have been able 319 

to increase the sample size. However, including regional categorizations could have been 320 

problematic because some species can be endangered in one region and not in another. We 321 

believed that using the IUCN Red List was the most appropriate method to assess whether a 322 

species is assessed throughout its range. Since there were more plant species with threat risk data 323 

from IUCN than for most traits, it would also make more sense to look for additional trait 324 

information rather than additional threat status information, especially since one of the ultimate 325 

goal of this research was to identify relationships that could be used to guide further conservation 326 

assessments. There are other plant trait databases that contain information for more species than 327 

used in our analyses (e.g. TRY Plant Trait Database: http://www.try-db.org/TryWeb/Home.php; 328 

GLOPNET Global Plant Trait Network: http://bio.mq.edu.au/~iwright/glopian.htm). Fortunately, 329 

the EOL TraitBank is still adding new datasets such as these to their repository, with the potential 330 

for even stronger analyses in the future. Perhaps the greatest potential for using the EOL 331 

TraitBank repository, though, is in even broader scale analyses than in this study, such as those 332 

searching for general trends even among kingdoms (e.g. Stork et al., 2009; Musters et al., 2013). 333 

 334 
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Conclusions 335 

Since only a small proportion of known plant species have been studied enough to know their 336 

risk of extinction, and there are insufficient resources available to protect them all, strategies are 337 

needed to focus efforts towards those species are most in need of conservation. This is 338 

particularly important given that human activities represent some of the greatest risks to thee 339 

species. Our study adds to the growing body of evidence showing that certain life history, 340 

ecological, and morphological traits predispose species to higher vulnerabilities. By comparing 341 

EOL TraitBank plant traits with IUCN threat risk categories, we were able to identify five such 342 

traits: ‘plant growth habit’, ‘life cycle habit’, ‘low temperature tolerance’, ‘soil depth’ required 343 

for good growth, and ‘foliage porosity in winter’. Threatened plant species tend to be trees rather 344 

than herbs or grasses, live for more than one season (perennials), are able to withstand colder 345 

temperatures, can live in shallower soil depths, and have less foliage during the winter. In the 346 

absence of direct vulnerability information, these traits, among others found in past studies, could 347 

be used to guide further conservation assessments towards those most likely at risk. Ideally, such 348 

traits should be easy to measure and generalizable. Fortunately, two of the traits we identified 349 

(plant growth habitat, and life cycle habit) seem to satisfy both of these requirements, although 350 

their specific relationships may be context dependent. Further analyses using other plant trait 351 

databases could clarify these relationships further. 352 
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Table 1: Generalized linear mixed effects model (GLMM) results for the five plant traits that significantly reduced deviance in threat 450 

risk (i.e. whether a species is listed in a threatened IUCN Red List category or not) when added to null models that only include the 451 

effect of taxonomy. Results shown include numbers of species used in each model (Spp), maximum log-likelihoods (LL), marginal R2 452 

values (R2
GLMM(m)), conditional R2 values (R2

GLMM(c)), percent deviance explained (%DE), and results from chi-square tests comparing 453 

models with and without the trait (Chi-square and P). 454 

Trait Spp LL R2
GLMM(m) R2

GLMM(c) %DE Chi-square P 

Plant growth habit 1192 -396.442 0.982 0.996 9.468 82.917 1.26 x 10-14

Life cycle habit 1307 -479.457 0.154 0.894 2.740 27.016 1.36 x 10-06

Low temperature tolerance 222 -57.651 0.273 0.878 16.803 23.287 1.40 x 10-06

Soil depth 213 -63.162 0.215 0.717 8.057 11.070 0.0008777 

Foliage porosity (winter) 219 -60.911 0.279 0.856 9.232 12.391 0.002039 

 455 
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