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The physiologic and therapeutic role of Heparin in 

implantation and placentation

Implantation, trophoblast development and placentation are crucial processes in the 

establishment and development of normal pregnancy. Abnormalities of these processes can 

lead to pregnancy complications named the great obstetrical syndromes (preeclampsia, 

intrauterine growth restriction, fetal demise, premature prelabor rupture or membranes, 

preterm labor, and recurrent pregnancy loss). There is mounting evidence regarding the 

physiological and therapeutic role of heparins in the establishment of normal gestation and as

a modality for treatment and prevention of pregnancy complications. In this review we will 

summarize the properties and the physiological contribute of heparins to the success of 

implantation and placentation and normal pregnancy.
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1. Introduction 

The use of Heparins have increased constantly since their discovery, and this is due to the number

of properties and effects shared by these molecules. In addition to their anticoagulant and anti-

inflammatory effect, that justifies their employment in the prevention and treatment of pregnancy

complications, these molecules have a physiologic role during gestation and especially during

implantation and placentation; which is a critical process in the establishment and success of

pregnancy1. In this review we will present the role of heparin in implantation, placentation, and

we will discuss their role in the immunologic balance among the mother and the fetus. 

2. The physiological role of heparin 

Heparin is one of the oldest drugs currently in widespread clinical use. Its discovery in 1916

predates the establishment of the Food and Drug Administration of the United States, although it

did not enter clinical trials until 1935. It was originally isolated from canine liver cells2, hence its

name (hepar or "ήπαρ" is Greek for "liver").
It is principally employed for its anticoagulation properties. Moreover, its true physiological role

in the body remains uncertain, since blood anticoagulation is achieved mostly by heparan sulfate

proteoglycans derived from endothelial  cells3.  Heparin is  usually stored within the mast cells

secretory granules and released only into the vasculature at  sites of tissue injury. It  has been

proposed that, in addition to its anticoagulant properties heparin may play a role in the defense

against invading bacteria and other foreign materials4. 
Heparin is a glycosaminoglycan composed of chains of alternating residues of d-glucosamine and

uronic  acid.  It's  major  anticoagulant  effect  is  accounted  for  a  unique  pentasaccharide

(GlcNAc/NS(6S)-GlcA-GlcNS(3S,6S)-IdoA(2S)-GlcNS(6S)  structure  that  has  a  high  binding

affinity  sequence  to  anti-thrombin  III  (AT III)5;  however,  in-vitro studies  suggest  that  this

structure is present only in about one third of heparin molecules6.
The interaction between heparin and AT-III mediates the majority of the anticoagulant effect of

the former. Their binding produces a conformational change in AT-III (Fig. 1) that accelerates up

to 1000 fold7 its ability to inactivate the major coagulation factors, including mainly thrombin

(factor IIa), factor Xa, and factor IXa5.  
Heparin increases the inhibitory effect of AT-III on thrombin and Factor Xa activity by distinct

mechanisms (Fig. 2). The acceleration of the inhibition of thrombin by AT-III necessitates the

binding of this molecule to the heparin polymer proximally to the pentasaccharide units. Heparin

has  a  highly negative charge  that  is  derived from the number  of  its  saccharide units,  which

contributes to the strong electrostatic interaction of AT-III with thrombin. Thus, heparin's activity

against  thrombin  is  size-dependent,  and the  ternary complex  (including thrombin,  ATIII  and
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heparin) requires at least 18 saccharide units for efficient formation and thrombin inactivation8, 9.
In contrast,  the effect of heparin on the inhibition of factor Xa by ATIII is dependent on the

conformational change of this molecule at the heparin-binding site; therefore, the size of heparin

has no importance in the inhibition of factor Xa by ATIII. This has therapeutic implications and

led to the development of a new generation of heparin derived anticoagulants including  low-

molecular-weight  heparins (LMWH) and  fondaparinux.  LMWH are obtained as fragments  of

unfractionated  heparin  as  a  result  of  enzymatic  or  chemical  depolymerization,  yielding  to

molecules  of  mean  weight  of  5000  Da  (Table  1)10 while  fondaparinux is  a  synthetic

pentasaccharide based on the heparin            antithrombin-binding domain11.
These medications target the anti-factor Xa activity rather than anti-thrombin (IIa) activity of AT-

III, aiming to facilitate a more subtle regulation of coagulation with an improved therapeutic

index and less side effects. Indeed, each molecule of fondaparinux binds to one molecule of AT-

III  at  a  specific  site,  and  with  very  high  affinity.  The  binding  is  rapid,  non-covalent,  and

reversible. It induces a critical conformational change in AT-III, exposing a loop containing an

arginine residue that binds factor Xa. Exposure of the arginine-containing loop greatly increases

the affinity of AT-III for factor Xa, potentiating the natural inhibitory effect of AT-III against

factor Xa by a factor of approximately 3008, 9.
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3. The role of heparins in implantation and placentation 

3.1 What are the stages of implantation and placentation? 
Implantation, a critical step for the establishment of pregnancy, requires a complex molecular and

cellular events resulting in uterine growth and differentiation, blastocyst adhesion, invasion, and

placental formation. Successful implantation necessitates a receptive endometrium, a normal and

functional embryo at the blastocyst stage, and a synchronized dialogue between the mother and

the developing embryo12. In addition to the well-characterized role of sex steroids, the complexity

of blastocyst implantation and placentation is exemplified by the role played by a number of

cytokines  and  growth  factors  in  these  processes.  Indeed,  the  process  of  implantation  is

orchestrated by hormones like sex steroids, and hCG; growth factors such as TGF-B, HB-EGF,

IGF-1;  cytokines as Leukemia Inhibitory Factor , Interleukin-6 and Interleukin -11; adhesion

molecules including  L-selectin and  E-cadherin ,the extracellular matrix (ECM) proteins, and

prostaglandins12.
Embryonic  implantation  is  initiated  by  the  recognition  and  adhesion  between  the  blastocyst

surface and the uterine endometrial epithelium. Adhesion occurs when a free-floating blastocyst

comes into contact with the endometrium during the ‘receptive window’ in which it is able to

respond to the signals from the blastocyst. This contact is then stabilized in a process known as

adhesion in which the trophoblast cells establish contact with the micro protrusions present on the

surface of the endometrium known as pinopodes13. The last step of implantation is the invasion

process,  which  involves  penetration  of  the  embryo  through  the  luminal  epithelium into  the

endometrial stroma; this activity is mainly controlled by the trophoblast.
The trophoblast lineage is the first to differentiate during human development, at the transition

between  morula  and  blastocyst.  Initially,  at  day  6  to  7  post-conception,  a  single  layer  of

mononucleated trophoblast cells surrounds the blastocoel and the inner cell mass. At the site of

attachment and direct contact to maternal tissues, trophoblast cells fuse to form a second layer of

postmitotic multinucleated syncytiotrophoblast14. Once formed, the syncytiotrophoblast grows by

means of steady incorporation of new mononucleated trophoblast cells from a proximal subset of

stem cells located at the cytotrophoblast layer15.
Tongues of syncitiotrophoblast cells begin to penetrate the endometrial cells and gradually the

embryo is embedded into the stratum compactum of the endometrium. A plug of fibrin initially

seals the defect in the uterine surface, but by days 10 to 12 the epithelium is restored16. Only at

around the 14th day mononucleated cytotrophoblasts break through the syncytiotrophoblast layer

and begin  to  invade the uterine  stroma at  sites  called trophoblastic  cell  columns.  Such cells

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.486v1 | CC-BY 4.0 Open Access | rec: 4 Sep 2014, publ: 4 Sep 2014

P
re
P
ri
n
ts



constitute the extravillous trophoblast,  and have at  least  two main subpopulations: interstitial

trophoblast, comprising all those extravillous trophoblast cells that invade uterine tissues and that

are not located inside vessel walls and lumina; and  endovascular trophoblast, located inside the

media or lining the spiral artery lumina and partly occluding them (sometimes this subtypes is

further subdivided into intramural and endovascular trophoblast)16.
At  a  molecular  level,  trophoblast  adhesion  from  the  stage  of  implantation  onwards  is  an

integrin-dependent  process17,  18 that  takes  place  in  a  chemokine-  and  cytokine-  rich

microenvironment  analogous  to  the  blood-vascular  interface.  Of  note,  in  human,  uterine

expression  of  chemokines  is  hormonally  regulated  and  the  blastocyst  expresses  chemokine

receptors.  In  addition,  oxygen  tension  plays  an  important  role  in  guiding  the  differentiation

process that leads to cytotrophoblast invasion to the uterus19, 20.

3.2  What  is  the  role  of  heparin  and  heparin  derived  molecules  in  the  process  of

implantation? 

Heparin and heparin derived molecules influence all stages of implantation. This anticoagulant

has an effect on the expression of adhesion molecules, matrix degrading enzymes and trophoblast

phenotype and apoptosis (see table 2).  

3.2.1 Selectins and Cadherins

Selectins and cadherins families are the main adhesion molecules investigated with regard to the

implantation process. Selectins are a group of three carbohydrate-binding proteins that are named

following the cell type expressing them (E- endothelium, P- platelets, and L- leucocytes):  E-

selectin is expressed on the endothelial surface; P-selectin on the surface of activated platelets;

and L-selectin on lymphocytes, where it plays an essential role in the homing mechanism of these

cells21, 22. The selectins adhesion system may constitute an initial step in the implantation process.

Indeed, L-selectin is strongly expressed on the blastocyst surface while, during the window of

implantation, there is an upregulation in the decidual expression of the selectin oligosaccharide-

based  ligands,  predominantly  on  endometrial  luminal  epithelium23.  This  may  assist  in  the

blastocyst decidual apposition during the implantation process.
The effect of heparin on selectins during implantation is unclear.  Due to its high density in

negatively charged sulfates and carboxylates, heparin is able to bind the two binding sites of the

natural ligand of selectin molecules (P and L-selectins) (one for the sialyl Lewis X moiety and

another for the tyrosine sulfate-rich region of its native ligand P-selectin glycoprotein ligand-1

[PSGL-1]),  and the number of sites bonded is  dependent on the length of the heparin chain.

Evidence in support  is presented by the study of Stevenson et al24 who investigated the effect of
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different  unfractionated  heparin  and  LMWH  on  selectin  molecules  in  cancer  cell  lines.

Tinzaparin, with 22% to 36% of fragments greater than 8 kDA, significantly impaired L-selectin

binding to its ligand; whereas enoxaparin, with 0% to 18% fragments greater than 8 kDa, did not

affect L-selectin expression24. Thus, heparins with high proportion of fragments longer than 8kDa

may reduce inflammatory cell adhesion and homing, on the other hand they may affect blastocyst

adhesion by blocking selectins ligand binding sites.   
Cadherins are a group of cell adhesion proteins that mediate Ca2+-dependent cell–cell adhesion, a

fundamental  process  required  for  blastocyst  implantation  and  embryonal  development25.

E- cadherin plays an important role in maintaining cell adhesion. In cancer cells, the reduction of

E-cadherin  expression  promotes  acquisition  of  invasive  phenotype.  Interestingly,  gestational

trophoblastic diseases (choriocarcinoma and complete hydatidiform mole) that are characterized

by invasive trophoblast behavior has a lower E-cadherin trophoblastic expression than that of

first-trimester  placenta26.  In  contrast,  the  trophoblast  expression  of  E-cadherin  is  higher  in

placentas of patients with preeclampsia, than in those of normal pregnant women27. The effect of

heparin on    E-cadherin expression was studied by Erden and coworkers28, who randomly treated

female rats with different heparins (UFH, enoxaparin, and tinzaparin) during the preconceptional

period, and examined E-cadherin expression in tissue sections of placenta and decidua from the

different groups. The group treated by UFH had a lower E-cadherin placental staining than other

study groups. In addition, the decidual staining score of this molecule was lower both in the UFH

and Enoxaparin groups in comparison to controls and rats treated with Tinzaparin. Therefore,

there  is  evidence  to  support  the  effect  of  heparins  on  trophoblast  invasiveness  through   E-

cadherin  expression,  providing  a  possible  mechanism  by  which  heparin  could  promote

trophoblast cell differentiation and motility.

3.2.2 Heparin binding EGF-like growth factor 

Heparin-binding EGF-like growth factor (HB-EGF) is a 76–86 amino acid glycosylated protein

that was originally cloned from macrophage-like U937 cells. It is a member of the epidermal

growth factor (EGF) family that stimulates growth and differentiation. HB-EGF utilizes various

molecules as its “receptors”. The primary receptors are in the ErbB (also named HER) system,

especially ErbB1 and ErbB4, human tyrosine kinase receptors. HB-EGF is initially synthesized

as a transmembrane precursor protein, similar to other members of the EGF family of growth

factors. The membrane-anchored form of HB-EGF (pro HB-EGF) is composed of a pro domain

followed  by  heparin-binding,  EGF-like,  juxtamembrane,  transmembrane  and  cytoplasmic

domains.  Subsequently, proHB-EGF is  cleaved at  the cell  surface by a protease to yield the
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soluble form of HB-EGF (sHB-EGF) using a mechanism known as ectodomain shedding. sHB-

EGF is a potent mitogen and chemoattractant for a number of different cell types. Studies of mice

expressing  non-cleavable  HB-EGF  have  indicated  that  the  major  functions  of  HB-EGF  are

mediated by the soluble form29.
Heparin-binding  epidermal-growth-factor-like  growth  factor  (HB-EGF)  accumulates  in  the

trophoblast30 throughout  the  placenta31.  Multiple  roles  for  heparin  binding  epidermal  growth

factor-like  growth  factor  are  suggested  by  its  cell  specific  expression  during  the  human

endometrial cycle and early placentation, and high levels expression in the first trimester32.
The membrane active precursor functions as a justacrine growth factor and cell-surface receptor.

It  has  been  demonstrated  to  promote  adhesion  of  the  blastocyst  to  the  uterine  wall  in  a

mouse-in-vitro-  system33 suggesting  a  role  for  HB-EGF in  embryo  attachment  to  the  uterine

luminal epithelium. As stated above, the majority of HB-EGF’s biological functions are mediated

by its mature soluble form. A major role in early stages of placentation is represented by cellular

differentiation and consequent invasion of the uterine wall and vascular network.
Several changes occur in the expression of adhesion molecules as cytotrophoblast differentiation

proceeds,  which  results  in  pseudovasculogenesis  or  the  adaptation  by  cytotrophoblast  of  a

molecular phenotype that mimics endothelium18. For example, during extravillous differentiation

in vivo, integrin expression is altered from predominantly α6β4 in the villous trophoblast to α1β1

in  cytotrophoblasts  migrating  throughout  the  decidual  stroma17 or  engaging  in  endovascular

invasion18.
Leach  et  al34 demonstrated  the  role  of  HB-EGF  in  regulating  the  conversion  of  human

cytotophoblasts into  invasive phenotype and the motility of these cells. This study demonstrated

the ability of HB-EGF to induce ‘integrin switching’ through intracellular signaling induced by

ligation of HER tyrosine kinases,  alters integrin gene expression to stimulate cytotrophoblast

invasion at a molecular level.
In addition to its effect on the invasive trophoblast phenotype, HB-EGF can affect cell motility.

Indeed, cytotrophoblasts motility was specifically increased by each of the EGF family members

examined. The expression by cytotrophoblasts of each growth factor, as well as their receptors,

suggests the possibility of an autocrine loop that advances cytotrophoblast differentiation to the

extravillous phenotype.
The ability of HB-EGF molecule to prevent hypoxic induced apoptosis plays a fundamental role

in  early  stages  of  placentation.  During  the  entire  1st trimester,  the  organogenesis  period,

embryonic development takes place in a low O2 tension environment. Oxygen concentration is

relatively low (18mmHg or 2%) at the human implantation site through the first 10 weeks of

gestation  due to  occlusion  of  the  uterine  spiral  arteries  by extravillous  trophoblasts.  Oxygen
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availability serves  as  a  developmental  cue to  regulate  trophoblast  proliferation.  Experimental

evidence suggests that this environment is essential for both fetal and placental development, and

premature  exposure  to  normal  oxygen  concentrations  is  associated  with  increased  rate  of

pregnancy complications such as preeclampsia, IUGR and miscarriage35. 
First  trimester  human  cytotrophoblast  cell  survival  at  2%  O2  is  dependent  on  HB-EGF

signaling36. Indeed, HB-EGF expression is up regulated by hypoxia, and it functions as a mitogen

and potent cell survivor factor during stress. The mechanism proposed for this effect of HB-EGF

is as follows: sHB-EGF is released by activated metalloproteinases that cleave the extracellular

domain of pro- HB-EGF.    sHB-EGF binds to HER1 or HER4 through its EGF-like domain and

to heparin sulfate proteoglicans (HSPG) through its heparin binding domain, and this is followed

by receptor homo- or heterodimerization with other members of the HER family. Subsequent

transphosphorylation of HER cytoplasmatic domains at tyrosine residues initiates a downstream

signaling that increases proHB-EGF accumulation and inhibits apoptosis. This positive feedback

loop upregulates HBEGF secretion to achieve extracellular HB-EGF levels sufficient to maintain

cell survival at 2% O236.
As a result HB-EGF has a fundamental role in successful pregnancies. This molecule mediates a

vast number of functions beginning from the earliest  stages  of pregnancy;  from adhesion,  to

implantation  and  invasion,  successful  placentation,  and  protection  from  hypoxic  induced

aptoptosis from early stages and up to term. The effect of heparin on this molecule is currently

being  studied.  Di  Simone  et  al37 demonstrated  that  LMWH  induced  an  increased  decidual

expression  and  secretion  of  HB-EGF  in  a  dose-dependent  manner.  In  a  different  study  by

D’ippolito et al38 demonstrated that LMWH induces activation of Activator Protein-1 (AP-1), a

DNA-binding transcription factor which regulates the expression of HB-EGF. Activated AP-1

translocates to the nucleus and binds the promoter region of  HB-EGF gene thus enhancing its

protein expression. Hills and Abrahams39 demonstrate that heparin is capable of activating the

EGF receptor in primary villous trophoblast. 
Thus, we propose that the accumulating evidence suggests that the beneficial effect of heparin in

preventing placental mediated pregnancy complications may derive from its effect on HB-EGF

expression and concentration, especially during the first trimester.  

3.2.3 Matrix metalloproteinases

In  addition  to  the  adhesion  molecules,  matrix  metalloproteinases  (MMPs)  are  an  important

component in the process of blastocyst implantation. MMPs are a group of matrix degrading

enzymes which are secreted as inactive zymogen and must be cleaved to become active40. Among

the members of the MMP family, MMP-2 and MMP-9 type IV collagenases were suggested to be
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involved in trophoblast invasion into endometrial tissues41. Indeed, the profile of pro-MMP 2 and

9 secretion differs during the stages of trophoblast invasion and implantation, and differences in

these zymogens expression were found between 6-8 and 9-12 weeks of gestation in extravillous

cytotrophoblast  cells42.   Di  Simone  et  al  investigated  the  effect  of  LWMH  specifically  on

placental MMPS43, and the degrading capacity of the trophoblast cells. This effect is mediated by

heparins action on both metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). Heparin

increased both the MMPs concentration and activity by affecting their transcription, conversion

of the proenzyme into the active form, and reduction of the synthesis of the specific inhibitors

TIMPs (both the mRNA and protein levels) in a dose dependent manner43. 

3.3 Immunologic and anti-inflammatory effects of heparins

Immune tolerance of the allogeneic fetus is mandatory for a successful pregnancy outcome44.

Both innate and adaptive immune responses contribute to a maternal fetal cross-talk that balances

the anti- and pro-inflammatory processes in the feto-maternal infterface45, 46. Maternal blood is in

direct contact with the syncytiotrophoblast at the intervillous space and in the decidual tissue

where  the  extravillous  trophoblast  anchors  the  placenta,  and  further  differentiate  into

endovascular  trophoblast  that  invades spiral  arteries and remodels the vessel  walls45,  47,  48.   A

successful pregnancy results from the participation of all the components of the immune system

including:  MHC  class  I  molecules,  hormones,  complement  regulatory  proteins,

immunoregulatory  molecules  (i.e.  indolamine  2,3-dioxygenase,  Fas/Fas-  Ligand,  IL-10),

regulatory  T  cells  (CD4+  CD25+  Foxp3+),  regulatory  macrophages,  and  growth  factors

expressed at the placental–decidual interface49-56. These mechanisms act in concert to sustain the

maternal tolerance to the semi-allogenic placenta and fetus57.  In addition to its well-understood

anticoagulant activity, heparin also has an impact on the immune system58-60. The main known

effect  of  heparin  is  on  the  migration  and  adhesion  of  leukocytes  during  an  inflammatory

response24.
The anti-inflammatory effects of heparin are derived from several mechanisms: 1) the molecular

structure of heparin is so that upon its bounding to the endothelial cells of blood vessels it creates

a negatively charged surface that is facing the vessel lumen. These negatively charge molecules

repulse the negatively charge leukocytes and prevent their adhesion to the endothelium (heparan

sulfate molecules that are expressed on leukocytes surface are responsible for the negative charge

of these cells); 2) heparin is a large molecule that can bind a substantial number of proteins which

play  an  important  role  in  inflammation  including  selectins  (L-  selectin61 and  P-selectin

molecules62) and  integrins. The B2-integrin  adhesion  molecule  CD11b/CD18,  also  known as
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Macrophage   antigen  1  (MAC1),  is  a  member  of   a  subfamily  of  related  cell-surface

glycoproteins  that  coordinate  adhesive  functions  including  leukocyte  migration63.   Mac1  is

expressed on myeloid cells and binds to molecules as intercellular adhesion molecule 1 (ICAM1),

fibrinogen, iC3b, and factor Xa. The heparin-Mac1 bond interferes with myeloid cell adhesion

and  transmigration64.  Heparin  also  binds  to  platelet/endothelial  cell  adhesion  molecule  1

(PECAM1), a member of the Ig superfamily, expressed on a variety of cells such as platelets,

endothelia, monocytes, neutrophils, T-cell subsets and granulocyte/macrophage precursors.  This

molecule is  involved in  homotypic  and heterotypic  cellular  adhesion and plays  a  role  in  the

transmigration of inflammatory cells through the endothelial wall. Heparin is capable of binding

PECAM1 and interfering with its action65, reducing by that the effectiveness of the inflammatory

response.
The anti-inflammatory properties  of  LMWH have been demonstrated  within  in  vivo models.

Indeed, Wang et al66 investigated the effects of LMWH on dextran sulfate sodium (DSS)-induced

colitis in a mice model. The authors reported that mice which were treated with LMWH had a

significant decrease in the expression of both IL-1β and of IL-10 mRNA, leading to a down

regulation of inflammatory cytokines production. Of interest, LMWH also imitate the function of

Syndecan-1           (a protein that is inversely correlated to the mRNA expression of IL-1β in the

intestinal mucosa of   DSS-induced colitis), a protein which plays an important role in promoting

wound repair, maintaining cell morphogenesis, and mediating inflammatory responses67 by aiding

the clearance of pro-inflammatory chemokines. In addition Li et al68 found that treatment with

UFH can attenuate inflammatory responses of lypopolisaccharide induced acute lung injury in

rats. The mechanisms by which UFH exerts its anti-inflammatory effect seem to correlate with its

inhibition of IL-1ß and IL-6 production via inactivation of the NF-κB pathways.
In humans the anti-inflammatory activity of heparin has been evidenced by small clinical trials in

patients suffering from a range of inflammatory diseases69,  including rheumatoid arthritis and

bronchial asthma. Remission of disease has been described in nine of ten patients with refractory

ulcerative colitis treated with combined heparin and sulphasalazine69. A subjective improvement

of asthma symptoms using intravenous heparin is described70, 71, while other studies with inhaled

heparin demonstrated reduced bronchoconstrictive responses in patients with exercise-induced

asthma72, 73.
The clinical rationale for the use of heparin in the treatment of inflammatory diseases may be

based on the fact that many of the molecular mechanisms involved in tumor metastasis are the

same responsible for cell recruitment in inflammation; and heparin has been successful in treating

both conditions74.
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4. Conclusion 

Heparins  play  a  role  in  embryonic  implantation  and  placentation  and  contribute  to  the

development of a normal pregnancy. This effect is gained through the interaction of heparins with

coagulation  factors,  anticoagulation  proteins,  their  effect  on  the  expression  of  adhesion

molecules,  matrix degrading enzymes and trophoblast phenotype and apoptosis,  all  important

components in the process of embryonic implantation and placentation.
Moreover, in addition to their physiologic effects, Heparins can be considered as molecules with

still some stories to tell. Indeed, their main function is as anticoagulant medication. However,

there is increasing evidence, as described in the present review, suggesting that these drugs may

have an  anti-  inflammatory effect  and they affect  the  activation  of  the  immunologic  system

(principally acting on leukocyte migration and adhesion processes).
The  understanding  of  these  concepts  may  assist  us  in  tailoring  the  use  of  heparins  for  the

prevention and treatment of pregnancy complications in a more targeted manner. 
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Fig. 1. Antithrombin III after conformational change induced by heparin binding. Reproduced

with permission from Whisstoch JC, Pike RN, Jin L, Skinner R, et al. J Mol Biol. 2000; 301:128
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Fig.  2.  Mechanisms  of  interaction  between  heparin,  antithrombin,  thrombin  and  factor  Xa.

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J:

Harrison’s Principles of Internal Meicine, 17th Edition
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Table 1(on next page)

Table 1.

Comparison among low molecular weight heparin preparations (From Weitz JI. Low-

molecular-weight heparins. N Engl J Med 1997;337:688-98. With permission)
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Table 1. Comparison among low molecular weight heparin preparations (From WEITZ JI. 

Low-molecular-weight heparins. N Engl J Med 1997;337:688-98. With permission)

PREPARATION METHOD OF PREPARATION MEAN MOLECULAR

WEIGHT

ANTI-XA:ANTI-IIA

RATIO*

Ardeparin (Normiflo) Peroxidative depolymerization 6000 1.9

Dalteparin (Fragmin) Nitrous acid depolymerization 6000 2.7

Enoxaparin (Lovenox) Benzylation and alkaline depolymerization 4200 3.8

Nadroparin (Fraxiparine) Nitrous acid depolymerization 4500 3.6

Reviparin (Clivarine) Nitrous acid depolymerization, chromatographic 

purification

4000 3.5

Tinzaparin (Innohep) Heparinase digestion 4500 1.9

*The ratios were calculated by dividing the anti–factor Xa (anti-Xa) activity by the antithrombin (anti-IIa) activity. The ratios are based on 

information provided by the manufacturers.
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Table 2(on next page)

Table 2

Overview of molecules involved in the process of implantation, trophoblast development and 

placentation, and e�ect of heparin on these molecules
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Table 2. Overview of molecules involved in the process of implantation, trophoblast 

development and placentation, and effect of heparin on these molecules

Molecule Site of expression Activity Effect of Heparin

Anti-thrombin III Maternal circulation 

Trophoblast 

Inactivation of  coagulation factors, 

including mainly thrombin (factor IIa), 

factor Xa, and factor IXa

Conformational change in AT-III that 

accelerates its ability to inactivate the 

coagulation factors

Selectins (E- P- and L- 

selectins) 

E-selectin endothelium, P-

selectin platelets, and L-

selectin leucocytes and 

blastocyst surface.

Cell adhesion and homing Interference with inflammatory cells 

adhesion and homing but probable 

interference with blastocyst decidual 

adhesion

Cadherins Trophoblast, placenta, 

decidua

Cell adhesion (invasive phenotype 

acquired in case of reduction of 

expression)

Reduction of expression

Heparin-binding EGF-

like growth factor (HB-

EGF)

Trophoblast and placenta 1)potent mitogen and chemoattractant in

its soluble form 

promoter of adhesion of the blastocyst to

the uterine wall in a mouse-in-vitro- 

system

2)regulation of the conversion of human 

cytotophoblasts into  invasive phenotype

and influence on the motility of these 

cells

3)prevention of hypoxic induced 

apoptosis

Increased decidual expression and 

secretion of HB-EGF 

Matrix 

metalloproteinases 

(MMPs)

Soluble form Involvement in trophoblast invasion into

endometrial tissues

Increased expression

Tissue inhibitors of 

metalloproteinases 

(TIMPs)

Soluble form Inhibition of metalloproteinases and 

their function

Reduction of expression

Macrophage antigen 1 

(Mac1)

Surface of myeloid cells Coordination of adhesive functions of  

leukocyte and their migration

Interference with myeloid cell adhesion 

and transmigration

Platelet/endothelial cell

adhesion molecule 1 

(PECAM1)

Surface of platelets, 

endothelia, monocytes, 

neutrophils, T-cell subsets 

and 

granulocyte/macrophage 

precursors

transmigration of inflammatory cells 

through the endothelial wall

Interference with inflammatory cells 

transmigration
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