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Culture-independent detection and characterisation of
Mycobacterium tuberculosis and M. africanum in sputum
samples using shotgun metagenomics on a benchtop
sequencer

Tuberculosis remains a major global health problem. Laboratory diagnostic methods that
allow effective, early detection of cases are central to management of tuberculosis in the
individual patient and in the community. Since the 1880s, laboratory diagnosis of tuberculosis
has relied primarily on microscopy and culture. However, microscopy fails to provide species-
or lineage-level identification and culture-based workflows for diagnosis of tuberculosis
remain complex, expensive, slow, technically demanding and poorly able to handle mixed
infections. We therefore explored the potential of shotgun metagenomics, sequencing of DNA
from samples without culture or target-specific amplification or capture, to detect and
characterise strains from the Mycobacterium tuberculosis complex in smear-positive sputum
samples obtained from The Gambia in West Africa. Eight smear- and culture-positive sputum
samples were investigated using a differential-lysis protocol followed by a kit-based DNA
extraction method, with sequencing performed on a benchtop sequencing instrument, the
lllumina MiSeq. The number of sequence reads in each sputum-derived metagenome ranged
from 989,442 to 2,818,238. The proportion of reads in each metagenome mapping against
the human genome ranged from 20% to 99%. We were able to detect sequences from the M.
tuberculosis complex in all eight samples, with coverage of the H37Rv reference genome
ranging from 0.002X to 0.7X. By analysing the distribution of large sequence polymorphisms
(deletions and the locations of the insertion element IS6710) and single nucleotide
polymorphisms (SNPs), we were able to assign seven of eight metagenome-derived

genomes to a species and lineage within the M. tuberculosis complex. Two metagenome-
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derived mycobacterial genomes were assigned to M. africanum, a species largely confined to
West Africa; the others that could be assigned belonged to lineages T, H or LAM within the
clade of “modern” M. tuberculosis strains. We have provided proof of principle that shotgun
metagenomics can be used to detect and characterise M. tuberculosis sequences from
sputum samples without culture or target-specific amplification or capture, using an
accessible benchtop-sequencing platform, the lllumina MiSeq, and relatively simple DNA
extraction, sequencing and bioinformatics protocols. In our hands, sputum metagenomics
does not yet deliver sufficient depth of coverage to allow sequence-based sensitivity testing; it
remains to be determined whether improvements in DNA extraction protocols alone can
deliver this or whether culture, capture or amplification steps will be required. Nonetheless,
we can foresee a tipping point when a unified automated metagenomics-based workflow
might start to compete with the plethora of methods currently in use in the diagnostic

microbiology laboratory.
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Introduction

Tuberculosis (TB) is an infection, primarily of the lungs, caused by Mycobacterium tuberculosis
and related species within the M. fuberculosis complex. TB remains a major global health
problem, second only to HIV/AIDS in terms of global deaths from a single infectious agent—
according to estimates from the World Health Organisation (WHO), 8.6 million people
developed TB in 2012 and 1.3 million died from the disease, including 320,000 deaths among
HIV-positive individuals (WHO, 2013).

Central to management of TB in the individual patient and in the community are laboratory
diagnostic methods that allow effective, early detection of cases. Since the pioneering work of
Koch and Ehrlich in the 1880s, laboratory diagnosis of pulmonary TB has largely relied on acid-
fast staining of sputum samples and culture on selective laboratory media for the isolation of
mycobacteria (Ehrlich, 1882; Koch, 1882). Microscopy is still generally used as a first-line
diagnostic approach and as the only laboratory approach in resource-poor settings (Drobniewski
et al., 2012) Smear-positivity is also used as a guide to infectivity and responsiveness to
treatment. However, microscopy fails to provide species-level identification of acid-fast bacilli
(Maiga et al., 2012). Such identification is important in guiding treatment, because pathogenic
mycobacteria from outside the M. tuberculosis complex often fail to respond to conventional
anti-TB treatment (Maiga et al., 2012). Furthermore, there are important differences in response
to treatment even within the M. tuberculosis complex. M. bovis and M. canettii fail to respond to
the first-line anti-tuberculous agent pyrazinamide—as a result, failure to recognise M. bovis as a
cause of TB can have fatal consequences (Allix-Beguec et al., 2010). In addition, M. canettii
appears to show decreased susceptibility to a promising new anti-TB drug candidate, PA-824
(Feuerriegel et al., 2011; Feuerriegel et al., 2013).

There is also increasing recognition of lineage- or species-specific differences in pathogen
biology within the M. tuberculosis complex. M. africanum, which is largely restricted to West
Africa, where it causes up to half of human pulmonary TB, is associated with less transmissible
and less severe infection than typical strains of the “modern” M. tuberculosis clade (de Jong et
al., 2010b). Similarly, M. canettii, restricted to the horn of Africa, and M. bovis, both usually a
spillover from animals, transmit relatively poorly from human to human (Fabre et al., 2010;
Gonzalo-Asensio et al., 2014). By contrast, the Beijing-W lineage of M. tuberculosis sensu
stricto, which has spread around the world in recent decades, appears to cause more aggressive
disease and is more likely to become drug-resistant (Nicol and Wilkinson, 2008; Borgdorff and
van Soolingen, 2013).

Owing to the slow growth rate of the M. tuberculosis complex, traditional culture-based diagnosis
of TB typically takes several weeks or even months. Similarly, conventional phenotypic
mycobacterial sensitivity testing remains slow and may not be reliable for all classes of anti-
tuberculous agent. In recent decades, automated detection of growth in liquid culture, through
e.g. the mycobacteria growth indicator tube (MGIT), has led to improvements in the speed and
ease of diagnosis, so that diagnosis by culture is now often possible within a fortnight (Pfyffer et
al., 1997).

However, in comparison to most other laboratory procedures, culture-based diagnostic workflows
for TB remain complex, expensive, slow, technically demanding and require expensive
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o

57 biocontainment facilities. Furthermore, as isolation of mycobacteria in pure culture and

58 sensitivity testing remain onerous, in resource-poor settings these steps are omitted and, even in
59 well-resourced laboratories, typically only one or a few single-colony subcultures are followed up
60 from each sample. This leads to under-recognition of mixed infections, where more than one

61 strain from the M. tuberculosis complex is present or where TB co-occurs with infection by other
62 mycobacteria (Shamputa et al., 2004; Warren et al., 2004; Cohen et al., 2011; Wang et al., 2011).
63 This can lead to difficulties in treatment when strains or species susceptible to conventional anti-
64 tuberculous treatment co-exist with resistant strains or species within the same patient (Hingley-
65 Wilson et al., 2013).

66  As an alternative to culture and phenotypic sensitivity testing, the WHO has recently

67 recommended a new, rapid, automated, real-time amplification-based TB diagnostic test, the
68 Xpert MTB/RIF assay (WHO, 2011). This system allows simultaneous detection of M.

69 tuberculosis and rifampicin-resistance mutations in a closed system, suitable for use in a simple
70  laboratory setting, while providing a result in less than two hours directly from sputum samples
71  (Helb et al., 2010). However, this approach performs suboptimally on mixed infections, fails to
72 provide the full range of clinically relevant information (e.g. speciation, susceptibility to other
73  agents) and, in sampling only a small fraction of the genome, affords no insight into pathogen
74  biology, evolution, and epidemiology (Zetola et al., 2014).

75 Epidemiological investigation of clinical isolates from the M. tuberculosis complex plays an

76  important role in the management and control of TB. A range of molecular typing schemes have
77  been developed, including IS6710 fingerprinting, mycobacterial interspersed repetitive unit-

78  variable number of tandem repeat (MIRU-VNTR) and spoligotyping (Jagielski et al., 2014).

79  These approaches can be valuable in distinguishing relapse from re-infection and in recognising
80 mixed infections within the individual patient, as well as identifying sources of infection,

81 detecting outbreaks and tracking spread of lineages within a community. However, as these

82 approaches usually require isolation of the pathogen in pure culture, clinically relevant typing
83 data is typically not available until 1-2 months after collection of a sputum sample.

84  Over the past fifteen years, whole-genome sequencing has been applied to a steadily wider range
85 of isolates from M. tuberculosis and related species (Cole et al., 1998; Brosch et al., 2002;

86 Gutierrez et al., 2009). These efforts have shed light on the evolution and population structure of
87  this group of pathogens, showing that members of the M. tuberculosis complex are

88 reproductively isolated, engaging in almost no horizontal gene transfer and showing a clonal

89 population structure in which lineages diverge through a limited set of genetic changes, including
90 point mutations, deletions, movement of insertion elements and rearrangements within repetitive
91 regions. Whole-genome analyses allow isolates to be assigned to a range of species, global

92 lineages and sub-lineages on the basis of single nucleotide polymorphisms (SNPs) and large

93  sequence polymorphisms (typically deletions, which are often termed “regions of difference” or
94  RDs, and insertion of the transposable element [S6110).

95 Inrecent years, the availability of rapid, cheap high-throughput sequencing and, particularly, the
96 arrival of user-friendly benchtop sequencing platforms, such as the Illumina MiSeq (Loman et al.,
97 2012a; Loman et al., 2012b), have led to the widespread use of whole-genome sequencing in TB
98 sensitivity testing and epidemiology, with adoption of whole-genome sequencing for routine use
99 in some TB reference laboratories (Gardy et al., 2011; Koser et al., 2012; Roetzer et al., 2013;
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100 Walker et al., 2013; Walker et al., 2014). However, high-throughput sequencing has not yet been

101  used as a diagnostic tool for TB, because it has been assumed that one needs to subject clinical
102  samples to prolonged culture before sufficient mycobacterial DNA can be obtained for whole-

103  genome sequencing and analysis. Some researchers (Koser et al., 2013) have recently challenged

104 this assumption by obtaining mycobacterial genome sequences from DNA extracted directly from
105 athree-day MGIT culture of a sputum sample. However, this begs the questions: why bother with
106  culture; why not obtain mycobacterial genome sequences directly from a sputum sample, without

107  culture?

108 Shotgun metagenomics—that is the unbiased sequencing en masse of DNA extracted from a
109 sample without target-specific amplification or capture—has provided a powerful assumption-
110 free approach to the recovery of bacterial pathogen genomes from contemporary and historical
111 material (Pallen, 2014). This approach allowed an outbreak strain genome to be reconstructed

112 from stool samples from the 2011 Escherichia coli O104:H4 outbreak and has proven successful
113 in obtaining genome-wide sequence data for Borrelia burgdorferi, M. leprae, M. tuberculosis and
114 Brucella melitensis from long-dead human remains (Keller et al., 2012; Chan et al., 2013; Loman

115 etal., 2013; Schuenemann et al., 2013; Kay et al., 2014). Metagenomics has recently provided

116 clinically useful information in cases of chlamydial pneumonia and neuroleptospirosis (Fischer et

117 al., 2014; Wilson et al., 2014).

118 Here, we explore the potential of metagenomics in detecting and characterising Mycobacterium
119  tuberculosis and M. africanum strains in smear-positive sputum samples from patients from The

120 Gambia in West Africa.
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Materials and Methods

Microbiological analysis and sample selection

Eight smear- and culture-positive sputum samples were selected for metagenomic analysis from
specimens collected in May 2014 under the auspices of the Enhanced Case Finding project
(http://clinicaltrials.gov/show/NCT01660646). The joint Gambia Government/MRC Ethics
Committee approved this investigation under reference SCC 1232 and informed written consent
was obtained for all participants. The sputum samples were collected by expectoration into a
sterile cup and transported on ice to the TB laboratory at the MRC Gambia unit within 24 hours
of collection.

Prior to selection for metagenomic investigation, an aliquot of each sample was subjected to
microbiological analysis. These specimens were decontaminated by the sodium hydroxide and N-
acetyl-1-cysteine (NaOH/NALC) method, with final concentrations of 1% for NaOH, 1.45%
sodium citrate and 0.25% for NALC. Sputum smears were prepared by centrifuging 3-10 ml
decontaminated sputum and then resuspending pellets in 2ml buffer. Smears were stained with
auramine-O and then examined by fluorescence microscopy. Positive smears were confirmed by
Ziehl-Neelsen staining. 20-100 fields were examined at 1000X magnification and smear-positive
samples were scored quantitatively as 1+, 2+ or 3+ (Kent and Kubica 1985).The presence of M.
tuberculosis complex in samples was confirmed by culture in the BACTEC MGIT 960
Mycobacterial Detection System and on slopes of Lowenstein—Jensen medium. Cultured isolates
were subjected to spoligotyping as previously described (Kamerbeek et al., 1997; de Jong et al.,
2009).

DNA extraction using differential lysis

DNA extraction was performed in the TB laboratory in the MRC Unit in The Gambia. Aliquots
of unprocessed sputum were subjected to a differential lysis protocol, modified from a published
method for metagenomic analysis of sputum from cystic fibrosis patients (Lim et al., 2012). In
this method, human cells are subjected to osmotic lysis and then the liberated human DNA is
removed by DNase treatment. To monitor contamination within the laboratory, we processed two
negative-control samples containing only sterile water via the same method.

At the start of the differential lysis protocol, a ImL aliquot of whole sputum was mixed with 1
mL decongestant solution (0.25g N-acetyl L-cysteine, 25mL 2.9 % sodium citrate, 25 mL water)
until liquefied and incubated for 15 min at room temperature. 48mL phosphate-buffered solution
(pH 7) was added and mixed thoroughly, before centrifugation at 3220 x g for 20 min. The pellet
was resuspended in 10 mL sterile deionised water and incubated at room temperature for 15 min,
so that human cells undergo osmotic lysis, while mycobacterial cells remain intact. The
centrifugation and resuspension-in-water steps were repeated before a final round of
centrifugation. The pellet was then treated with the RNase-Free DNase Set (Qiagen), adding 25
uL DNase I (2.73 Kunitz units per uL), 100 uL RDD buffer and 875 pL sterile water. The sample
was then incubated at room temperature for 2 hours, with repeated inversion of the tubes. The
sample underwent two rounds of centrifugation and resuspension of the pellet in 10 mL TE buffer
(0.01M Tris-HCI, 0.001 M EDTA, pH 8.0). Finally, before DNA extraction began, the sample
was centrifuged and the pellet was resuspended in 500 uL TE buffer. On completion of the
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differential lysis protocol, samples underwent heat treatment at 75 °C for 10 min, followed by
DNA extraction using a commercial kit, the NucleoSpin Tissue-Kit (Macherey-Nagel, Duren,
Germany), according to the manufacturer’s protocol for hard-to-lyse bacteria.

Library preparation and sequencing

DNA samples were sent to Warwick Medical School, Coventry, UK, where all further laboratory
and bioinformatics analyses were performed. The concentration of DNA present in each extract
was determined using the Qubit 2.0 fluorometer and Qubit® dsDNA Assay Kits according to the
manufacturer’s protocol (Invitrogen Ltd., Paisley, United Kingdom), using the HS (high-
sensitivity) or BR (broad-range) kits, depending on the DNA concentration. There was no
detectable DNA in the negative control samples with the HS kit, which is sensitive down to 10
pg/uL. DNA extracts were diluted to 0.2 ng/puL and were then converted into sequencing
libraries, using the [llumina Nextera XT sample preparation kit according to the manufacturer’s
instructions (Illumina UK, Little Chesterford, United Kingdom). The libraries were sequenced on
the Illumina MiSeq at the University of Warwick.

Identification of human and mycobacterial sequences

Sequence reads were mapped against the genome of Mycobacterium tuberculosis H37TRv
(GenBank accession numbers AL 123456) and the human reference genome hgl19 (GenBank
Assembly ID: GCA_000001405.1), using Bowtie2 version 2.1.0 (Langmead and Salzberg, 2012),
using relaxed and stringent protocols. The relaxed protocol exploited the option - -very -
sensitive-local. The stringent protocol allowed only limited mismatches (3 per 100 base
pairs) and soft clipping of poor quality ends, by exploiting the options - - ignore-quals
--mp 10,10 --score-min L,0,0.725 --local --ma 1.A custom-builtscript was
used to convert coverage data from the BAM files into a tab-delineated format that was then
entered into Microsoft Excel, which was then used to generate coverage plots. Metagenomic
sequence reads from this study (excluding those that mapped to the human genome) have been
deposited in the European Nucleotide Archive (project accession number pending).

Species and lineage assignment using low-coverage SNPs

For the phylogenetic analysis using SNPs, we selected representative genomes from each of the
species and major lineages within the M. tuberculosis complex that infect humans, drawing on
lineage designations reported by PolyTB. Genome sequences were taken from entries in the short
read archive ERP000276 and ERP000124 (http://www.ncbi.nlm.nih.gov/Traces/sra/). We then
mapped these genomes against M. fuberculosis H37Rv with Bowtie2 under default settings and
then called SNPs using VarScan2 (Koboldt et al., 2012). Any SNPs that fell within a set of
previously published repetitive genes were excluded from further analysis (Comas et al., 2010).
SNPs were used to construct a tree with RAXML version 7 (Stamatakis, 2014), using default
parameters with the GTR-gamma model. Reads from the metagenome from each sample were
mapped against the reference strain M. tuberculosis H37Rv using the default settings in Bowtie2
and the majority base called from each SNP position with no quality filtering. If no base was
present at the position, a gap was used. The pplacer suite of programs (Matsen et al., 2010) was
then used to assign the sequence to a species and lineage on the mycobacterial tree.
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Lineage assignment using I1S6110-insertion-site profiles

We mapped each metagenome against the sequence of 1S6/70 (Genbank accession number:
AJ242908) using Bowtie’s - - 1local option, which performs a softclipping of the mapped
sequences. We then extracted IS6110-flanking sequences by retrieving all sequences >30bp that
had that had been softclipped from the ends of the element. These sequences were then mapped
against the H37Rv genome using Bowtie2 and the coordinates of the IS67/0 insertion points
determined.

Results

Detection of the M. tuberculosis complex in sputum
samples

We obtained metagenomic sequences from eight smear- and culture-positive sputum samples.
The number of sequence reads in each sputum-derived metagenome ranged from 989,442 to
2,818,238 (Table 1). The proportion of reads from each sample mapping to the human reference
genome hgl9 varied from 20% to 99%.

Coverage from reads mapping to the genome of the M. tuberculosis reference strain H37Rv under
relaxed settings ranged from 0.009X to 1.3X (Table 2). However, we suspected that many of the
matches represented false-positives. To confirm our suspicion, we calculated the average read
depth at the positions where reads matched.

If the matches occurred because of sequence identity with conserved genes from other species,
one would expect there to be multiple reads matching each mapped position, whereas for a
shotgun library where the coverage is less than 1X, one would expect the average read depth to
be around 1. However, as we created our sequence libraries using a paired-end protocol, there
will be variable overlap between reads originating from the same DNA fragment, so one would
expect the average read depth for a genuine random shotgun under these conditions to sit between
1 and 2. However, when mapping was performed under relaxed conditions, the average read
depth was >2 in six of the eight samples and in two cases was >7 (Table 2), indicating a major
contribution from spurious matches to conserved genes.

To restrict matches to the H37Rv genome to genuine on-target alignments, we then mapped each
metagenome against the reference strain under high-stringency conditions (<3 mismatches per
100 base pairs, with soft clipping of poor quality ends). This led to a decrease in reads mapping
to H37Rv in all samples, with coverage of the H37Rv under stringent settings ranging from
0.002X to 0.7X. Nonetheless, we recovered between ~11,000 and 3 million base pairs of M.
tuberculosis sequence from our samples under such stringent conditions (Table 2). The average

read depth in the samples fell to between 1.2 and 1.9, consistent with expectations for a random
shotgun (Table 2).

Phylogenetic placement of M. tuberculosis strains using
SNPs

Conventional phylogenetic methods based on identification of trusted SNPs cannot be applied to
the kinds of low-coverage genome sequences we have obtained here. However, the technique of
“phylogenetic placement” provides an alternative solution (Matsen et al., 2010; Kay et al., 2014).
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Here, one draws on a fixed reference tree, computed from high-coverage genomes, and places the
unknown query sequence on to the tree using programs such as pplacer (Matsen et al., 2010). To
perform phylogenetic placements on our samples, we derived a set of phylogenetically
informative SNPs from representatives of the major lineages within the M. tuberculosis complex.
We then analysed reads from each of the sputum metagenomes that aligned to equivalent
positions in the H37Rv genome.

Using this approach, despite the low coverage, we could confidently assign (with a posterior
probability of >0.97), all but one of the metagenome-derived mycobacterial genomes to a species
and lineage within the M. tuberculosis complex (Figure 1). In all these cases, the conclusions
from metagenomics matched those from spoligotyping of cultured isolates (Table 3). For two of
the samples (K3, K5), the metagenome-derived genome was assigned to M. africanum clade 2,
which is consistent with the known high-prevalence of this lineage in The Gambia (de Jong et al.,
2010a). Five samples were assigned to the Euro-American lineage (also termed Lineage 4),
which sits within the clade of modern M. tuberculosis strains and which is known to be highly
prevalent in The Gambia (de Jong et al., 2010a). Phylogenetic placement allowed three of these
samples to be assigned to sub-lineage H, one to the T-clade and one to the LAM clade.

Species and lineage assignment using IS6110 insertion
sites

From four samples, we were able to retrieve information on IS6//0 insertion sites (Table 4). In
two of the three samples (K2, K4) assigned to the H clade by phylogenetic placement, we
discovered IS6110 insertion sites that had previously been reported as specific to the Haarlem or
H clade (HSI1, HSI2, HSI3), thereby confirming the SNP-based lineage assignment (Cubillos-
Ruiz et al., 2010). In the sample assigned to the LAM clade, we retrieved information on a single
156110 insertion site, which disrupts the coding sequence Rv3113. This insertion has been
reported as specific to the LAM clade (Lanzas et al., 2013), again confirming the SNP-based
lineage assignment. In one of the two samples assigned to M. africanum, we retrieved
information on a single IS6110 insertion site. However, this insertion appeared to be absent from
all other available genome-sequenced strains from the M. tuberculosis complex, so was
phylogenetically uninformative.

Discussion

Here, we have provided proof of principle that shotgun metagenomics can be used to detect and
characterise M. tuberculosis sequences from sputum samples without culture or target-specific
amplification or capture, using an accessible benchtop-sequencing platform, the Illumina MiSeq,
and relatively simple DNA extraction, sequencing and bioinformatics protocols.

There are several proven or potential advantages to metagenomics as a diagnostic approach for
pulmonary TB. By circumventing the need for culture, it could provide information more quickly
than conventional approaches. Even in this proof-of-principle study, for most samples it has
provided more detailed information than conventional approaches, including spoligotyping. In
addition, it represents an open-ended one-size-fits-all approach that could allow the reunification
of TB microbiology with other sputum microbiology, particularly as metagenomics has already
been shown to work on other respiratory tract pathogens, including bacteria and viruses (Lysholm
et al., 2012; Fischer et al., 2014). It also aids in the detection of mixed infections (Chan et al.,
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2013; Koser et al., 2013), which are clinically important, but hard to recognise (Shamputa et al.,
2004; Warren et al., 2004; Cohen et al., 2011; Wang et al., 2011; Hingley-Wilson et al., 2013).

However, as things stand, there are several important limitations to metagenomics as a diagnostic
approach. Our study has been limited to the investigation of smear-positive sputum samples,
where a diagnosis can already be obtained quickly and easily by microscopy; considerable
improvements in sensitivity are likely to be needed before metagenomics can be made to work on
smear-negative culture-positive samples. However, it is worth stressing that smear-positive cases
are the most important TB cases in terms of infectivity and severity of disease and rapid, accurate
diagnosis and epidemiological investigation of such samples is likely to aid TB control (Shaw
and Wynn-Williams, 1954; Colebunders and Bastian, 2000; Wang et al., 2008). Plus, for all our
samples, metagenomics goes beyond mere detection of acid-fast bacilli to deliver clinically
important information at the level of species and lineage within the M. tuberculosis complex.

Surprisingly, metagenomics has not proven quite so informative when applied to contemporary
sputum samples as when applied to historical samples, from which we have gained much higher
coverage of pathogen genomes, which allowed recognition of phylogenetically informative large
sequence polymorphisms (Chan et al., 2013; Kay et al., 2014). Furthermore, in our hands, sputum
metagenomics does not yet deliver sufficient depth of coverage of TB genomes to allow the
accurate SNP calling necessary for sequence-based sensitivity testing. It remains unclear whether
increased depth of coverage can be achieved by refinements in DNA extraction protocols alone—
or whether one might need to sacrifice the speed, simplicity and open-endedness of shotgun
metagenomics by incorporating amplification of mycobacterial DNA or cells (i.e. by culture in
MGIT tubes (Koser et al., 2013)) or by capture of mycobacterial cells or DNA (Sweeney et al.,
2006; Bouwman et al., 2012; Schuenemann et al., 2013).

Some have argued that metagenomics is too expensive for routine use (Koser et al., 2014).
However, the same was true of whole-genome sequencing a few years ago; in this study, reagent
costs amounted to <£50 per sample. Plus, with minor modifications, we anticipate that DNA
extraction could be completed in a few hours of receipt of a sputum sample and sequencing and
analysis within a few days. In addition, now that cultured TB isolates are being routinely genome
sequenced in many laboratories (Koser et al., 2012; Kohl et al., 2014), a catalogue of local TB
genomes will be available for comparison with the metagenome-derived genomes, facilitating
epidemiological analyses

With likely future improvements in the ease, throughput and cost-effectiveness of sequencing,
twinned with commoditisation of laboratory and informatics workflows, one can foresee a tipping
point when a unified automated metagenomics-based workflow might start to compete with the
plethora of methods currently in use in the diagnostic microbiology laboratory, while also
delivering additional useful information on epidemiology, antimicrobial resistance and pathogen
biology.
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328 Table 1 Sample characteristics and sequencing results

Sample | ZN DNA concentration | Total no. reads % reads
grade | in extract (ug/mL) aligning to
human genome
K1 3+ 27.8 989,442 73.71
K2 3+ 2.28 2,170,640 78.46
K3 2+ 71 1,617,808 99.3
K4 2+ 250 1,204,408 97.22
K5 2+ 7.7 1,537,676 74.17
K6 2+ 48.8 2,411,708 97.47
K7 1+ 25 2,818,238 50.59
K8 1+ 0.63 1,851,892 20.29

329 Table 2 Mapping to M. tuberculosis H37Rv reference genome

Sample Under relaxed mapping conditions | Under stringent mapping conditions
Bases | Coverag Average Bases Coverage Average
aligning e of read aligning | of H37Rv | read depth

to H37Rv H37Rv depth | to H37Rv
K1 410,228 0.093 2.2 141,906 0.032 1.3
K2 | 5,685,901 1.289 23| 3,057,187 0.693 1.9
K3 99,643 0.023 1.3 54,413 0.012 1.2
K4 40,019 0.009 1.9 10,840 0.002 1.3
K5 732,623 0.166 2.5 238,451 0.054 1.3
K6 94,023 0.021 2.3 34,704 0.008 1.7
K7 | 1,366,309 0.310 11.4 50,873 0.012 1.5
K8 | 1,725,816 0.391 7.7 109,514 0.025 1.3
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330 Table 3 Species and lineage assignments by phylogenetic placement and spoligotyping

Sample

Phylogenetic placement by pplacer

Spoligotyping

Species, lineage, clade

Posterior
probability

Lineage

Spoligotype

K1

M. tuberculosis
Euro-American /
Lineage 4

LAM clade

1

Euro-American

1101111111110111111100001111111100001111011

K2

M. tuberculosis
Euro-American /
Lineage 4

H clade

Euro-American

11111111111 1111111111111111110100001111111

K3

M. africanum
Lineage 6
M. africanum clade 2

West African 2

1111110001111111111000001000011111111101111

K4

M. tuberculosis
Euro-American /
Lineage 4

H clade

0.99

Euro-American

I111111111111111111111111111110100001111111

K5

M. africanum
Lineage 6
M. africanum clade 2

West African 2

111111000111 1111111111111 111111111111101111

K6

Not determined

West African 2

11111100011 1111111111111 111111111101111

K7

M. tuberculosis
Euro-American /
Lineage 4

H clade

0.97

Euro-American

IT1111 111111 1111111111111111110100001111111

K8

M. tuberculosis
Euro-American /
Lineage 4

T clade

Euro-American

1111110000000000000000000111111100001111111
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331 Table 4 IS6110 profiles

Sample No. reads No. reads IS6110 insertion site coordinates Comments
mapping to | spanning 1S6110
I1S6110 insertion site
K1 11 1 3480371 Specific to LAM clade
K2 199 22 2610861 (HSI1), 1075947-1075950 HSI1, HSI2, HSI3
(HSI2), 1715974 (HSI3). specific to H clade:
212132-212135, 483295-483298,
888787, 1695606, 1986622-1986625,
3120523
K3 2 0 Not determined
K4 6 2 2610861-2610864 (HSI1) HSII specific to H clade
K5 4 1 2631765 Unique so uninformative
K6 0 0 Not determined
K7 2 0 Not determined
K8 5 0 Not determined
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w2 Supplementary Data

333 Detailed phylogenetic placement of metagenome-derived genomes
334 SNP matrix used to generate tree.
335 List of repetitive genes excluded from SNP calling.
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Figure 1

Figure 1 Maximum likelihood tree tree showing placement of mycobacterial
metagenome-derived genomes amongst the major lineages and clades within the M.
tuberculosis complex.

Detection and characterisation of Mycobacterium tuberculosis in sputum samples using
shotgun metagenomics Two representatives from each lineage/clades are shown. Tree
calculated using RaXML and rooted with M. canetti (not shown)
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