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Spatial genetic structure across a hybrid zone between
European rabbit subspecies

The Iberian Peninsula is the only region in the world where the two existing subspecies of the
European rabbit (Oryctolagus cuniculus) naturally occur and hybridize. In this study we
explore the relative roles of historical and contemporary processes in shaping the spatial
genetic structure of the rabbit across its native distribution range, and how they differently
affect each subspecies and the hybrid zone. For that purpose multilocus genotypes and
mitochondrial DNA data were obtained for 771 rabbits across most of the species’ distribution
range in Spain. Nuclear markers defined a hierarchical genetic structure firstly comprised by
two genetic groups, largely congruent with the mitochondrial lineages and subspecies
distributions (O. c. algirus and O. c. cuniculus), which were subsequently subdivided into
seven genetic groups probably shaped by environmental or ecological factors. Geographic
distance alone emerged as an important factor explaining genetic differentiation across the
whole range, without the need to invoke for the effect for geographical barriers. Thus, when
considering the overall genetic structure, differences at a local level seem to be of greater
importance. The significantly positive spatial correlation up to a distance of only 100 km
supported this hypothesis. However, northern populations of O. c¢. cuniculus showed more
spatial genetic structure and differentiation than O. c. algirus, which could be due to local
geographic barriers, limited resources, soil type and/or social behaviours limiting dispersal.
The hybrid zone showed similar genetic structure to the southern populations but a larger
introgression from the northern lineage genome. These differences have been attributed to
selection against the hybrids rather than to behavioural differences between subspecies.
Ultimately, the genetic structure of the rabbit in its native distribution range is the result of an

ensemble of factors, from geographical and ecological, to behavioural and molecular, that
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hierarchically interact in time and space.
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INTRODUCTION

In most species populations are genetically structured. This genetic structure may be a
consequence of many factors. Foremost among these, geographical factors may lead to vicariant
events and divide populations (Knowles & Carstens, 2007), or ecological factors may determine
habitat suitability across space, and consequently population connectivity (Pilot et al., 2006).
Behavioral traits can also shape the population structure of species, such as family groups in
primates, or colonies of social insects (Shoemaker & Ross, 1996; Bradley et al., 2002). Finally,
genetic structure will also result from the balance between gene flow, drift, and the time

necessary to reach a balance between both forces (Hutchison & Templeton, 1999).

The processes leading to population structure can act at different temporal and spatial scales.
Temporarily, historical processes such as isolation in glacial refugia and subsequent expansions
can leave detectable signals in the current populations (Avise, 2000), as well as contemporary
dispersal (Palsboll, 1999). Spatially, gene flow may vary among individuals within a
geographical region, between adjacent regions, or at larger scales, between populations that
presumably have little genetic exchange but share a more ancient genetic history. Thus,
investigating population relationships and their spatial patterns of genetic variation is useful in

order to infer these hierarchical and interacting processes (Hedrick, 2005).

The European rabbit (Oryctolagus cuniculus Linnaeus 1758) is a species with worldwide
biological and economic importance that has long attracted scientific interest (reviewed in
Ferreira, 2012). This, along with a well-documented history, has allowed the development of

multiple studies on the evolutionary history of this lagomorph from a wide range of molecular
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(Ferrand, 1989; Biju-Duval et al., 1991; Branco, Ferrand & Monnerot, 2000; Geraldes et al.,
2008; Carneiro et al., 2012), temporal (Hardy et al., 1994; Monnerot et al., 1994) and
geographical perspectives (Webb et al., 1995; Fuller, Wilson & Mather, 1997; Surridge et al.,

1999b; Queney et al., 2000; Queney et al., 2001; Branco et al., 2002).

In the Iberian Peninsula, two divergent evolutionary lineages occur and contact each other in the
middle of their distribution range (Branco, Ferrand & Monnerot, 2000; Branco et al., 2002).
Studies conducted on uniparentally inherited molecular markers support the existence of two
highly differentiated groups: so-called mitochondrial lineage A, predominant in the subspecies O.
c. algirus (Loche 1867) inhabiting the southwest of the Iberian Peninsula, and lineage B, which
predominates in O. c. cuniculus in the northeast of the Peninsula (Biju-Duval et al., 1991). It is
proposed that mitochondrial lineages A and B diverged following isolation in two glacial refugia
in the southwestern and northeastern extremes of the Iberian Peninsula, likely during the
Quaternary paleoclimatic oscillations. After climatic amelioration, they expanded their ranges
and came again into contact to form a secondary contact zone where they hybridize along a
northwest-southeast axis (Branco, Ferrand & Monnerot, 2000; Branco et al., 2002; Geraldes,

Rogel-Gaillard & Ferrand, 2005; Geraldes, Ferrand & Nachman, 2006; Ferrand & Branco, 2007).

Hybrid zones like this one are usually interpreted as zones where genetically distinct populations
meet and interbreed because, despite genetic differences, they have not reached the status of
species and are to some extent interfertile. Therefore, they can be considered as intermediate
stages in the process of speciation (Barton & Hewitt, 1989; Harrison, 1993). Hybrid zones may

be ephemeral, resulting from the recent meeting and blending of two divergent lineages, or may
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have arisen from an ancient contact and last indefinitely. In the former case, many individuals in
the center of the zone will resemble the parental forms, leading to high genetic variance and high
linkage disequilibrium between loci. In the latter case, the hybrid zone will consists of individuals
that are product of many generations of hybridization, leading to lower genetic variance and
lower linkage disequilibrium (Brelsford & Irwin, 2009). Therefore, the comparative study of the
genetic structure in a hybrid zone and in the parental populations can provide insights into the

evolutionary processes that contribute to its origin and maintenance (Harrison, 1993).

H ybrid zones are areas of particular interest for evolutionary studies enabling insight into the
initial stages of speciation and reproductive isolation, adaptation and selection, and even
behavioral processes (Hewitt, 1988; Barton & Gale, 1993; Arnold, 1997; Futuyma, 1998). In the
European rabbit, extensive studies in the hybrid zone have evidenced highly contrasting degrees
of introgression among loci, or even a complete absence of genetic structure (Branco, Machado
& Ferrand, 1999; Queney et al., 2001; Geraldes, Ferrand & Nachman, 2006; Ferrand & Branco,
2007; Campos, Storz & Ferrand, 2008; Carneiro, Ferrand & Nachman, 2009; Carneiro et al.,
2010; Carneiro et al., 2013). The variation in the introgression of autosomal and sexual
chromosomes has also revealed different selective pressures across genes and its importance in
the reproductive isolation between the two rabbit subspecies (Geraldes, Ferrand & Nachman,
2006; Campos, Storz & Ferrand, 2008; Carneiro, Ferrand & Nachman, 2009; Carneiro et al.,

2010; Carneiro et al., 2013).

However, differences in the spatial genetic structure between the parental lineages, either in

allopatry or interacting within the hybrid zone, are still largely unknown, because most
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population genetics studies on the rabbit in the Iberian Peninsula have either examined genetic
variation between lineages, or the area where they come into contact (Monnerot et al., 1994;
Queney et al., 2001; Branco & Ferrand, 2003; Ferrand & Branco, 2007; Carneiro, Ferrand &
Nachman, 2009; Carneiro et al., 2010), but rarely all together or in a comparative context.
Furthermore, so far, studies relating the observed genetic structure to behavioral traits or habitat
have only been carried out in regions where the rabbit is a non-native species (Fuller, Wilson &
Mather, 1997; Surridge et al., 1999a; Surridge et al., 1999b). In this context, the Iberian Peninsula
is unique, since it is the only region in the world where the two subspecies are native and co-
occur. Therefore, due to its long evolutionary history in this region, it is expected that a complex
ensemble of interacting factors affect the genetic structure of the rabbit at different hierarchical

scales.

Thus the main objective of this study was to describe and study the relative roles that historical
and contemporary processes have in: (1) shaping the spatial genetic structure of the rabbit in
Spain, and (2) determining the differences in genetic variability and structure between

populations of O. c. cuniculus, O. c. algirus and the hybrid zone.

MATERIALS AND METHODS

Sample collection

Samples of 771 European rabbits were obtained from 30 localities covering most of their range in

Spain (Supplementary Table 1 and Fig. 1). Sampling was performed mainly on hunting estates by
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licensed hunters during legal hunting seasons, or during management or restocking activities
carried out by local administrations. (Since these activities did not involve any experimental or
scientific purpose, no approval was requested from the Ethics Committee at the Spanish Superior

Research Council (CSIC)).

The number of samples per locality ranged from 2 to 56 individuals (Supplementary Table 1).
According to their geographic location (Branco et al., 2002; Geraldes et al., 2008), 6 localities (n
= 144) were a priori assigned to subspecies O. c. cuniculus, 14 localities (n = 410) to subspecies

O. c. algirus, and 10 localities (n = 217) to the hybrid zone (Fig. 1, Supplementary Table 1).

DNA extraction and amplification of molecular markers

Samples obtained from live rabbits consisted of blood drawn from the femoral vein or a small
piece of ear tissue. Ear tissue or muscle samples were taken from dead rabbits, depending on the
preservation state of the animal. DNA was extracted using the QIAamp DNA Mini Kit

(QIAGEN) following the manufacturer's instructions.

Mitochondrial lineages, A or B, were identified in all samples by amplifying the complete
cytochrome b gene using the primers OcunCB_F: 5'-ATGACCAACATTCGCAAAACC-3' and
OcunCB_R: 5'-TGTCTCAGGGAGAACTATCTCC-3'". The PCR reaction was performed in a
final volume of 25 puL containing: 200 uM of dNTPs, 0.2 uM of each primer, 1 U Taq polymerase
(Eppendorf), 1x PCR buffer (500 mM KCI, 100 mM Tris-HC1 pH8.3, 15 mM Mg*"), and 1 pL of

DNA extract. The PCR program consisted of 4 min of denaturation at 94 °C, followed by 40
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cycles of 1 min at 94 °C, 1 min at 55 °C and 1 min 30 s at 72 °C, plus a final extension of 10 min
at 72 °C. PCR products were digested separately with Haelll and Alul restriction enzymes
(Promega) and migrated in 3% agarose gels stained with ethidium bromide for subsequent
visualization under UV light. RFLP patterns were identified as described previously (Branco,

Ferrand & Monnerot, 2000) and the samples were assigned to one of two mitochondrial lineages.

All individuals were genotyped according to 10 microsatellite markers: Sat3, Sat4, Sat5, Sat7,
Sat8, Satl2, Satl3, Sat16, Sol33 and Sol44 (Mougel, Mounolou & Monnerot, 1997; Surridge et
al., 1997). PCR reactions were performed in a final volume of 13 pL that contained 200 uM
dNTPs, 0.2-0.4 uM of each primer, 2-2.5 mM MgCl,, 0.325 U Tag polymerase (Eppendorf), 1x
PCR buffer (500 mM KCI, 100 mM Tris-HCI pH 8.3), and 0.5 puL of DNA extract. PCR programs
involved 2 min of initial denaturation at 95 °C, followed by 35 cycles of 30 sec at 95 °C, 30 sec
between 55 °C and 65 °C, 30 sec at 72 °C, followed by a final extension step of 7 min at 72 °C.
The amplified fragments were analyzed in an ABI3730 automatic sequencer (Applied
Biosystems) and allele sizes were assigned using the program GeneMapper v3.7 (Applied
Biosystems). The complete data file of microsatellite genotypes and mitochondrial haplotypes

was deposited as a Supplementary Dataset in Peer].

Statistical analyses

Our first objective was to undertake a formal analysis on the genetic structure of the two rabbit
lineages and across the hybrid zone between the lineages. For this purpose, we used Bayesian
model-based assignment methods to determine admixture proportions in our rabbit sample.

Although we were primarily interested in a model with two clusters for assessing admixture
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between lineages, we also analyzed whether models with more than two clusters were supported
by our data. Therefore, firstly we used the algorithm of STRUCTURE 2.2 (Pritchard, Stephens &
Donnelly, 2000) implementing the admixture model with correlated allele frequencies (Falush,
Stephens & Pritchard, 2003), since this model is more appropriate for individuals with admixed
ancestries and for populations with similar expected frequencies. No information on the localities
of origin of individuals was included. Ten independent analyses were run for each value of X,
from K = 1 to K = 30. Each analysis consisted of 1 x 10° Markov chains with a prior burn-in of 1
x 10° chains. Mean posterior probability values were used to calculate 4K, a measure of the rate
of change of the posterior probabilities between successive K values. Thus, it is possible to detect
when the increase in InP(X|D) is not significant anymore and find the true value of K (Evanno,

Regnaut & Goudet, 2005).

To visually explore the distribution of the inferred genetic groups across the hybrid zone, the
proportion of genetic admixture and the frequency of each mitochondrial lineage were plotted
along a one-dimensional transect perpendicular to the proposed rabbit hybrid zone (Branco,
Ferrand & Monnerot, 2000; Branco et al., 2002; Geraldes et al., 2008), with the exception of the
localities of Galicia and Mallorca which were excluded (Fig. 1). We considered km O of the
linear transect to be the approximate intersection between the transect that the hybrid zone (Fig.
1). Geographical locations along this linear transect were fitted to a sigmoid curve (3 parameters)
as expected by hybrid zone tension zone models (Barton & Hewitt, 1985; Barton & Gale, 1993)
in SigmaPlot 10.0 (Systat Software, Inc.). Additionally, congruence between the assignment
probabilities and the frequency of mitochondrial lineages was evaluated by performing ¢ tests in

both parental lineages and in the hybrid zone.
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Secondly, we used the Bayesian method implemented in the program BAPS 5.1 (Corander &
Marttinen, 2006). In addition to the genetic data, we included the geographical coordinates of
each individual and used the spatial model in BAPS (Corander, Sirén & Arjas, 2008). This model
estimates genetic structure assuming that the structure within a particular area depends on the
neighboring areas, thereby increasing the statistical power to detect the true genetic structure
(Corander, Sirén & Arjas, 2008). We undertook 10 independent replicates from 1 to a maximum
of 30 genetic clusters. The average admixture values obtained for each individual were plotted

using the maps package in R (R Core Team, 2014).

For the inferred genetic clusters and the localities analyzed with more than 10 sampled
individuals, we tested significant deviations from Hardy-Weinberg equilibrium through a Fisher
exact test (Guo & Thompson, 1992) after applying the Bonferroni correction (Rice, 1989) in
GENEPOP 3.4 (Raymond & Rousset, 1995). We calculated parameters of genetic diversity such
as number of alleles (N,), allelic richness (4r), observed and expected heterozygosity (H, and H.)
and inbreeding coefficient (F;s) for each locus and genetic group using the programs GENETIX

4.02 (Belkhir et al., 2004) and FSTAT 2.9.3 (Goudet, 1995).

The distribution of genetic variation among the sampled localities, as well as within and among
the inferred genetic groups was assessed by an analysis of molecular variance (AMOVA)
(Excoffier, Smouse & Quattro, 1992). AMOVA was performed using GenoDive 2.0b11
(Meirmans & Van Tienderen, 2004) which allows the calculation of a Fs; analogue coefficient of

differentiation, standardized according to the level of intra-population variation, so that the
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results obtained can be compared between markers showing different polymorphism (Meirmans,

2006). To avoid confusion, this ratio is hereafter referred to as Fis;’.

The effect of geographical distance on the genetic differentiation between individuals was also
tested for all the samples in peninsular Spain (i.e. excluding the population from the island of
Mallorca) and for each lineage and the hybrid zone separately. Regression was performed for the
kinship coefficient between pairs of individuals (f;) (Loiselle et al., 1995) and their geographical
distance (dj), to give a regression slope Inb, and its statistical significance (Vekemans & Hardy,
2004). Also, spatial autocorrelation methods were applied to examine spatial genetic structure
(Smouse & Peakall, 1999). Geographic locations of individuals were permuted 10,000 times
among 50 distance intervals with an equal number of comparisons between individuals (5935) to
test the null hypothesis that dj and f; were not correlated. Positive spatial autocorrelations are
expected when gene flow is restricted to short distances. These tests are dependent on the type
and scale of sampling (Vekemans & Hardy, 2004), so to compare the extent of spatial genetic
structure in each subspecies of rabbit and the hybrid zone, we used the statistical Sp (Vekemans &
Hardy, 2004), Sp = -Inb,/(1 - Fj), where Fj is the average kinship coefficient between individuals
closer together (the first distance interval, ~ Skm), and Inb, is the slope of the linear regression of
the correlation coefficients and the logarithm of the geographical distance. All these tests were
conducted in SPAGeDi 1.2 (Hardy & Vekemans, 2002). Additionally, a Mantel test (Mantel,
1967) was employed to determine if there was significant correlation between the genetic (Fsr /1-
Fgr) and geographical distances of the localities studied. Also, the presence or absence of putative
barriers, such as large rivers and/or mountain ranges, between localities was coded as 1 and 0 in a

third data matrix. Using these three distance matrices, a partial Mantel test was performed to
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determine whether, besides geographical distance, these landforms represented a barrier to gene

flow for the rabbit. Both analyses were performed in ARLEQUIN 3.1.

RESULTS

Distribution of genetic diversity

Overall, similar proportions of rabbits carried mitochondrial haplotypes from lineages A and B
(53.5% and 46.5% respectively). In only five localities with over 10 individuals analyzed, all
individuals belonged to one lineage. Rabbits from Mallorca, Lérida and Galicia belonged to
lineage B, while those from Jaén3 and Sevillal belonged to lineage A. Although all the other
localities showed a mixture of both lineages, there was a clear predominance of B haplotypes in
the northeast of the Iberian Peninsula and Balearic islands, A haplotypes in the southwest, and a

mixture of both in the center of the Peninsula (Table 1).

In general, nuclear genetic diversity was high, with a total of 264 alleles at the 10 microsatellites
analyzed (average N, per locus = 26.29 £ 9.07). In all localities heterozygosity values were larger
than H, = 0.6 (average H, = 0.7 = 0.15). The localities showing greatest diversity, measured as
allelic richness, were Madrid1 and Sevilla2 (4z = 7.70 and 7.62), whereas the least diverse were

Mallorca (4z = 5.15) and La Rioja (4z = 6.20) (Table 1 and Supplementary Table 2).
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Deviations from Hardy-Weinberg equilibrium were detected in 17 of the 26 locations analyzed
(Table 1 and Supplementary Table 2). In all cases, these deviations were due to heterozygote
deficits. Locations in the center and southwest of the Iberian Peninsula showed larger deviations
from equilibrium, mainly attributed to locus Sat16 and to a lesser extent to Sat3 and Sol33.
Interestingly, none of these loci appeared to be in disequilibrium in the northeastern localities. A
comparison of the observed genotypes with a random distribution of genotypes generated by
MICRO-CHECKER (van Oosterhout et al., 2004) suggested the presence of null alleles at locus

Sat16, as had been proposed earlier for this microsatellite (Queney et al., 2001).

Structure and assignment of rabbit genetic clusters

The Bayesian clustering analysis performed in STRUCTURE revealed that InP(X|D) increased
substantially from K = 1 to K =2 and then was attenuated as the number of K increased but
without reaching a clear asymptote. Notwithstanding, calculation of 4K clearly revealed the
existence of 2 genetic populations or groups (K1 and K2). Taken together, these results suggest
that the sampled rabbits belong to two large and distinct genetic groups, but do not completely
exclude the possibility that more gene pools exist. The distribution of the two genetic groups
exhibited high geographical correlation such that the localities to the south of the Iberian
Peninsula were assigned with a greater likelihood to group K1 and the northern localities to K2

group (Table 2 and Figs. 2 and 3).

Both the assignment probabilities to the genetic groups based on the nuclear DNA and the
frequencies of mitochondrial lineages closely conformed to sigmoidal functions (R* = 0.878, F =

57.478, P < 0.0001 for the microsatellite data; R> = 0.628, F = 13.501, P < 0.0001 for the mtDNA
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data; Fig. 3). In addition, the inferred genetic groups were in agreement with the mitochondrial
haplotypes of each individual. Of the 224 individuals assigned to K1with a posterior probability
greater than 0.9, 91% carried mitochondrial haplotypes belonging to lineage A, while 82% of the
2309 rabbits assigned with equal probability to K2 showed haplotypes from lineage B (Fig. 2).
Thus, the frequency of mitochondrial haplotypes in the parental lineages did not differ

significantly from the individuals’ assignment frequencies to the inferred genetic groups (2=

0.781,df=1, P=0.377).

The analysis in BAPS of the genetic data together with individual geographical information,
detected a maximum marginal likelihood (corresponding to the maximum posterior probability)
for 7 genetic clusters. Most of the inferred genetic clusters showed a well-defined geographical
distribution (Table 2 and Fig. 1). The first cluster corresponded to all individuals from the
Balearic Islands (K-BAL). In the north of the Iberian Peninsula, a second cluster appeared
consisting mainly of individuals from Lérida (K-NE) and a third cluster comprising individuals
from the localities of La Rioja, Madridl and Madrid2 (K-N). In the south of the Iberian
Peninsula, one large cluster was inferred, that included most of the individuals from Badajozl,
Badajoz2, Jaén2, Sevillal, Sevilla2 and Cadiz (K-S1), and a small group of individuals from
Sevilla2 (K-S2). At the heart of the Iberian Peninsula we found a large cluster fully or partially
covering the localities of Galicia, Valladolid, Madrid1-3, Cuenca, Toledo1-6, Albacete, Ciudad
Reall-3 and Caceres1 and Céceres2 (K-ZH) and another small group of individuals from the
locality of Cuenca (K-CU) (Table 2 and Fig. 1). Also, these clusters were congruent with the
genetic groups inferred in STRUCTURE and with the mitochondrial haplotypes of the

individuals, so that the northern and central clusters (K-BAL, K-NE, K-N and K-CU) had
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assignment probabilities greater than 90% to K2, and in the same way, the southern clusters (K-

S1 and K-S2) to K1.

Genetic diversity parameters estimated for the inferred genetic clusters in BAPS, indicated a
greater diversity for K-ZH and K-S1, which were also the only clusters in Hardy-Weinberg
disequilibrium, due to a significant deficit of heterozygotes (Table 2 and Supplementary Table 3).
All genetic clusters displayed unique alleles, which were usually found at low frequencies. In
those genetic clusters that mostly include lineage A rabbits (K-S1 and K-S2), 37 unique alleles
were found. While clusters that mostly include lineage B rabbits (K-BAL, K-NE, KN and K-CU)

showed 21 unique alleles. Forty-nine unique alleles were detected in cluster K-ZH.

The percentage of genetic variation explained by the 7 genetic clusters was similar, but not
greater than that obtained among all localities (Fs;” = 0.325, P <0.001, Fs;’=0.370, P <0.001,
respectively). Conversely, Rs; was much higher (Rs; = 0.627, P <0.001 and Rs; = 0.110, P <
0.001, respectively), indicating that the effect of mutation is of greater importance than drift in

the differentiation of rabbit genetic clusters.

The Mantel test revealed significant correlation between geographical distances and genetic
distances for all pairs of populations (r = 0.538, P < 0.001, Fig. 4). However, this correlation was
not improved by including the effect of geographical barriers, such as rivers or mountain ranges,
in the partial Mantel test. Across the whole distribution of rabbits in peninsular Spain, the

regression slope between kinship and geographical distance was negative and statistically
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significant (Inb, =-0.011, P <0.001). Relationships between individuals decreased rapidly as
geographical distances increased and this autocorrelation was significantly positive up to a
distance of approximately 100 km (Fig. 5SA). By comparing the spatial genetic structure of the
two subspecies of rabbit and those of the hybrid zone, spatial autocorrelation analyses indicated
much higher f; values and a steeper decline of kinship with distance in O. c. cuniculus for the first
distance intervals. Similarly, we obtained a higher Sp value for O. c. cuniculus (Sp = 0.0137) than
for O. c. algirus and the hybrid zone, which showed similar values (Sp = 0.0062 and Sp = 0.0063,
respectively), indicating a greater genetic structure of rabbit populations in the northeast of the

Iberian Peninsula (Fig. 5B).

DISCUSSION

Variation in genetic diversity

Overall, the microsatellites analyzed were highly polymorphic, and showed similar variability to
that reported for 9 of the 10 loci studied (Queney et al., 2001). The general trend was greater
genetic variability in populations from the central Iberian Peninsula and lower diversity in the
northeastern mainland populations (Table 1 and Supplementary Table 2). This reduced genetic
diversity of northeast populations has been attributed to a lower effective size during their
isolation in Quaternary glacial refugia, compared to the southern populations (Branco, Ferrand &
Monnerot, 2000). The lowest diversity and high genetic differentiation found in the island of
Mallorca is most likely due to the founder effect caused by the introduction of the rabbit in these
Mediterranean islands following the first human arrival to Mallorca 4300-4100 years ago (Flux,
1994; Alcover, 2008). Interestingly, a much older estimate has been proposed for the most recent

common ancestor between island and mainland rabbits between 170,000 years and present,
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according to mitochondrial sequence data (Seixas et al., 2014). While the number of alleles and
allelic richness detected for Mallorca were lower than in most of the other samples analyzed, this
was not the case for its heterozygosity values (Table 1 and Supplementary Table 2). Loss of
heterozygosity depends on the time it takes a population to recover a large size after a bottleneck
(Nei, Maruyama & Chakraborty, 1975). Thus, because of its rapid expansion capability, the
European rabbit may have managed to retain more diversity during the different colonizations or
bottlenecks suffered (Queney et al., 2000). Similarly, this could explain why in La Rioja, where
demographic explosions are frequent, a low number of alleles are detected, but not a low
heterozygosity. In contrast, in Galicia, both allelic richness and heterozygosity are low and show
a significant excess of homozygotes, since rabbit populations in this region have continuously
declined in recent years with the consequent loss of genetic diversity (Table 1 and Supplementary

Table 2).

Most localities, particularly the southern ones, revealed loci in Hardy-Weinberg
disequilibrium,because of a deficiency in heterozygotes. In this study, as in earlier ones (Queney
et al., 2001), putative null alleles were detected at Sat16, although the exclusion of this locus and
others showing large deviations from equilibrium (e.g. Sat3 and Sol33), did not significantly alter
the results. The absence of disequilibrium in the northeastern localities could be explained by the
fact that the microsatellites analyzed were originally developed for the domestic rabbit (i.e.
subspecies O. c. cuniculus) (Mougel, Mounolou & Monnerot, 1997; Surridge et al., 1997),
therefore a higher chance for null alleles could occur in the southern O. c. algirus. Another non-
exclusive explanation for the significant deficit of heterozygotes could be a Wahlund effect. The

territorial behavior and social structure of the rabbit (Surridge et al., 1999a; Surridge et al.,
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1999b) could lead to an underlying genetic structure at a small geographical scale that is not

detected by Bayesian clustering methods.

Hierarchical genetic structure dependent on geographic distance

Overall, the European rabbit in Spain showed considerable genetic structure, which was similar
to that described for rabbit populations in the northeast and southwest of the Iberian Peninsula
(Queney et al., 2001) and slightly lower than that reported for Britain (Surridge et al., 1999a).
The fact that the largest percentage of genetic variation was explained separately by each
sampling locality indicates that genetic structure exists at a very local scale and reaffirms the

importance of rabbit social behavior in shaping its genetic structure (Surridge et al., 1999a).

Bayesian methods and AMOVA, as well as comparisons of Fg; and Ry statistics, indicate that the
rabbit has a hierarchical genetic structure. First, the oldest and largest differences are mainly
reflected by the two genetic groups, based on nuclear markers, and their high Rs; values. Within
these, there are other genetic groups identified in BAPS that are determined by other factors that
could be either environmental or ecological. In turn, these inferred populations consist of even
smaller groups conditioned by the social behavior of the rabbit, and are reflected by the
significant values of Fs; between localities and the significantly positive spatial autocorrelation

(Lugon-Moulin et al., 1999; Balloux & Lugon-Moulin, 2002)
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In addition to the hierarchical genetic structure of the rabbit in Spain, geographic distance
emerged as an important factor explaining genetic differentiation (Figs. 4 and 5). This contradicts
the situation in Britain, where significant differences observed between locations could not be
correlated with geographical distance (Surridge et al., 1999a). Similarly, it seems logical that
main rivers, or other geographical features, constitute a barrier to gene flow in rabbits given their
low dispersal capacity (Webb et al., 1995; Richardson et al., 2002). However, these barriers did
not determine an increase in genetic differentiation explained solely by geographic distance. This
is probably because, when considering the overall genetic structure and distribution of the rabbit,
differences at a more local level have greater importance (Surridge et al., 1999a; Surridge et al.,
1999b; Branco, Ferrand & Monnerot, 2000). This hypothesis is further supported by the results of
our spatial autocorrelation analyses indicating significantly positive correlation up to a distance
of about 100 km (Fig. 5SA). However, the influence of geographic distance on genetic
differentiation was not the same for all rabbit populations. Northern populations of O. c.
cuniculus (K2) showed greater relatedness among close individuals and more spatial genetic
structure and differentiation than the southern populations or those in the hybrid zone (Fig. 5B).
This contrasting pattern could be due to the existence of genetic barriers among populations
within each region. For example, it is well known that the Ebro River, running across
northeastern Spain, has historically acted both as a physical and an ecological barrier for mammal
species (O'Regan, 2008). The inferred genetics groups of K-NE and K-N are located to the north
and south of the Ebro Valley, thus suggesting its role as a current barrier to gene flow (Fig. 1).
Conversely, other large rivers in southern Spain (e.g. Guadiana River) do not seem to hinder gene
flow among southern rabbit populations. At a smaller geographic scale, low dispersal might also

be due both to resource availability and soil type, which largely influence the distribution and
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social relationships of rabbits (Baker & Dunning, 1975; Cowan & Garson, 1985; Blanco &
Villafuerte, 1993; Richardson et al., 2002; Lombardi et al., 2003) and of other fossorial mammals
(Lovegrove, 1989; Ebensperger & Cofré, 2001). It has been shown for other burrowing species,
such as the wombat (Lasiorhinus latifrons), that where soft soils occur the construction of
burrows is facilitated so animals do not need to share their shelter with other groups of
individuals (Walker, Taylor & Sunnucks, 2007). Thus, the social structure of wombats in soft
soils is characterized by closely related social groups and positive spatial correlation within a
short distance, as observed in O. c. cuniculus in the northern Iberian Peninsula where softer soils
also exist (Blanco & Villafuerte, 1993). In contrast, in hard soils, wombats share burrows with
other individuals, and therefore are less related and spatial correlation is observed at a greater
distance (Walker, Taylor & Sunnucks, 2007), as observed for the southern O. c. algirus

populations (Fig. 5B).

Genetic variation within the hybrid zone

The large differences between the two rabbit lineages were evidenced by the maximum Rs; value
obtained when considering the genetic variation among lineages A and B, which represent a
divergence of 1,800,000 years — 2,000,000 (Branco, Ferrand & Monnerot, 2000; Carneiro,
Ferrand & Nachman, 2009). The transition between these two genetic groups and mitochondrial
lineages is well explained by a sigmoid curve. This was consistent with the Bayesian clustering
of STRUCTURE, which indicates that the hybrid zone is not formed by individuals with a
bimodal distribution of genotypes from the parental lineages, but instead they form a gradual
cline of assignment probabilities to each group (Figs. 2 and 3). On the other hand, when

geographic information was incorporated in the Bayesian clustering analysis of BAPS, which
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usually helps to increase the power of analysis in cases where hierarchical structure might hinder
the delineation of discrete groups on a smaller scale (Corander, Sirén & Arjas, 2008), the hybrid
zone was shown as a large genetic cluster itself (Fig. 1). However, this result should be taken
cautiously, since it could represent an artifact of the method. Firstly, Bayesian clustering methods
can overestimate genetic structure when analyzing scenarios under a pattern of isolation by
distance (Frantz et al., 2009), or under strong linkage disequilibrium or departures from Hardy-
Weinberg equilibrium (Falush, Stephens & Pritchard, 2003). Secondly, a kind of mixture linkage
disequilibrium can occur even between physically unlinked loci, due to the correlation of allelic
frequencies within populations. As a consequence, highly contrasting parental genotypes can lead
to differences in this pattern of linkage disequilibrium and intermediate allele frequencies
between these populations be interpreted as a distinct genetic cluster (Falush, Stephens &

Pritchard, 2003; Kaeuffer et al., 2007).

Notwithstanding, hybrid zones can also be characterized by new genotypic combinations,
resulting from the crossing of genetically divergent individuals (Arnold et al., 1999). As expected
from a region comprising the gene pool from both lineages of rabbit, the genetic diversity found
in the hybrid zone was higher than in the parental populations, as reflected by the total number of
alleles, allelic richness and expected heterozygosity (Table 1). Interestingly, the higher number of
alleles was mainly due to 49 alleles exclusively observed in this region, as opposed to the 37 and
21 exclusive alleles found in the parental populations. Though this could simply be the
consequence of the higher number of individuals found in this inferred cluster (n = 457), it is
surprising that the hybrid zone shows so many exclusive alleles, when we would initially expect
it to only hold the sum of the parental alleles. Unique alleles have been previously described in

the rabbit hybrid zone for the HBA haemoglobin alpha chain gene, which probably originated by
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recombination of alleles from the parental lineages (Campos, Storz & Ferrand, 2008). However,
in the case of microsatellite loci, further evidence could suggest that these new alleles might be
the result of an increased mutation rate caused by higher heterozygosity of the hybrids (Bradley

et al., 1993; Hoffman & Brown, 1995; Amos & Harwood, 1998).

In the hybrid zone cluster, considered as the region with intermediate frequencies not belonging
to any of the parental groups, the genetic contribution of each rabbit lineage was not balanced. In
this area, the frequency of the two mitochondrial lineages is virtually the same (A = 0.485 and B
=0.515), but significantly greater proportions of individuals had been assigned to K2 (K1 = 0.37
and K2 = 0.63) (¢=25.187,df = 1, P < 0.0001), showing a greater genetic introgression of
lineage B, characteristic of the northern O. c. cuniculus, into lineage A, O. c. algirus, than vice
versa. This is consistent with recent findings related to autosomal loci (Carneiro, Ferrand &
Nachman, 2009; Carneiro et al., 2013), yet contrasts with that described for the X chromosome,
suggesting slight introgression from the southwest to the northeastern lineages of the Iberian
Peninsula (Geraldes, Ferrand & Nachman, 2006). The fact that the greatest contribution of the
northern rabbit lineage is only reflected in the frequencies of nuclear markers and not in those of
maternal inheritance could suggest that males are primarily responsible for this bias. If this is the
case, it would be expected that the Y chromosome would be more introgressed than autosomal
loci. Conversely, it has been evidenced that the Y chromosome cline is highly stepped, as well as
the mtDNA, which suggests some kind of selection acting against introgression (Geraldes,
Ferrand & Nachman, 2006; Geraldes et al., 2008; Carneiro et al., 2013). In this regard,
preliminary behavioral work discarded the existence of pre-mating reproductive selection
between lineages, and found instead lower fertility in F1 males, thus following the expectations

of Haldane’s rule (Haldane, 1922; Blanco-Aguiar et al., 2010). In this context it seems that the
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relative role of selection leading to postzygotic barriers has a stronger importance in shaping the
genetic structure in the rabbit hybrid zone than behavioral and prezygotic barriers. Similarly,
different types of selection have been detected at several autosomal loci, suggesting a wide range
of evolutionary pressures across the rabbit’s genome as well as across distribution range in the

Iberian Peninsula (Campos, Storz & Ferrand, 2008; Carneiro et al., 2012; Carneiro et al., 2013).

Ultimately, multiple factors ranging from geographical and ecological, to behavioral and
molecular, are interacting and shaping the overall genetic structure of the rabbit subspecies and
their hybrid zone. Future studies using genomic data coupled with behavioral and ecological
information could further clarify how these issues are related to the differences in genetic

variation and structure of the rabbit subspecies.
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SUPPLEMENTARY MATERIAL

Supplementary Table 1. Rabbit localities sampled in this work, number of individuals analyzed,
geographical coordinates and subspecies occurring in each locality according to it its natural

distribution range. Numbers correspond to those indicated in Fig. 1.

Supplementary Table 2. Genetic diversity statistics for all the rabbit localities analyzed. N =
number of samples, N, = number of alleles, H, = observed heterozygosity, H, = expected

heteroygosity, Fs = inbreeding coefficient.

Supplementary Table 3. Genetic diversity statistics for the rabbit populations inferred in BAPS. N
= number of samples, N, = number of alleles, H, = observed heterozygosity, H. = expected

heteroygosity, Fs = inbreeding coefficient.
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Table 1(on next page)

Genetic diversity statistics based on 10 microsatellite loci genotypes for the rabbit
localities analyzed

Genetic diversity statistics based on 10 microsatellite loci genotypes for the rabbit localities

(>=10 individuals) analyzed and the genetic clusters inferred in BAPS. n = number of
samples, NA = mean number of alleles per locus, AH = allelic richnes, HO = observed

heteroyzygosity, He = expected heterozygosity, F S = inbreeding coefficient. The proportion of

haplotypes from rabbit A and B lineages is shown for each locality and cluster. Numbers of

each locality correspond to those in Fig. 1.
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Table 1. Genetic diversity statistics based on 10 microsatellite loci genotypes for the rabbit localities (=10 individuals)
analyzed and the genetic clusters inferred in BAPS. n = number of samples, N,= mean number of alleles per locus, Az
= allelic richnes, H,= observed heteroyzygosity, H.= expected heterozygosity, Fis= inbreeding coefficient. The
proportion of haplotypes from rabbit A and B lineages is shown for each locality and cluster. Numbers of each locality
correspond to those in Fig. 1.

n Na Ar H, H. Fis Hap A Hap B Subspecies
Locality
1. Mallorca 14 6 515 063 0.71 0.15 0.08 0.92 O. c. cuniculus
2. Lérida 50 9.64 620 076 079 0.06 0.00 1.00 O. c. cuniculus
3. Valencia 18 9.18 7.13 0.68 0.80 0.18 0.06 0.94 O. c. cuniculus
4. La Rioja 19 7.00 5.62 072 074 0.06 0.05 0.95 O. c. cuniculus
5. Gallicia 27 8.73 6.42 0.61 0.80 0.26 0.00 1.00 O. c. cuniculus
6. Valladolid 16 7.91 6.41 0.67 0.73 0.11 0.07 0.93 O. c. cuniculus
7. Madrid1 51 12.45 770 068 086 0.22 0.40 0.60 hybrid zone
10. Cuenca 42 12.18 740 075 0.82 0.11 0.02 0.98 hybrid zone
11. Toledo1 26 8.91 6.61 072 0.81 0.13 0.33 0.67 hybrid zone
12. Toledo2 33 10.91 709 068 083 0.19 0.40 0.60 hybrid zone
13. Toledo3 24 10.45 708 077 083 0.09 0.60 0.40 hybrid zone
15. Toledo5 19 8.73 6.99 068 0.81 0.19 0.37 0.63 hybrid zone
16. Toledo6 11 7.82 708 078 082 0.09 0.36 0.64 hybrid zone
17. Ciudad Real1 51 12.36 726 069 084 019 0.84 0.16 O. c. algirus
18. Ciudad Real2 27 9.73 709 064 083 0.25 0.89 0.11 O. c. algirus
19. Ciudad Real3 50 12.27 734 070 082 0.6 0.82 0.18 O. c. algirus
20. Albacete 25 9.64 6.86 075 0.81 0.10 0.48 0.52 O. c. algirus
21. Caceres1 10 6.64 6.22 0.70 0.72 0.10 0.90 0.10 O. c. algirus
22. Caceres2 28 9.00 6.51 063 078 0.21 0.89 0.1 O. c. algirus
23. Badajoz1 20 9.73 6.82 0.71 0.79  0.13 0.95 0.05 O. c. algirus
24. Badajoz2 29 9.45 699 079 082 0.05 0.90 0.10 O. c. algirus
25. Jaén1 15 8.64 6.89 063 078 0.23 0.00 1.00 O. c. algirus
27. Jaén3 22 9.64 713 070 082 0.16 1.00 0.00 O. c. algirus
28. Sevilla1 43 11.36 6.89 0.72 0.80 0.10 1.00 0.00 O. c. algirus
29. Sevilla2 32 11.82 7.62 072 083 0.14 0.63 0.38 O. c. algirus
30. Cadiz 56 1164 692 069 080 0.14 0.96 0.04 O. . algirus
Cluster
K-BAL 14 6.00 435 063 0.71 0.15 0 1.00
K-NE 52 9.55 509 074 080 0.07 0 1.00
K-N 21 7.00 4.61 069 074 0.10 0 1.00
K-CU 14 6.73 499 069 074 0.13 0.07 0.93
K-ZH 457 21.00 620 070 0.87 0.20 0.49 0.52
K-S1 206 16.36 5.72 0.71 0.83 0.14 1.00 0.00

Fis values in bold represent significant deviations form Hardy-Weinberg equilibrium, after Bonferroni correction.
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Table 2(on next page)

Proportion of mitochondrial lineage and average assignment probabilities for each
locality to the genetic populations inferred.

Proportion of lineage A and B rabbits and average assignment probability of each locality to
the populations inferred in STRUCTURE and BAPS. Numbers of each locality correspond to
those in Fig. 1.
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Table 2. Proportion of lineage A and B rabbits and average assignment probability of each locality to the populations

inferred in STRUCTURE and BAPS. Numbers of each locality correspond to those in Fig. 1.

mtDNA STRUCTURE BAPS

n Hap A Hap B K1 K2 K-BAL K-NE K-N K-CU K-ZH K-S1 K-S2
Locality
1. Mallorca 14 0.08 0.92 0.09 091 1.00
2. Lérida 50 1.00 0.04 0.96 0.98 0.02
3. Valencia 18 0.06 0.94 0.26 0.74 0.1 0.89
4. La Rioja 19 0.05 0.95 0.06 0.94 0.95 0.05
5. Galicia 27 1.00 044 0.56 0.89 0.1
6. Valladolid 16 0.07 0.93 0.19 0.82 0.06 0.88 0.06
7. Madrid1 51 0.40 0.60 0.38 0.62 0.02 0.75 0.24
8. Madrid2 7 0.29 0.71 0.06 0.94 0.29 0.71
9. Madrid3 2 1.00 0.15 0.85 1.00
10. Cuenca 42 0.02 0.98 0.12 0.88 0.33 0.67
11. Toledo1 26 0.33 0.67 0.23 0.77 1.00
12. Toledo2 33 0.40 0.60 0.19 0.81 1.00
13. Toledo3 24 0.60 0.40 0.16 0.84 1.00
14. Toledo4 2 1.00 0.08 0.92 1.00
15. Toledo5 19 0.37 0.63 0.16 0.84 1.00
16. Toledo6 11 0.36 0.64 0.21 0.79 1.00
17. Ciudad Real1 51 0.84 0.16 0.67 0.33 0.92 0.08
18. Ciudad Real2 27 0.89 0.11 047 053 0.96 0.04
19. Ciudad Real3 50 0.82 0.18 066 0.35 0.96 0.04
20. Albacete 25 0.48 0.52 0.16 0.84 1.00
21. Caceres1 10 0.90 0.10 0.70 0.30 0.70 0.30
22. Caceres2 28 0.89 0.1 0.60 0.40 0.89 0.1
23. Badajoz1 20 0.95 0.05 0.92 0.09 0.05 0.95
24. Badajoz2 29 0.90 0.10 0.94 0.06 0.03 0.97
25. Jaén1 15 1.00 052 048 0.50 0.50
26. Jaén2 2 0.93 0.07 0.87 0.14 0.47 0.53
27. Jaén3 22 1.00 082 0.18 0.82 0.18
28. Sevilla1 43 1.00 0.91 0.09 0.02 0.98
29. Sevilla2 32 0.63 0.38 0.86 0.14 0.03 0.75 0.22
30. Cadiz 56 0.96 0.04 0.91 0.09 0.09 0.91
Population
K-BAL 14 1.00 0.09 091
K-NE 52 1.00 0.04 0.96
K-N 21 1.00 0.05 0.95
K-CU 14 0.07 0.93 0.06 0.94
K-ZH 457 0.49 0.52 0.37 063
K-S1 206 0.90 0.10 0.93 0.06
K-S2 7 1.00 0.89 0.1
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Table 3(on next page)
AMOVA analyses

AMOVA analysis performed for different levels of genetic structure among the rabbit localities

analyzed and the inferred clusters.
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Table 3. AMOVA analysis performed for different levels of genetic structure among the rabbit localities analyzed and
the inferred clusters.

%

Structure variation F' p R P
Localities
All localities 0.287 Fsr' 0.37 0.001 Rsr 0.11 0.001
A Haplotypes Vs. B Haplotypes 0.111 Fsr'  0.173 0.001 Rsr  0.637 0.001
Clusters
STRUCTURE K1 Vs. K2 0.192 Fsr' 0.26 0.001 Rsr  0.635 0.001
All clusters BAPS 0.253 Fsr'  0.325 0.001 Rsr _ 0.627 0.001
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Figure 1

Maps of the Iberian Peninsula indicating the rabbit localities analyzed

Maps of the Iberian Peninsula indicating the localities analyzed (numbers correspond to
localities in Supplementary Table 1), the hybrid zone (white dotted line), the perpendicular
transect (black dotted line) and the average individual assignment probabilities for the 7

clusters inferred in BAPS. Colour gradient from grey (or green) to white denotes assignment

probabilities for each population from 0 to 1.
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Figure 2
Individual assignment probabilities to the genetic groups inferred in STRUCTURE.

Individual assignment probabilities (q) to genetic group K1 (A). Each dot represents an
individual, and grey bars are the confidence intervals obtained for their assignment
probabilities. Dotted lines indicate assignment probabilities to group K1 larger than 0.9 and
lower than 0.1. The number of individuals assigned within these intervals and the proportion

of their mitochondrial lineages are indicated.
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Figure 3
Clinal patterns for the mitochondrial and nuclear markers along the rabbit hybrid zone.

Clinal patterns for the mitochondrial (grey lines) and nuclear markers (black lines) along the
hybrid zone transect from southwestern to northeastern Spain (see Fig. 1). Dots represent
the frequency of lineage A mitochondrial haplotypes (grey) and mean assignment
probabilities (q) to genetic group K1 (A) in each locality. Distances are in km, starting (km 0)
at the intersection between the transect and the hybrid zone. Negative distance values

indicate km to the south and positive values km to the north.

PeerJ PrePrints | http://dx.doi.org/10.7287/peer]j.preprints.479v1 | CC-BY 4.0 Open Access | received: 27 Aug 2014, published: 27 Aug




—— R"=0.878. F=57.478. P<0.0001

1.0 A R*=0.628, F=13.501. P<0.0001
. ® % ® nDNA frequency g(A)
® ® mtDNA frequency Hap(A)

0.8 A \y
< \
> * o
& ®
O 06 ]
£
=
= %
o 0.4 + o)
3
g \
L ®

0.2 - :;\'L

e e
®
. ]
e ®
0.0
T T T T
-400 -200 0 200 400

(®)]

Geographic distance (km)

PeerJ PrePrints | http://dx.doi.org/10.7287/peer].preprints.479v1 | CC-BY 4.0 Open Access | received: 27 Aug 2014, published: 27 Aug

o -



Figure 4
Isolation by distance among rabbit localities

Isolation by distance for all the localities of O. cuniculus analyzed, as shown by the
correlation of genetic distances (FST/1 -FST) and geographic distances (Mantel test).
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Figure 5
Spatial autocorrelation analyses

Spatial autocorrelation analyses showing the average inbreeding coefficient (fij) for each

distance interval among individuals (dl.j), for the complete dataset (A) and for each of the

subspecies analyzed and the hybrid zone separately (B). Black symbols represent significant

correlations between fij and d,.j.
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