Retaining the double dimension of species diversity: Application of partially ordered set theory and Hasse diagrams

Christian Kampichler

División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico, and Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands

Ralf Wieland

Institut für Landschaftssystemanalyse, ZALF Leibniz-Zentrum für Agrarlandschaftsforschung, Müncheberg, Germany.

Corresponding author: Christian Kampichler, Sovon Dutch Centre for Field Ornithology, Tournooiveld 1, 6525 ED Nijmegen, The Netherlands; christian.kampichler@web.de

The measurement of species diversity has been a central task of community ecology from the mid 20th century onward. The conventional method of designing a diversity index is to combine values for species richness and assemblage evenness into a single composite score. The literature abounds with such indices. Each index weights richness and evenness in a different fashion. The conventional approach has repeatedly been criticized since there is an infinite number of potential indices which have a minimum value when S (species richness) $=1$ and a maximum value when S $=\mathrm{N}$ (number of individuals). We argue that partial order theory is a sound mathematical fundament and demonstrate that it is an attractive alternative for comparing and ranking biological diversity without the necessity of combining values for species richness and evenness into an ambiguous diversity index. The general principle of partial ordering is simple: one particular assemblage is
regarded as more diverse than another when both its species richness and its evenness are higher. Assemblages are not comparable with each other when one has a higher value for species richness and a lower value for evenness. Hasse diagrams can graphically represent partially ordered communities. Linear extensions and rank-frequency distributions reveal the potential of partial order theory as a means to support decisions when assemblage ranking is desired.

Introduction

A crucial task of community ecology since the mid $20^{\text {th }}$ century has been the measurement of species diversity. Literally, dozens of diversity indices abound in the literature (Magurran 2004) each with different characteristics, for example the Simpson index, the Shannon index and the Hill series of diversity indices. In their classical form ${ }^{1}$, these indices map two central attributes of species assemblages into a single index, the number of species present (species richness) and the evenness of the assemblage (the relative proportions of the constituent species). Since different diversity indices weight richness and evenness differently, they can lead to different rankings when comparing a number of assemblages. Although, at first sight, species diversity might appear a simple and straightforward concept, it admittedly lacks a well-defined theoretical foundation; diversity has not a single, unequivocal definition but is only implicitly defined by the respective index which is applied.

Widely-used textbooks on ecology normally introduce the subject of species diversity by presenting intuitive examples, as in Begon et al. (2006, p. 471, italics ours): "Consider a community of 10 species with equal numbers in each, and a second community, again consisting of 10 species, but with more than 50% of the individuals belonging to the most common species and less than 5% in each of the other nine. Each community has the same species richness, but the first, with a more 'equitable' distribution of abundances, is clearly more diverse than the second. Richness and equitability combine to determine community diversity." Likewise, in the popular textbook on diversity and its measurement by Magurran (2004, p. 9), one finds little more than the promulgation that, "A diversity index is a single statistic that incorporates information on richness and evenness. [...] The weighting placed on one component relative to the other can have significant influence on the value of the diversity recorded." Although textbooks are not the final authority on scientific

[^0]thinking, they are the portal for the next generation of ecologists and their failure to explain in theory why species richness and patterns of relative abundance should be boiled down to a single index (Brüggemann and Fromm 2001) is perplexing. In the opinion of Lambshead et al. (1983), "to suggest that diversity is lower with a reduced number of species or that diversity is higher if the species abundances are more evenly distributed is to give an indication of how a measure of diversity should behave and not to define diversity itself."

Almost 40 years ago, Hurlbert (1971) declared diversity to be a non-concept. Referring to the widely-used Shanon index as an example, he stated that "it has not been shown that information theoretic indices have any greater biological relevance than do the infinite number of other potential indices which have a minimum value when $S=1$ and a maximum value when $S=N^{\prime}$ ' (italics ours). Indeed, present-day ecologists continue to develop indices as if this were the solution to the conceptual deficiencies (e.g., Gorelick 2006, Grunewald and Schubert 2006, Campos and Isaza 2009). The complexity of the methodological approaches is steadily increasing and the numbers of indices has soared such that some papers set out to explore the diversity of diversity indices rather than diversity itself (e.g., Ricotta 2007). Articles comparing the performance of different indices in different contexts continue to flourish today (e.g., Lamb et al. 2009, Beck and Schwanghart 2010). However, an ecological concept is different from diversity as a statistical index, no matter how complex and elaborate the latter might be defined (Pielou 1980, Sugihara 1982). This leads to the question whether the methodological development since Hurlbert (1971) has been paralleled by conceptual progress or not. Some advocate that diversity values are merely numbers whose relevance to ecological problems must be judged on the basis of observed correlations with other environmental variables (e.g., Molinari 1989). Although one might argue that Hurlbert's (1971) critique of the ambiguous definition of diversity is now outdated, discussion about the meaning of diversity has been kept alive by ecologists and philosophers of science (e.g., Gutmann and Janisch

2001, Ricotta 2005, Jost 2006).

A promising remedy has emerged that might circumnavigate the conceptual difficulties of composite indices and keep separate the two classic dimensions of diversity, richness and evenness. Accordingly, Patil and Taillie (2004) argue that there is no unique way to rank a number of objects (here, assemblages) when each object is characterized by a suite of indicator values (here, richness and evenness). The conventional method of combining the indicator information into a single composite score implies judgments about tradeoffs or substitutability of the indicators. The authors suggested that the positions of the objects in indicator space define only a partial order; and that a given pair of objects may not be inherently comparable. Thus, several attempts have been made to apply poset (partially ordered set) theory to diversity measurement (Patil and Taillie 1979, 1982, Rousseau et al. 1999). Furthermore, the approach to analyzing intrinsic diversity profiles or kdominance curves (e.g. Lambshead et al. 1983, Warwick 1986, Clarke 1990, Teixeira et al. 2007) is based on poset theory and dates back to an earlier paper by Patil and Taillie (1977) who determined a given assemblage to be intrinsically more diverse than another without reference to indices. The general principle of partial orders is simple: one assemblage is more diverse than another only when its species richness and its evenness are higher; two assemblages are non-comparable when one has a higher species richness but a lower evenness than the other. Instead of relying on the result of a composite diversity index, we accept that different characteristics of the assemblages have a different order. Nevertheless, we can compare various assemblages with respect to characteristics of their richness and evenness: poset theory can handle these cases and permits a graphical representation of them, for example, via Lorenz curves (Lorenz 1905, Rousseau et al. 1999). Recently, posets have received growing attention in environmental analysis (Brüggemann and Fromm 2001, Lerche et al. 2002, Brüggemann et al. 2003, Patil and Taillie 2004) since they allow multi-criteria ranking. The approach has also gained interest among theoretical ecologists (e.g.

Gosselin, 2006, Liu et al. 2007, Gattone and Di Battista 2009). Despite its intuitive simplicity, it has been only occasionally applied by ecological practitioners (e.g., Kindt et al. 2006), perhaps due to the highly technical nature of the respective papers. Poset-related alternative methods to composite diversity index application (intrinsic diversity profiles, k -dominance curves) continue to be greatly outnumbered by classic diversity indices. Between 2005 and 2009, 30 papers applying diversity profiles were published in ecologically and environmentally oriented journals monitored by the ISI Web of Knowledge (http://apps.isiknowledge.com), while the Shannon index alone accounted for 115 papers in the same period.

The aim of this paper is to underpin the suitability of poset theory for measuring, representing and -most of all—ranking biological diversity without the necessity of combining species richness and evenness into an ambiguous diversity index. For purposes of comprehensibility, we keep mathematical technicalities to a minimum in this paper. Furthermore, we apply the Hasse diagram as a powerful alternative to Lorenz curves for the graphical representation of partially ordered communities.

Partial ordering and Hasse diagrams

Both dimensions of diversity-species richness (S) and evenness (E)-can easily be compared and ranked among assemblages. Species richness is simply defined by the number of species present in an assemblage; its values can be determined by counting and applying species richness estimators (Gotelli and Colwell 2001). Evenness is more complicated and a huge number of indices exist for this measure. Rousseau et al. (1999) proposed the application of partially ordered set theory to overcome this ambiguity and to base the measurement of evenness on a mathematical fundament. In their approach, the cumulative proportion of species of an assemblage is plotted against the
cumulative proportion of abundances yielding so-called Lorenz curves (Lorenz 1905). If the curve of a given assemblage lies above the curve of another, it is more even; if two curves intersect, they cannot be compared, i.e., no decision can be made whether one assemblage has a higher or lower evenness than the other (Fig. 1). Thus, the Lorenz curves yield a partial order and not the total order. Rousseau et al. (1999) suggest dividing the reciprocal of the well-known Simpson index by the number of species to obtain a measurement of evenness that respects the partial order of the Lorenz curves. For a measurement of evenness, we use the index, $E=1 /\left(S^{*} \Sigma p_{i}^{2}\right)$, where p_{i} is the proportion of the i-th species in the assemblage, throughout the remainder of this paper.

Let us compare the abundance vectors of three communities, $A=(20,20,20,20,20), B=(70,10$, $10,10)$, and $C=(50,30,20)$. If we applied a traditional diversity index approach, we would readily conclude that the species diversity of A is higher than that of B and C, since A contains more species $\left(S_{A}=5\right)$ than assemblages $B\left(S_{B}=4\right)$ and $C\left(S_{C}=3\right)$, and the evenness of $A\left(E_{A}=1\right)$ is higher than the evenness of $B\left(E_{B}=0.48\right)$ and $C\left(E_{C}=0.88\right)$. However, difficulties would arise when comparing B and C, since S_{B} is higher than S_{C}, although C appears to be more evenly structured. The outcome of a ranking would depend entirely on the chosen diversity index and thus usually on the decision of the researcher (Solomon 1979) whose choice may be governed by personal, institutional and disciplinary tradition rather than purely by reasoning. In this example, we argue against the "almost irresistible human urge to combine different views [...] into a linear ordering" (Patil and Taillie 2004). Thus, we retain species richness and evenness as separate dimensions of diversity, and accept that B and C are non-comparable and cannot be ranked. The diversity D_{X} of a given assemblage X is said to be higher than diversity D_{Y} of assemblage Y only when $S_{X} \geq S_{Y}$ and $E_{X} \geq E_{Y}$, i.e., the set of assemblages is interpreted as a poset. The fundamental characteristics of posets are reflexivity,

$$
\text { i.e., } D_{X} \geq D_{X} \text {, }
$$

antisymmetry,

$$
\text { i.e., if } D_{X} \leq D_{Y} \text { and } D_{Y} \leq D_{X} \text { then } D_{X}=D_{Y} \text {, }
$$

and transitivity,
i.e., if $D_{X}>D_{Y}$ and $D_{Y}>D_{Z}$ then $D_{X}>D_{Z}$.

A compendium of different methodological aspects and applications of partial order theory is given in Brüggemann and Carlsen (2006).

By way of illustration, we calculate the richness and evenness of a simulated introductory dataset in Table 1. From this, we establish a complete and partial ordering and graphically represent the results as Hasse diagrams. At first, we elaborate the so-called zeta matrix (Patil and Taillie 1982). It is a square matrix whose rows and columns are labeled by the members of the poset (here, the assemblages) and whose entries are 1 or 0 . The entry is 1 if the diversity (D) of the corresponding column is equal to or larger than D of the corresponding row of a given cell (Table 2). The assemblage with maximal diversity-i.e., no other assemblage has an equal or higher D-can easily be identified since its row contains only zeroes except for a single 1 in the diagonal position. When the column of an assemblage is zero except a single 1 in the diagonal position, then the assemblage has minimal diversity. In example 1, one assemblage has a maximal (Sim3) and the other minimal (Sim5) diversity (Table 2A). In a Hasse diagram, the assemblages with maximal diversity are represented as dots at the top of the figure while assemblages with minimal diversity appear at the bottom. Assemblages that are neither maximal nor minimal are positioned intermediately, thereby ensuring that, for each comparable pair of assemblages, the one with the higher diversity is located higher in the graph. Pairs of comparable assemblages are connected by lines in such a way that each trajectory from top to bottom of the diagram—a so-called chain-represents a valid ranking of assemblages. From example 1, the following single chain results (Fig. 2A), Sim3 $>\operatorname{Sim} 2>\operatorname{Sim} 1>$ $\operatorname{Sim} 4>\operatorname{Sim} 5$, thus the set of assemblages exhibits a complete linear order.

In example 2, one assemblage has a maximal diversity (Sim3 - only zeroes in its row except a single 1 in the diagonal) and two have minimal (Sim4, Sim5 - only zeroes in their columns except a single 1 in the diagonal) (Table 2B). Those with minimal diversity cannot be compared since $S_{\text {Sim } 4}>$ $S_{\mathrm{Sim} 5}$, but $E_{\mathrm{Sim} 4}<E_{\mathrm{Sim} 5}$ (Table 1), thus the set of assemblages can only be partially ordered. Sim4 and Sim5 are positioned at the bottom of the Hasse diagram, and they are not connected by lines due to their lack of comparability (Fig. 2B). Assemblages Sim1 and Sim2 are identical-something that will rarely occur in real data; thus, they are plotted at the same level in the graph and are connected by a horizontal line. The Hasse diagram of example 2 contains four chains:

$$
\begin{aligned}
& \operatorname{Sim} 3>\operatorname{Sim} 2>\operatorname{Sim} 4 \\
& \operatorname{Sim} 3>\operatorname{Sim} 2=\operatorname{Sim} 1>\operatorname{Sim} 5 \\
& \operatorname{Sim} 3>\operatorname{Sim} 1>\operatorname{Sim} 5
\end{aligned}
$$

and

$$
\operatorname{Sim} 3>\operatorname{Sim} 1=\operatorname{Sim} 2>\operatorname{Sim} 4
$$

which can be simplified to

$$
\operatorname{Sim} 3>\operatorname{Sim} 1, \operatorname{Sim} 2>\operatorname{Sim} 4
$$

and

$$
\operatorname{Sim} 3>\operatorname{Sim} 1, \operatorname{Sim} 2>\operatorname{Sim} 5 \text { (Fig. 2C). }
$$

The Hasse diagrams for these introductory examples can easily be sketched. For Hasse diagrams that are more complicated, Patil and Taillie (1982) provided a recipe of matrix operations to generate them from their corresponding zeta matrices. Computer programs for generation of Hasse diagrams are available (see software overview in Brüggemann et al. 2008, Sargin and Ünlü 2010). The open-source program PyHasse can be downloaded from http://www.zalf.de/en/forschung/institute/lsa/forschung/methodik/samt/Pages/Download.aspx.

Table 3 presents simulated data of nine assemblages with different species richness as a third example. Three assemblages each have $S=10,5$ or 2 , respectively, and the levels of evenness differ. In this hypothetical example there is no need to weight richness or evenness as done explicitly or implicitly by any composite diversity index; thus assigning equal importance to richness and evenness with the application of partial ordering is an objective way to evaluate and rank the diversity of these assemblages. The corresponding zeta matrix (Table 4) shows that there is a single maximal element (Sim1), as well as three minimal elements (Sim3, Sim6, Sim9 - only zeroes in their columns except a single 1 in the diagonal). The Hasse diagram of the poset contains four chains (Fig. 2D):

$$
\begin{aligned}
& \operatorname{Sim} 1>\operatorname{Sim} 2>\operatorname{Sim} 3 \\
& \operatorname{Sim} 1>\operatorname{Sim} 2>\operatorname{Sim} 6 \\
& \operatorname{Sim} 1>\operatorname{Sim} 4>\operatorname{Sim} 5>\operatorname{Sim} 6
\end{aligned}
$$

and

$$
\operatorname{Sim} 1>\operatorname{Sim} 4>\operatorname{Sim} 7>\operatorname{Sim} 8>\operatorname{Sim} 9
$$

yielding 19 pairs of assemblages that can be compared (e.g., Sim1-Sim4, Sim2-Sim6, Sim7-Sim9). The remaining 17 pairs of assemblages cannot be compared, for example, Sim2-Sim4, Sim3-Sim5 or Sim6-Sim8.

As an example for the application of partial ordering to real data, we analyze data of five stream fish assemblages (Ross et al. 1987); used also by Magurran (1988) in her famous book on species diversity and its measurement (see Appendix A for full data on species and abundance). The application of two of the most common diversity indices, the Shannon-Index H^{\prime} and Fisher's α, to these data yield a contradictory ranking of assemblages:

$$
\text { Ross3 > Ross1 > Ross2 > Ross5 > Ross4 }\left(H^{\prime}\right)
$$

and

$$
\text { Ross } 4>\operatorname{Ross} 1>\operatorname{Ross} 3>\operatorname{Ross} 5>\operatorname{Ross} 2(\alpha) .
$$

Species richness ranges from 18 to 24 , and sample size ranges between 785 and 4504 individuals. The differences in observed S between sites thus might be due to a sampling effect since the more individuals are sampled in an assemblage the larger the number of registered species will be. In such a case, it is advisable to standardize species richness by rarefaction (Gotelli and Colwell 2001) prior to partial ordering. We applied the R package vegan (Oksanen et al. 2008; R Development Core Team 2009) using the function rarefy and all sites were standardized to a sample size of 785 individuals. Evenness was calculated on the basis of the rarefied community data, since S appears in the denominator of the evenness index which was suggested by Rousseau et al. (1999) (for standardized species richness and evenness, see Table 5). (The order of the sites according to evenness was not altered by the rarefaction.)

Two assemblages have maximal (Ross1, Ross3) diversity and three minimal (Ross2, Ross4, Ross5) (Table 6). No assemblages are in the intermediate position, and the Hasse diagram consists of only two layers (Fig. 2E). Four pairs of assemblages can be compared: Ross1 has higher diversity than Ross2, Ross4 and Ross5, and Ross3 has higher diversity than Ross2. The remaining six pairs (Ross1-Ross3, Ross2-Ross4, Ross2-Ross5, Ross3-Ross4, Ross3-Ross5, Ross4-Ross5) cannot be compared.

Patil and Taillie (1979) and Rousseau et al. (1999) proposed using modified Lorenz curves-the well-known "diversity profiles" or "k-dominance curves"-for assemblage comparison. These curves retain all information on species numbers and relative abundance structure of the compared assemblages, but have the drawback of becoming quite confusing once the number of assemblages becomes moderately high. Clarke (1990) proposed a logistic transformation of the y axis which has
a linearising effect on k-dominance curves without altering their cumulative structure. Although this may facilitate visual discrimination, Hasse diagrams are much clearer and can be more easily interpreted.

Linear extensions and the rank-frequency distribution

Although we should accept the fact that assemblages may not be comparable, it is sometimes desirable to rank assemblages linearly, for example, to prioritize conservation efforts. For these purposes, it is necessary to rank the members of a poset by considering all possible linear rankings -called linear extensions in poset theory terminology-that are consistent with its partial order (Patil and Taillie 2004). Non-comparable pairs of assemblages, X and Y, may take on any relationship, i.e., $X>Y$ and $Y>X$. For example, the linear extension

$$
\text { Ross } 1>\operatorname{Ross} 3>\operatorname{Ross} 2>\operatorname{Ross} 4>\operatorname{Ross} 5
$$

respects the relationships Ross1 $>$ Ross2, Ross1 $>$ Ross4, Ross1 $>$ Ross5 and Ross3 $>$ Ross2 defined by the partial order (Fig. 2E) and further assumes Ross1 > Ross3, Ross2 $>$ Ross 4 and Ross2 $>$ Ross5. There are 18 possible rankings consistent with the partial order for the stream fish data which can easily be visualized as branches of a tree with linear extensions (Fig. 3). Each assemblage appears with a certain frequency on a given rank. For example, in 12 of the linear extensions, the assemblage Ross1 appears on the first rank, and in six linear extensions on the second rank. Table 7 sums up rank frequency information for all assemblages; according to rank frequency the fish stream data can be linearly ranked as

$$
\text { Ross } 1>\operatorname{Ross} 3>\operatorname{Ross} 4=\text { Ross } 5>\text { Ross } 2 .
$$

As a control, row and column sums of frequencies must equal the number of linear extensions. As clear as this method seems to be, its implementation is limited to comparisons of ≤ 15 assemblages. Brüggemann et al. (2004) proposed an alternative approximation of linear extensions.

Conclusions

Poset theory appears to be a powerful alternative to the common approach of composite diversity indices. Richness and evenness are retained separately and are evaluated on a firm mathematical basis (Patil and Taillie 2004, Pavan and Todeschini 2008) without the necessity of arbitrary or controversial judgments about how to weight them. At the same time, a poset is a straightforward and easy to comprehend concept which can be used without necessarily referring to its mathematical background. Hasse diagrams visualize partial orders in a comprehensible way and can be easily interpreted if the number of assemblages is not too high. Linear extensions and rankfrequency distributions show the potential of posets as decision-supporting tools when assemblage ranking is desirable, for example, to identify trends in diversity change or to prioritize restoration, conservation or other management measures.

Poset theory is a well established field of mathematics and its numerous tools available to the ecologists await detection, evaluation and application. In this paper, for example, we concentrated on the classic approach of regarding species richness and evenness as core elements in estimating diversity. However, we do not favor restricting the measurement of diversity to just two numbers. It would be interesting in future work to extend partial order theory to the diversity profile of Hill numbers (Hill 1973) as a characterization of community. Since the 1990s, the necessity of including phylogenetic relationships into measures of diversity became recognized (Vane-Wright et al. 1991) and has given rise to a voluminous body of literature (e.g. Moreno et al. 2009, Ricotta et al. 2009). The discussion on how diversity determines ecosystem function and services have raised interest in functional diversity (e.g. Petchey and Gaston 2002, Naeem and Wright 2003). Particularly in these contexts, we maintain that poset theory could prove its potential for multi- criteria ranking strategies
(Patil and Taillie 2004).

Acknowledgements - We thank R. Brüggemann for commenting on the manuscript and John Plant for checking the English.

References

Beck, J. and Schwanghart, W. 2010. Comparing measures of species diversity from incomplete inventories: an update. - Methods in Ecology \& Evolution 1, 38-44.

Begon, M. et al. 2006. Ecology - From Individuals to Ecosystems, $4^{\text {th }}$ edition. - Blackwell.

Brüggemann, R. and Fromm, O. 2001. Partielle Ordnungen: Möglichkeiten und Grenzen am Beispiel der Biodiversität. - In: Meyerhoff, J. et al. (eds.) Jahrbuch Ökologische Ökonomik 2: Ökonomische Naturbewertung. Metropolis-Verlag, pp. 181-200.

Brüggemann, R. and Carlsen, L. 2006. Partial Order in Environmental Sciences and Chemistry. Springer.

Brüggemann, R. et al. 2003. Order theoretical tools for the evaluation of complex regional pollution patterns. - Journal of Chemical Information and Computer Sciences 43, 1771-1779.

Brüggemann, R. et al. 2004. Estimation of averaged ranks by a local partial order model. - Journal of Chemical Information and Computer Sciences 44, 618-625.

Brüggemann, R. et al. 2008. Partial ordering and Hasse diagrams: Applications in chemistry and software. - In: Pavan. M. and Todeschini, R. (eds), Scientific Data Ranking Methods: Theory and Applications. Elsevier, pp. 73-94.

Campos, D. and Isaza, J. F. 2009. A geometrical index for measuring species diversity. - Ecological Indicators 9, 651-658.

Gattone, A. and Di Battista, T. 2009. A functional approach to diversity profiles. - Journal of the Royal Statistical Society Series C -- Applied Statistics 58, 267-284.

Gorelick, R. 2006. Combining richness and abundance into a single diversity index using matrix analogues of Shannon's and Simpson's indices. - Ecography 29, 525-530.

Gosselin, F. 2006. An assessment of the dependence of evenness indices on species richness. Journal of Theoretical Biology 242, 591-597.

Gotelli, N. J. and Colwell, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. - Ecology Letters 4, 379-391.

Grunewald, R. and Schubert, H. 2006. The definition of a new plant diversity index "H' dune" for assessing human damage on coastal dunes-Derived from the Shanon index of entropy H. Ecological Indicators 7, 1-21.

Gutmann, M. and Janisch, P. 2001. Überblick zu methodischen Grundproblemen der Biodiversität.

- In: Janisch, P. et al. (eds), Bodiversität - Wissenschaftliche Grundlagen und gesetzliche Relevanz. Springer, pp. 3-27.

Hill, M. 1973. Diversity and evenness: a unifying notation and its consequences. - Ecology 54, 427-432.

Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577-586.

Jost, L. 2006. Entropy and diversity. - Oikos 113, 363-375.

Kindt, R., van Damme, P. and Simons, A. J. 2006. Tree diversity in western Kenya: using profiles to characterise richness and evenness. - Biodiversity and Conservation 15, 1253-1270.

Lamb, E. G. et al. 2009. Indices for monitoring biodiversity change: Are some more effective than others? - Ecological Indicators 9, 432-444.

Lambshead, P.J.D. et al. 1983. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. - Journal of Natural History 17, 859874.

Lerche, D. et al. 2002. A comparison of partial order technique with three methods of multi-criteria analysis for ranking chemical substances. - Journal of Chemical Information and Computer Sciences 42, 1086-1098.

Liu, C. R. et al. 2007. Unifying and distinguishing diversity ordering methods for comparing communities. - Population Ecology 49, 89-100.

Lorenz, M. O. 1905. Methods of measuring concentration of wealth. - Journal of the American Statistical Association 9, 209-219.

Magurran, A. E. 1988. Ecological Diversity and its Measurement. - Croom Helm.

Magurran, A. E. 2004. Measuring Biological Diversity. - Blackwell.

Molinari, J. 1989. A calibrated index for the measurement of evenness. - Oikos 56, 319-326.

Moreno, C. et al. 2009. Taxonomic diversity as complementary information to assess plant species diversity in secondary vegetation and primary tropical deciduous forest. - Journal of Vegetation Science 20, 935-943.

Naeem, S. and Wright, J. P. 2003. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. - Ecology Letters 6, 567-579.

Oksanen, J. et al. 2008. vegan: Community Ecology Package. R package version 1.15-0. -http://cran.r-project.org/, http://vegan.r-forge.r-project.org/

Patil, G. P. and Taillie, C. 1977. Diversity as a concept and its implications for random communities. - Bulletin of the International Statistical Institute 47, 497-515.

409 Patil, G. P. and Taillie, C. 1979. An overview of diversity. - In: Grassle, J. F., Patil, G. P., Smith, 410 W. and Taillie, C. (eds), Ecological Diversity in Theory and Practice. International Co-operative

Patil, G. P. and Taillie, C. 2004. Multiple indicators, partially ordered sets and linear extensions: Multi-criterion ranking and prioritization. - Environmental and Ecological Statistics 11, 199-228.

Pavan, M. and Todeschini, R. 2008. Scientific Data Ranking Methods: Theory and Applications. Elsevier.

Petchey, O. L. and Gaston, K. J. 2002. Functional diversity (FD), species richness and community composition. - Ecology Letters 5, 402-411.

Pielou, E. C. 1980. Review on Grassle et al. (1979). - Biometrics 36, 742-743.

R Development Core Team, 2009. R: A language and environment for statistical computing. - R Foundation for Statistical Computing, http://www.R-project.org.

Ricotta, C. 2005. Through the jungle of biological diversity. - Acta Biotheoretica 53, 29.

Ricotta, C. 2007. A semantic taxonomy for diversity measures. - Acta Biotheoretica 55, 23-33.

Ricotta, C. et al. 2009. Phyloecology of urban alien floras. - Journal of Ecology 97, 1243-1251.

Ross, S. T. et al. 1987. Microhabitat partitioning of southeastern stream fishes: temporal and spatial predictability. - In: Matthews, W. J. and Heins, D. C. (eds), Community and Evolutionary Ecology of North American Stream Fishes. University of Oklahoma Press, pp. 42-51.

Rousseau, R. et al. 1999. The relationship between diversity profiles, evenness and species richness based on partial ordering. - Environmental and Ecological Statistics 6, 211-223.

Sargin, A. and Ünlü, A. 2010. DAKS: An R package for data analysis methods in knowledge space theory. - Journal of Statistical Software 37(2), 1-31. URL http:/www.jstatsoft.org/v37/i02

Solomon, D. L. 1979. A comparative approach to species diversity, - In: Grassle, J. F. et al. (eds), Ecological Diversity in Theory and Practice. International Co-operative Publishing House, pp. 2935.

Sugihara, G. 1982. Comment to Patil and Taillie (1982). - Journal of the America Statistical Association 77, 564-565.

Teixeira, H. et al. 2007. Applicability of ecological evaluation tools in estuarine ecosystems: the case of the lower Mondego estuary (Portugal). - Hydrobiologia 587, 101-112.

Vane-Wright, R. I. et al. 1991. What to protect: Systematics and the agony of choice. - Biological Conservation 55, 235-254.

Table 1. Simulated data for two introductory examples of complete and partial ordering.

Assemblage	Example 1 (complete ordering)				Example 2 (partial ordering)	
	S	E		S	E	
Sim1	18	0.48		18	0.65	
$\operatorname{Sim} 2$	19	0.60		18	0.65	
$\operatorname{Sim} 3$	21	0.67		20	0.71	
$\operatorname{Sim} 4$	16	0.45		17	0.49	
$\operatorname{Sim} 5$	12	0.43		16	0.57	

Table 2. Zeta matrices for the simulated data from Table 1.
Example 1

| | Sim1 | Sim2 | Sim3 | Sim4 | $\operatorname{Sim} 5$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Sim} 1$ | 1 | 1 | 1 | 0 | 0 |
| $\operatorname{Sim} 2$ | 0 | 1 | 1 | 0 | 0 |
| $\operatorname{Sim} 3$ | 0 | 0 | 1 | 0 | 0 |
| $\operatorname{Sim} 4$ | 1 | 1 | 1 | 1 | 0 |
| $\operatorname{Sim} 5$ | 1 | 1 | 1 | 1 | 1 |

Example 2

| | $\operatorname{Sim} 1$ | $\operatorname{Sim} 2$ | $\operatorname{Sim} 3$ | $\operatorname{Sim} 4$ | $\operatorname{Sim} 5$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Sim} 1$ | 1 | 1 | 1 | 0 | 0 |
| $\operatorname{Sim} 2$ | 1 | 1 | 1 | 0 | 0 |
| $\operatorname{Sim} 3$ | 0 | 0 | 1 | 0 | 0 |
| $\operatorname{Sim} 4$ | 0 | 1 | 1 | 1 | 0 |
| $\operatorname{Sim} 5$ | 0 | 0 | 1 | 0 | 1 |

Table 3. Simulated assemblage data for the third introductory example.

Species	Assemblages								
	Sim	Sim_{2}	Sim	Sim	Sim	Sim	Sim	Sim	$\underset{9}{\mathrm{Sim}}$
1	10	55	91	20	60	92	50	75	95
2	10	5	1	20	10	2	50	25	5
3	10	5	1	20	10	2	-	-	-
4	10	5	1	20	10	2	-	-	-
5	10	5	1	20	10	2	-	-	-
6	10	5	1	-	-	-	-	-	-
7	10	5	1	-	-	-	-	-	-
8	10	5	1	-	-	-	-	-	-
9	10	5	1	-	-	-	-	-	-
10	10	5	1	-	-	-	-	-	-
S	10	10	10	5	5	5	2	2	2
E	1	0.31	0.12	1	0.5	0.24	1	0.8	0.55

Table 4. Zeta matrix for the simulated data from Table 3.

	Sim								
	1	2	3	4	5	6	7	8	9
$\operatorname{Sim} 1$	1	0	0	0	0	0	0	0	0
$\operatorname{Sim} 2$	1	1	0	0	0	0	0	0	0
$\operatorname{Sim} 3$	1	1	1	0	0	0	0	0	0
$\operatorname{Sim} 4$	1	0	0	1	0	0	0	0	0
$\operatorname{Sim} 5$	1	0	0	1	1	0	0	0	0
$\operatorname{Sim} 6$	1	1	0	1	1	1	0	0	0
$\operatorname{Sim} 7$	1	0	0	1	0	0	1	0	0
$\operatorname{Sim} 8$	1	0	0	1	0	0	1	1	0
$\operatorname{Sim} 9$	1	0	0	1	0	0	1	1	1

Table 6. Zeta matrix for five fish stream assemblages.

	Ross					
	1	Ross	Ross	Ross	Ross	
Ross1	1	0	0	0	0	
Ross2	1	1	1	0	0	
Ross3	0	0	1	0	0	
Ross4	1	0	0	1	0	
Ross5	1	0	0	0	1	

Assemblage	S	E
Ross1	22.1	0.19
Ross2	17.4	0.17
Ross3	18.0	0.26
Ross4	20.3	0.14
Ross5	19.4	0.16

Table 5. Species richness and evenness of five stream fish assemblages (Ross et al. 1987). See Appendix A for complete data on species and abundance. Since sample size was different among assemblages ranging from $N=785$ to 4504 , we standardized species richness to the smallest sample size by rarefaction (Hurlbert 1971). Evenness was calculated on base of the rarefied community

Table 7. Rank-frequency table based on the tree of linear orderings (Fig. 3) of five fish stream assemblages.

Assemblage	Rank					
	Totals					
	1	2	3	4	5	
Ross1	12	6	0	0	0	18
Ross2	0	0	4	7	7	18
Ross3	6	6	2	2	0	18
Ross4	0	3	5	5	5	18
Ross5	0	3	5	5	5	18
Totals	18	18	18	18	18	

Figure 1. Example of evenness comparison by means of Lorenz curves for three hypothetical assemblages, $\mathrm{A}=(20,20,20,20,20), \mathrm{B}=(50,45,5)$, and $\mathrm{C}=(100,40,30,10)$. A has maximal evenness; the corresponding Lorenz curve is the 45° line. The Lorenz curves of B and C lie below the curve of A, thus they are less even. B and C cannot be compared since their Lorenz curves intersect.

Figure 2. Hasse diagrams for (A), (B) and (C) two introductory examples (Table 1); (D) simulated assemblage data (Table 3); (E) five stream fish assemblages (Ross et al., 1987) (Table 5).

Figure 3. Tree representing all possible linear extensions of the poset of fish stream assemblages.
Solid lines refer to the links present in the corresponding Hasse diagram (Fig. 2E); dotted lines are not implied by the partial order.
$1^{\text {st }}$ rank
$2^{\text {nd }}$ rank
$3^{\text {rd }}$ rank
$4^{\text {th }}$ rank
$5^{\text {th }}$ rank \qquad

Appendix A. Stream fish data from five sections of the Black Creek, Mississippi, by Ross et al. (1987).

Species	Assemblage				
	Ross1	Ross2	Ross3	Ross4	Ross5
Esox americanus	13	0	0	1	0
Ericymba buccata	3	56	2	9	83
Notropus volucellus	38	77	4	31	111
N. venustus	179	205	186	312	901
N. longirostris	4	0	6	1	89
N. texanus	749	330	39	122	100
N. roseipennis	1827	918	173	945	456
Noturus leptacanthus	56	56	7	67	51
Labisdethes sicculus	145	4	0	7	7
Fundulus olivaceus	585	123	130	190	47
Gambusia affinis	78	0	7	10	65
Aphredoderus sayanus	57	1	1	0	0
Micropterus salmoides	43	5	0	4	2
Blassoma zonatum	20	4	0	3	11
Lepomis macrochirus	281	34	20	19	31
L. punctatus	26	0	0	0	0
L. megalotis	104	33	25	36	39
L. microlophus	23	0	2	4	7
L. cyanellus	23	1	7	5	0
Ammocrypta beani	60	72	105	30	13
Percina sciera	7	11	7	15	22
Ethostoma swaini	140	54	24	12	4
E. zonale	4	38	0	51	14
E. stigmaeum	39	52	40	46	24
N	4504	2074	785	945	2077
S	24	19	18	22	20

[^0]: ${ }^{1}$ We do not consider indices of functional or phylogenetical diversity in this paper.

