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The measurement of species diversity has been a central task of community ecology from the mid 

20th century onward. The conventional method of designing a diversity index is to combine values 

for species richness and assemblage evenness into a single composite score. The literature abounds 

with such indices. Each index weights richness and evenness in a different fashion. The 

conventional approach has repeatedly been criticized since there is an infinite number of potential 

indices which have a minimum value when S (species richness) = 1 and a maximum value when S 

= N (number of individuals). We argue that partial order theory is a sound mathematical fundament 

and demonstrate that it is an attractive alternative for comparing and ranking biological diversity 

without the necessity of combining values for species richness and evenness into an ambiguous 

diversity index. The general principle of partial ordering is simple: one particular assemblage is 
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regarded as more diverse than another when both its species richness and its evenness are higher. 

Assemblages are not comparable with each other when one has a higher value for species richness 

and a lower value for evenness. Hasse diagrams can graphically represent partially ordered 

communities. Linear extensions and rank-frequency distributions reveal the potential of partial 

order theory as a means to support decisions when assemblage ranking is desired.
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Introduction 

A crucial task of community ecology since the mid 20th century has been the measurement of 

species diversity. Literally, dozens of diversity indices abound in the literature (Magurran 2004) 

each with different characteristics, for example the Simpson index, the Shannon index and the Hill 

series of diversity indices. In their classical form1, these indices map two central attributes of 

species assemblages into a single index, the number of species present (species richness) and the 

evenness of the assemblage (the relative proportions of the constituent species). Since different 

diversity indices weight richness and evenness differently, they can lead to different rankings when 

comparing a number of assemblages. Although, at first sight, species diversity might appear a 

simple and straightforward concept, it admittedly lacks a well-defined theoretical foundation; 

diversity has not a single, unequivocal definition but is only implicitly defined by the respective 

index which is applied. 

Widely-used textbooks on ecology normally introduce the subject of species diversity by presenting 

intuitive examples, as in Begon et al. (2006, p. 471, italics ours): "Consider a community of 10 

species with equal numbers in each, and a second community, again consisting of 10 species, but 

with more than 50% of the individuals belonging to the most common species and less than 5% in 

each of the other nine. Each community has the same species richness, but the first, with a more 

'equitable' distribution of abundances, is clearly more diverse than the second. Richness and 

equitability combine to determine community diversity.” Likewise, in the popular textbook on 

diversity and its measurement by Magurran (2004, p. 9), one finds little more than the promulgation 

that, "A diversity index is a single statistic that incorporates information on richness and evenness. 

[...] The weighting placed on one component relative to the other can have significant influence on 

the value of the diversity recorded." Although textbooks are not the final authority on scientific 

1 We do not consider indices of functional or phylogenetical diversity in this paper.
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thinking, they are the portal for the next generation of ecologists and their failure to explain in 

theory why species richness and patterns of relative abundance should be boiled down to a single 

index (Brüggemann and Fromm 2001) is perplexing. In the opinion of Lambshead et al. (1983), “to 

suggest that diversity is lower with a reduced number of species or that diversity is higher if the 

species abundances are more evenly distributed is to give an indication of how a measure of 

diversity should behave and not to define diversity itself.”

Almost 40 years ago, Hurlbert (1971) declared diversity to be a non-concept. Referring to the 

widely-used Shanon index as an example, he stated that “it has not been shown that information 

theoretic indices have any greater biological relevance than do the infinite number of other potential  

indices which have a minimum value when S = 1 and a maximum value when S = N” (italics ours). 

Indeed, present-day ecologists continue to develop indices as if this were the solution to the 

conceptual deficiencies (e.g., Gorelick 2006, Grunewald and Schubert 2006, Campos and Isaza 

2009). The complexity of the methodological approaches is steadily increasing and the numbers of 

indices has soared such that some papers set out to explore the diversity of diversity indices rather 

than diversity itself (e.g., Ricotta 2007). Articles comparing the performance of different indices in 

different contexts continue to flourish today (e.g., Lamb et al. 2009, Beck and Schwanghart 2010).  

However, an ecological concept is different from diversity as a statistical index, no matter how 

complex and elaborate the latter might be defined (Pielou 1980, Sugihara 1982). This leads to the 

question whether the methodological development since Hurlbert (1971) has been paralleled by 

conceptual progress or not. Some advocate that diversity values are merely numbers whose 

relevance to ecological problems must be judged on the basis of observed correlations with other 

environmental variables (e.g., Molinari 1989). Although one might argue that Hurlbert's (1971) 

critique of the ambiguous definition of diversity is now outdated, discussion about the meaning of 

diversity has been kept alive by ecologists and philosophers of science (e.g., Gutmann and Janisch 
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2001, Ricotta 2005, Jost 2006).  

A promising remedy has emerged that might circumnavigate the conceptual difficulties of 

composite indices and keep separate the two classic dimensions of diversity, richness and evenness. 

Accordingly, Patil and Taillie (2004) argue that there is no unique way to rank a number of objects 

(here, assemblages) when each object is characterized by a suite of indicator values (here, richness 

and evenness). The conventional method of combining the indicator information into a single 

composite score implies judgments about tradeoffs or substitutability of the indicators. The authors 

suggested that the positions of the objects in indicator space define only a partial order; and that a 

given pair of objects may not be inherently comparable. Thus, several attempts have been made to 

apply poset (partially ordered set) theory to diversity measurement (Patil and Taillie 1979, 1982, 

Rousseau et al. 1999). Furthermore, the approach to analyzing intrinsic diversity profiles or k-

dominance curves (e.g. Lambshead et al. 1983, Warwick 1986, Clarke 1990, Teixeira et al. 2007) is 

based on poset theory and dates back to an earlier paper by Patil and Taillie (1977) who determined 

a given assemblage to be intrinsically more diverse than another without reference to indices. The 

general principle of partial orders is simple: one assemblage is more diverse than another only when 

its species richness and its evenness are higher; two assemblages are non-comparable when one has 

a higher species richness but a lower evenness than the other. Instead of relying on the result of a 

composite diversity index, we accept that different characteristics of the assemblages have a 

different order. Nevertheless, we can compare various assemblages with respect to characteristics of 

their richness and evenness: poset theory can handle these cases and permits a graphical 

representation of them, for example, via Lorenz curves (Lorenz 1905, Rousseau et al. 1999). 

Recently, posets have received growing attention in environmental analysis (Brüggemann and 

Fromm 2001, Lerche et al. 2002, Brüggemann et al. 2003, Patil and Taillie 2004) since they allow 

multi-criteria ranking. The approach has also gained interest among theoretical ecologists (e.g. 
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Gosselin, 2006, Liu et al. 2007, Gattone and Di Battista 2009). Despite its intuitive simplicity, it has 

been only occasionally applied by ecological practitioners (e.g., Kindt et al. 2006), perhaps due to 

the highly technical nature of the respective papers. Poset-related alternative methods to composite 

diversity index application (intrinsic diversity profiles, k-dominance curves) continue to be greatly 

outnumbered by classic diversity indices. Between 2005 and 2009, 30 papers applying diversity 

profiles were published in ecologically and environmentally oriented journals monitored by the ISI 

Web of Knowledge (http://apps.isiknowledge.com), while the Shannon index alone accounted for 

115 papers in the same period.

The aim of this paper is to underpin the suitability of poset theory for measuring, representing and

—most of all—ranking biological diversity without the necessity of combining species richness and 

evenness into an ambiguous diversity index. For purposes of comprehensibility, we keep 

mathematical technicalities to a minimum in this paper. Furthermore, we apply the Hasse diagram 

as a powerful alternative to Lorenz curves for the graphical representation of partially ordered 

communities. 

Partial ordering and Hasse diagrams

Both dimensions of diversity—species richness (S) and evenness (E) —can easily be compared and 

ranked among assemblages. Species richness is simply defined by the number of species present in 

an assemblage; its values can be determined by counting and applying species richness estimators 

(Gotelli and Colwell 2001). Evenness is more complicated and a huge number of indices exist for 

this measure. Rousseau et al. (1999) proposed the application of partially ordered set theory to 

overcome this ambiguity and to base the measurement of evenness on a mathematical fundament. In 

their approach, the cumulative proportion of species of an assemblage is plotted against the 
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cumulative proportion of abundances yielding so-called Lorenz curves (Lorenz 1905). If the curve 

of a given assemblage lies above the curve of another, it is more even; if two curves intersect, they 

cannot be compared, i.e., no decision can be made whether one assemblage has a higher or lower 

evenness than the other (Fig. 1). Thus, the Lorenz curves yield a partial order and not the total 

order. Rousseau et al. (1999) suggest dividing the reciprocal of the well-known Simpson index by 

the number of species to obtain a measurement of evenness that respects the partial order of the 

Lorenz curves. For a measurement of evenness, we use the index, E = 1 / (S*pi²), where pi is the 

proportion of the i-th species in the assemblage, throughout the remainder of this paper.

Let us compare the abundance vectors of three communities, A = (20, 20, 20, 20, 20), B = (70, 10, 

10, 10), and C = (50, 30, 20). If we applied a traditional diversity index approach, we would readily 

conclude that the species diversity of A is higher than that of B and C, since A contains more species 

(SA = 5) than assemblages B (SB = 4) and C (SC = 3), and the evenness of A (EA = 1) is higher than 

the evenness of B (EB = 0.48) and C (EC = 0.88). However, difficulties would arise when comparing 

B and C, since SB is higher than SC, although C appears to be more evenly structured. The outcome 

of a ranking would depend entirely on the chosen diversity index and thus usually on the decision of 

the researcher (Solomon 1979) whose choice may be governed by personal, institutional and 

disciplinary tradition rather than purely by reasoning. In this example, we argue against the “almost 

irresistible human urge to combine different views [...] into a linear ordering” (Patil and Taillie 

2004). Thus, we retain species richness and evenness as separate dimensions of diversity, and 

accept that B and C are non-comparable and cannot be ranked. The diversity DX of a given 

assemblage X is said to be higher than diversity DY of assemblage Y only when SX  SY and EX  EY, 

i.e., the set of assemblages is interpreted as a poset. The fundamental characteristics of posets are 

reflexivity, 

i.e., DX  DX,
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antisymmetry,

i.e., if DX ≤ DY and DY ≤ DX  then DX = DY,

and transitivity, 

i.e., if DX > DY and DY > DZ then DX > DZ. 

A compendium of different methodological aspects and applications of partial order theory is given 

in Brüggemann and Carlsen (2006).

By way of illustration, we calculate the richness and evenness of a simulated introductory dataset in 

Table 1. From this, we establish a complete and partial ordering and graphically represent the 

results as Hasse diagrams. At first, we elaborate the so-called zeta matrix (Patil and Taillie 1982). It 

is a square matrix whose rows and columns are labeled by the members of the poset (here, the 

assemblages) and whose entries are 1 or 0. The entry is 1 if the diversity (D) of the corresponding 

column is equal to or larger than D of the corresponding row of a given cell (Table 2). The 

assemblage with maximal diversity—i.e., no other assemblage has an equal or higher D—can easily 

be identified since its row contains only zeroes except for a single 1 in the diagonal position. When 

the column of an assemblage is zero except a single 1 in the diagonal position, then the assemblage 

has minimal diversity. In example 1, one assemblage has a maximal (Sim3) and the other minimal 

(Sim5) diversity (Table 2A). In a Hasse diagram, the assemblages with maximal diversity are 

represented as dots at the top of the figure while assemblages with minimal diversity appear at the 

bottom. Assemblages that are neither maximal nor minimal are positioned intermediately, thereby 

ensuring that, for each comparable pair of assemblages, the one with the higher diversity is located 

higher in the graph. Pairs of comparable assemblages are connected by lines in such a way that each 

trajectory from top to bottom of the diagram—a so-called chain—represents a valid ranking of 

assemblages. From example 1, the following single chain results (Fig. 2A), Sim3 > Sim2 > Sim1 > 

Sim4 > Sim5, thus the set of assemblages exhibits a complete linear order. 
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In example 2, one assemblage has a maximal diversity (Sim3 – only zeroes in its row except a 

single 1 in the diagonal) and two have minimal (Sim4, Sim5 – only zeroes in their columns except a 

single 1 in the diagonal) (Table 2B). Those with minimal diversity cannot be compared since SSim4 > 

SSim5, but ESim4 < ESim5 (Table 1), thus the set of assemblages can only be partially ordered. Sim4 and 

Sim5 are positioned at the bottom of the Hasse diagram, and they are not connected by lines due to 

their lack of comparability (Fig. 2B). Assemblages Sim1 and Sim2 are identical—something that 

will rarely occur in real data; thus, they are plotted at the same level in the graph and are connected 

by a horizontal line. The Hasse diagram of example 2 contains four chains:

Sim3 > Sim2 > Sim4

Sim3 > Sim2 = Sim1 > Sim5

Sim3 > Sim1 > Sim5

and

Sim3 > Sim1 = Sim2 > Sim4

which can be simplified to

Sim3 > Sim1, Sim2 > Sim4

and

Sim3 > Sim1, Sim2 > Sim5 (Fig. 2C).

The Hasse diagrams for these introductory examples can easily be sketched. For Hasse diagrams 

that are more complicated, Patil and Taillie (1982) provided a recipe of matrix operations to 

generate them from their corresponding zeta matrices. Computer programs for generation of Hasse 

diagrams are available (see software overview in Brüggemann et al. 2008, Sargin and Ünlü 2010). 

The open-source program PyHasse can be downloaded from 

http://www.zalf.de/en/forschung/institute/lsa/forschung/methodik/samt/Pages/Download.aspx. 
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Table 3 presents simulated data of nine assemblages with different species richness as a third 

example. Three assemblages each have S = 10, 5 or 2, respectively, and the levels of evenness 

differ. In this hypothetical example there is no need to weight richness or evenness as done 

explicitly or implicitly by any composite diversity index; thus assigning equal importance to 

richness and evenness with the application of partial ordering is an objective way to evaluate and 

rank the diversity of these assemblages. The corresponding zeta matrix (Table 4) shows that there is 

a single maximal element (Sim1), as well as three minimal elements (Sim3, Sim6, Sim9 – only 

zeroes in their columns except a single 1 in the diagonal). The Hasse diagram of the poset contains 

four chains (Fig. 2D): 

Sim1 > Sim2 > Sim3

Sim1 > Sim2 > Sim6

Sim1 > Sim4 > Sim5 > Sim6 

and 

Sim1 > Sim4 > Sim7 > Sim8 > Sim9 

yielding 19 pairs of assemblages that can be compared (e.g., Sim1-Sim4, Sim2-Sim6, Sim7-Sim9). 

The remaining 17 pairs of assemblages cannot be compared, for example, Sim2-Sim4, Sim3-Sim5 

or Sim6-Sim8.

As an example for the application of partial ordering to real data, we analyze data of five stream 

fish assemblages (Ross et al. 1987); used also by Magurran (1988) in her famous book on species 

diversity and its measurement (see Appendix A for full data on species and abundance). The 

application of two of the most common diversity indices, the Shannon-Index H' and Fisher's α, to 

these data yield a contradictory ranking of assemblages: 

Ross3 > Ross1 > Ross2 > Ross5 > Ross4 (H') 
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and 

Ross4 > Ross1 > Ross3 > Ross5 > Ross2 (α). 

Species richness ranges from 18 to 24, and sample size ranges between 785 and 4504 individuals. 

The differences in observed S between sites thus might be due to a sampling effect since the more 

individuals are sampled in an assemblage the larger the number of registered species will be. In 

such a case, it is advisable to standardize species richness by rarefaction (Gotelli and Colwell 2001) 

prior to partial ordering. We applied the R package vegan (Oksanen et al. 2008; R Development 

Core Team 2009) using the function rarefy and all sites were standardized to a sample size of 

785 individuals. Evenness was calculated on the basis of the rarefied community data, since S 

appears in the denominator of the evenness index which was suggested by Rousseau et al. (1999) 

(for standardized species richness and evenness, see Table 5). (The order of the sites according to 

evenness was not altered by the rarefaction.)

Two assemblages have maximal (Ross1, Ross3) diversity and three minimal (Ross2, Ross4, Ross5) 

(Table 6). No assemblages are in the intermediate position, and the Hasse diagram consists of only 

two layers (Fig. 2E). Four pairs of assemblages can be compared: Ross1 has higher diversity than 

Ross2, Ross4 and Ross5, and Ross3 has higher diversity than Ross2. The remaining six pairs 

(Ross1-Ross3, Ross2-Ross4, Ross2-Ross5, Ross3-Ross4, Ross3-Ross5, Ross4-Ross5) cannot be 

compared.

Patil and Taillie (1979) and Rousseau et al. (1999) proposed using modified Lorenz curves—the 

well-known ”diversity profiles” or “k-dominance curves”—for assemblage comparison. These 

curves retain all information on species numbers and relative abundance structure of the compared 

assemblages, but have the drawback of becoming quite confusing once the number of assemblages 

becomes moderately high. Clarke (1990) proposed a logistic transformation of the y axis which has 
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a linearising effect on k-dominance curves without altering their cumulative structure. Although this 

may facilitate visual discrimination, Hasse diagrams are much clearer and can be more easily 

interpreted.  

Linear extensions and the rank-frequency distribution

Although we should accept the fact that assemblages may not be comparable, it is sometimes 

desirable to rank assemblages linearly, for example, to prioritize conservation efforts. For these 

purposes, it is necessary to rank the members of a poset by considering all possible linear rankings

—called linear extensions in poset theory terminology—that are consistent with its partial order 

(Patil and Taillie 2004). Non-comparable pairs of assemblages, X and Y, may take on any 

relationship, i.e., X > Y and Y > X. For example, the linear extension

Ross1 > Ross3 > Ross2 > Ross4 > Ross5

respects the relationships Ross1 > Ross2, Ross1 > Ross4, Ross1 > Ross5 and Ross3 > Ross2 

defined by the partial order (Fig. 2E) and further assumes Ross1 > Ross3, Ross2 > Ross4 and Ross2 

> Ross5. There are 18 possible rankings consistent with the partial order for the stream fish data 

which can easily be visualized as branches of a tree with linear extensions (Fig. 3). Each 

assemblage appears with a certain frequency on a given rank. For example, in 12 of the linear 

extensions, the assemblage Ross1 appears on the first rank, and in six linear extensions on the 

second rank. Table 7 sums up rank frequency information for all assemblages; according to rank 

frequency the fish stream data can be linearly ranked as

Ross1 > Ross3 > Ross4 = Ross5 > Ross2.

As a control, row and column sums of frequencies must equal the number of linear extensions.

As clear as this method seems to be, its implementation is limited to comparisons of ≤15 

assemblages. Brüggemann et al. (2004) proposed an alternative approximation of linear extensions.
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Conclusions

Poset theory appears to be a powerful alternative to the common approach of composite diversity 

indices. Richness and evenness are retained separately and are evaluated on a firm mathematical 

basis (Patil and Taillie 2004, Pavan and Todeschini 2008) without the necessity of arbitrary or 

controversial judgments about how to weight them. At the same time, a poset is a straightforward 

and easy to comprehend concept which can be used without necessarily referring to its 

mathematical background. Hasse diagrams visualize partial orders in a comprehensible way and can 

be easily interpreted if the number of assemblages is not too high. Linear extensions and rank-

frequency distributions show the potential of posets as decision-supporting tools when assemblage 

ranking is desirable, for example, to identify trends in diversity change or to prioritize restoration, 

conservation or other management measures.

Poset theory is a well established field of mathematics and its numerous tools available to the 

ecologists await detection, evaluation and application. In this paper, for example, we concentrated 

on the classic approach of regarding species richness and evenness as core elements in estimating 

diversity. However, we do not favor restricting the measurement of diversity to just two numbers. It 

would be interesting in future work to extend partial order theory to the diversity profile of Hill 

numbers (Hill 1973) as a characterization of community. Since the 1990s, the necessity of including 

phylogenetic relationships into measures of diversity became recognized (Vane-Wright et al. 1991) 

and has given rise to a voluminous body of literature (e.g. Moreno et al. 2009, Ricotta et al. 2009). 

The discussion on how diversity determines ecosystem function and services have raised interest in 

functional diversity (e.g. Petchey and Gaston 2002, Naeem and Wright 2003). Particularly in these 

contexts, we maintain that poset theory could prove its potential for multi- criteria ranking strategies 
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(Patil and Taillie 2004).
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Table 1. Simulated data for two introductory examples of complete and partial ordering.

Assemblage Example 1
(complete 
ordering)

Example 2
(partial 

ordering)

S E S E

Sim1 18 0.48 18 0.65

Sim2 19 0.60 18 0.65

Sim3 21 0.67 20 0.71

Sim4 16 0.45 17 0.49

Sim5 12 0.43 16 0.57

Table 2. Zeta matrices for the simulated data from Table 1.

Example 1

Sim1 Sim2 Sim3 Sim4 Sim5

Sim1 1 1 1 0 0

Sim2 0 1 1 0 0

Sim3 0 0 1 0 0

Sim4 1 1 1 1 0

Sim5 1 1 1 1 1

Example 2

Sim1 Sim2 Sim3 Sim4 Sim5

Sim1 1 1 1 0 0

Sim2 1 1 1 0 0

Sim3 0 0 1 0 0

Sim4 0 1 1 1 0

Sim5 0 0 1 0 1
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Table 3. Simulated assemblage data for the third introductory example.

Species Assemblages

Sim
1

Sim
2

Sim
3

Sim
4

Sim
5

Sim
6

Sim
7

Sim
8

Sim
9

1 10 55 91 20 60 92 50 75 95

2 10 5 1 20 10 2 50 25 5

3 10 5 1 20 10 2 - - -

4 10 5 1 20 10 2 - - -

5 10 5 1 20 10 2 - - -

6 10 5 1 - - - - - -

7 10 5 1 - - - - - -

8 10 5 1 - - - - - -

9 10 5 1 - - - - - -

10 10 5 1 - - - - - -

S 10 10 10 5 5 5 2 2 2

E 1 0.31 0.12 1 0.5 0.24 1 0.8 0.55

Table 4. Zeta matrix for the simulated data from Table 3.

Sim
1

Sim
2

Sim
3

Sim
4

Sim
5

Sim
6

Sim
7

Sim
8

Sim
9

Sim1 1 0 0 0 0 0 0 0 0

Sim2 1 1 0 0 0 0 0 0 0

Sim3 1 1 1 0 0 0 0 0 0

Sim4 1 0 0 1 0 0 0 0 0

Sim5 1 0 0 1 1 0 0 0 0

Sim6 1 1 0 1 1 1 0 0 0

Sim7 1 0 0 1 0 0 1 0 0

Sim8 1 0 0 1 0 0 1 1 0

Sim9 1 0 0 1 0 0 1 1 1
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Table 5. Species richness and evenness of five stream fish assemblages (Ross et al. 1987). See 

Appendix A for complete data on species and abundance. Since sample size was different among 

assemblages ranging from N = 785 to 4504, we standardized species richness to the smallest sample 

size by rarefaction (Hurlbert 1971). Evenness was calculated on base of the rarefied community 

matrix.

Assemblage S E

Ross1 '22.1 0.19

Ross2 '17.4 0.17

Ross3 18.0 0.26

Ross4 '20.3 0.14

Ross5 '19.4 0.16

Table 6. Zeta matrix for five fish stream assemblages. 

Ross
1

Ross
2

Ross
3

Ross
4

Ross
5

Ross1 1 0 0 0 0

Ross2 1 1 1 0 0

Ross3 0 0 1 0 0

Ross4 1 0 0 1 0

Ross5 1 0 0 0 1
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Table 7. Rank-frequency table based on the tree of linear orderings (Fig. 3) of five fish stream 

assemblages.

Assemblage Rank Totals

1 2 3 4 5

Ross1 12 6 0 0 0 18

Ross2 0 0 4 7 7 18

Ross3 6 6 2 2 0 18

Ross4 0 3 5 5 5 18

Ross5 0 3 5 5 5 18

Totals 18 18 18 18 18
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Figure 1. Example of evenness comparison by means of Lorenz curves for three hypothetical 

assemblages, A = (20, 20, 20, 20, 20), B = (50, 45, 5), and C = (100, 40, 30, 10). A has maximal 

evenness; the corresponding Lorenz curve is the 45° line. The Lorenz curves of B and C lie below 

the curve of A, thus they are less even. B and C cannot be compared since their Lorenz curves 

intersect.
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Figure 2. Hasse diagrams for (A), (B) and (C) two introductory examples (Table 1); (D) simulated 

assemblage data (Table 3); (E) five stream fish assemblages (Ross et al., 1987) (Table 5).

Figure 3. Tree representing all possible linear extensions of the poset of fish stream assemblages. 

Solid lines refer to the links present in the corresponding Hasse diagram (Fig. 2E); dotted lines are 

not implied by the partial order.
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Appendix A. Stream fish data from five sections of the Black Creek, Mississippi, by Ross et al. 

(1987).

Species Assemblage

Ross1 Ross2 Ross3 Ross4 Ross5

Esox americanus 13 0 0 1 0

Ericymba buccata 3 56 2 9 83

Notropus volucellus 38 77 4 31 111

N. venustus 179 205 186 312 901

N. longirostris 4 0 6 1 89

N. texanus 749 330 39 122 100

N. roseipennis 1827 918 173 945 456

Noturus leptacanthus 56 56 7 67 51

Labisdethes sicculus 145 4 0 7 7

Fundulus olivaceus 585 123 130 190 47

Gambusia affinis 78 0 7 10 65

Aphredoderus sayanus 57 1 1 0 0

Micropterus salmoides 43 5 0 4 2

Blassoma zonatum 20 4 0 3 11

Lepomis macrochirus 281 34 20 19 31

L. punctatus 26 0 0 0 0

L. megalotis 104 33 25 36 39

L. microlophus 23 0 2 4 7

L. cyanellus 23 1 7 5 0

Ammocrypta beani 60 72 105 30 13

Percina sciera 7 11 7 15 22

Ethostoma swaini 140 54 24 12 4

E. zonale 4 38 0 51 14

E. stigmaeum 39 52 40 46 24

N 4504 2074 785 945 2077

S 24 19 18 22 20
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