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MicroRNAs expression profile in CCR6" regulatory T cells

Backgroud. CCR6" CD4" regulatory T cells (CCR6"Tregs), a distinct Tregs subset, played an important
role in various immune diseases. Recent evidence showed that microRNAs (miRNAs) are vital regulators
in the function of immune cells. However, the potential role of miRNAs in the function of CCR6Tregs
remains largely unknown. In this study, we detected the expression profile of miRNAs in CCR6" Tregs.
Materials and Methods. The expression profile of miRNAs as well as genes in CCR6'Tregs or
CCR6Tregs from Balb/c mice was detected by microarray. The signaling pathways were analyzed using
Keggs pathway library.

Results. We found that there were 58 miRNAs significantly upregulated and 62 downregulated up to 2 fold
in CCR6'Tregs compared with CCR6 Tregs. Moreover, 1391 genes were observed with 3 fold change and
20 signaling pathways were enriched using Keggs pathway library.

Conclusion. The present data firstly showed CCR6'Tregs expressed specific miRNAs pattern, which

provide an insight into the role of miRNAs in the biological function of distinct Tregs subsets.
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INTRODUCTION

CC chemokine receptor type 6 (CCR6), a family member of chemokine receptor, was widely expressed
in various immune cells (Duhen & Campbell, 2014; Paradis et al., 2014 ; Wong et al., 2013) The
interaction of CCR6 and its distinct ligand CCL20 mediated the migration of immune cells into immune
reaction sites (Chen et al., 2011; Kallal et al., 2010). Recent evidence showed that CCR6 also was
functional expressed on CD4"CD25" regulatory T cells (Tregs) (Rivino et al., 2010). And CCR6" subset of
Tregs, displayed memory/effector phenotype, played an important role in various immune diseases
(Kitamura et al., 2010). Such as, Kleinewietfeld et al reported that CCR6+Tregs were involved in the
pathogenesis of experimental allergic encephalomyelitis (EAE) (Kleinewietfeld et al., 2005). In the setting
of tumors, Lamprecht et al reported that CCR6'Tregs might favor immune escape of
Hodgkin/Reed-Sternberg (HRS) cells (Lamprecht et al., 2008). Similarly, our recent work further showed
that CCR6" subset of Treg cells were dominantly enriched in tumor mass and closely related to poor
prognosis of breast cancer patients (Xu et al.,, 2010). Notably, the predominant proliferation triggered by
DCs was critical for their enrichment and suppressive capacity in tumor mass (Xu et al., 2011). However,
the exact regulation mechanism involved in the biological function including proliferation and suppressive
capacity of this Tregs subset remains largely unknown, which might be helpful for the understanding of
contribution of distinct Treg subsets to immunosuppression and ultimately aid the designing of therapy for
clinical related disease.

MicroRNAs (miRNAs) are endogenous, non-coding single-stranded RNAs that are approximately 20
nucleotides in length, and have emerged as a key regulator in physiology as well as pathology attributable
to its ability to downregulate gene expression through mRNA destabilization/degradation and translation
repression by binding onto either 3’ UTR of the target mRNA. Recent studies have shown that different
immune cells expressed distinct miRNAs pattern and these miRNA molecules have the ability to modify
the expression of target genes and subsequently regulate the function of immune cells (Johanson et al.,
2014; Danger et al., 2014; Gigli € Maizon, 2013). Such as, miR-21 was highly expressed in CD4" T cells
(Sommers et al., 2013). And silencing of miR-21 could alter the proliferation and function of CD4 T cells
(Wang et al., 2014). However, whether CCR6'Tregs also expressed specific miRNAs pattern and the
potential role of these miRNAs in the biological function of these cells remains to be elucidated.

To this end, in the present study, the expression pattern of miRNAs in the CCR6" Tregs was evaluated.
Moreover, the mRNA expression profile which might be affected by these miRNAs also was investigated.
Our data showed that CCR6'Tregs expressed distinct miRNAs signature, which associated with different
expression of related genes. These finding might provided novel insight in the role of miRNAs in the

function of distinct subset of Tregs.
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MATERIAL AND METHODS

Animals

Female Balb/c mice 5-6 weeks of age were purchased from the Center of Experimental Animal, Fudan
University (Shanghai, China). All animals were housed in the pathogen free mouse colony at our institution
and all animal experiments were performed according to the guidelines for the Care and Use of Laboratory
Animals (Ministry of Health, PR China, 1998) and all the experimental procedure was approved by the
ethical guidelines of Zunyi Medical College Laboratory Animal Care and Use Committee (No. 20130108).

Flow cytometry

Flow cytometry was performed on a FACSAria (BD Biosciences) with CellQuest Pro software using
directly conjugated mAbs against the following human or murine markers: CD4-PerCP,
CD25-allophycocyanin, and CCR6-FITC with corresponding isotype-matched controls (either BD
Biosciences or eBioscience Systems). Foxp3 staining was conducted using the Murine Regulatory T cell

staining kit (eBioscience) and run according to the manufacturer’s protocol.

miRNA Microarray

All sample labeling and GeneChip procession were performed in Kangchen Biotech Corp (Guangzhou,
China; http:// http://www kangchen.com.cn/english). One microgram of total RNA was labeled and then
hybridized to miRCURY LNA™ microRNA, 7.0 arrays for 16 hours at 48°C. All washing steps were
performed by a GeneChip Fluidics Station 450 and GeneChip were scanned with the GeneChip Scanner
3000 7G. Partek was used to determine ANOV A p-values and fold changes for miRNAs. Data accessible at
NCBI GEO database (Xu L et al., 2014), accession GSE60041. Species annotations were added and used to

filter only those miRNA found in Mus musculus.

Gene Expression Microarray

Total RNA was first converted to cDNA, followed by in vitro transcription to make cRNA. 5 ug of single
stranded cDNA was synthesized; end labeled and hybridized, for 16 hours at 45°C, to Mouse Gene 1.0 ST
arrays. All washing steps were performed by a GeneChip Fluidics Station 450 and GeneChip were scanned
with the Axon GenePix 4000B microarray scanner. Partek was used to determine ANOVA p-values and

fold changes for genes.

Real time PCR

All reagents, primers, and probes were obtained from Applied Biosystems. A U6 endogenous control was
used for normalization. Reverse transcriptase reactions and real-time PCR were performed according to the
manufacturer’s protocols (Applied Biosystems). RNA concentrations were determined with a NanoDrop
instrument (NanoDrop Technologies). One nanogram of RNA per sample was used for the assays. All RT
reactions, including no-template controls and RT minus controls, were run in triplicate in GeneAmp PCR

9700 Thermocycler (Applied Biosystems). Gene expression levels were quantified using the ABI Prism
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7900HT sequence detection system (Applied Biosystems). Relative expression was calculated using the
comparative threshold cycle (Ct) method. The primers used for target genes: murine miR-142a
(fwd):5-TGGCATGAGGATCAGCAGGG-3", murine miR-142a (rev):5-GGCAGTCCGCAGCTCTAG-
-G-3"; murine miR-21 (fwd): 5’-GCGTGCTAATGGTGGA-3", murine miR-21 (rev): 5’-CAGGCGTAT-
-CAGTGGG-3".

Statistical analyses

Statistical analyses of the data were performed with the aid of analysis programs in SPSS12.0 software.
Statistical evaluation was performed using one way analysis of variance (ANOVA) or t test using the
program PRISM 4.0 (GraphPad Software Inc., San Diego, CA, USA). The p values <0.05 were considered
significant and are indicated on the figures accompanying this article as follows unless otherwise indicated:

*p<0.05. Unless otherwise indicated, error bars represent SD.
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RESULTS
MicroRNA expression profiles in CCR6 Tregs

Our previous data showed that CCR6 " Tregs could dominantly enriched in tumor mass, which was
associated with their potential proliferation activity compared with their CCR6™ counterpart (Xu et al., 2010;
Xu et al., 2011). In order to characterize the miRNA expression profile that regulates genes involved in
potential proliferation activity of CCR6"Tregs, we performed a microarray assay using Affymatrix:
GeneChip miRNA 3.0 Array that contains 1111 mouse probe sequences. Microarray assays showed that
miRNA were expressed differentially in CCR6"Tregs. A total of 120 miRNA were significantly altered with
the criteria of 2.0 fold change with p<0.05 (Tab 1). Out of the 120 altered miRNAs, 58 were upregulated in
CCR6'Tregs compared with CCR6 Tregs. As shown in apie graph of miRNA distribution based on their
fold changes in expression (Fig 1A), the majority of altered (88 out of 120) fell into the range of 2.0 to 4.0
fold up or downregulation. Only eleven miRNAs (five up-regulated and another six down-regulated)
displayed over 10 fold changes between two groups (Fig 1B).

To further investigate which miRNAs was potentially involved in the proliferation activity of
CCR6'Tregs, 6 miRNAs among 120 altered miRNAs, which was well documented related to the
proliferation activity of T cells, was showed (Fig 1C). In addition, we further confirmed the expression of
miR-142a and miR-21 in these 6 miRNAs by quantitative PCR. Data showed that the expression of
miR-142a and miR-21 were also significantly upregulated in CCR6'Tregs compared with those in

CCR6Tregs respectively (Fig S1, p<0.05), which was consistent with the data in miRNA array.

Gene expression profile and signaling pathway in CCR6"Tregs

To investigate the possible function of these altered expression miRNA molecules in CCR6 Tregs, we
detected the global gene expression changes in CCR6 Tregs. CCR6 Tregs and CCR6 Tregs were harvested
and subjected to gen expression microarray assay. As shown in fig 2a, the altered gene expression profiles
in CCR6'Tregs as shown in a heat map. Given a three-fold change and p<0.05 (up and down) in differential
expression as a cut-off, the number of altered genes was reduced to 1391; 651 of them were downregulated,
and 740 genes were up regulated (Table 2 and Table 3).

To clarify which signaling pathways were altered in CCR6 Tregs, we applied the KEGG library and
performed enrichment analysis for microarray data. Twenty signaling pathways were enriched with the
criteria of 2 fold changes (Table 4), which include the inositol phosphate metabolism, T cell receptor
signaling pathway, phosphatidylinositol signaling system, mTOR signaling pathway, primary
immunodeficiency and some cancer signaling pathway. Some genes from those pathways were
downregulated or upregulated, Such as in T cell receptor signaling pathway, ICOS, ZAP70, LAT, PLC-y1,
ITK, Ras and p38 were downregulated (Fig 3). The mTOR pathway evenly consisted of both up and
downregulated genes, in which RSK, STRAD and Raptor were downregulated and PIK3c2b, TSC1 and
MO25 were upregulated (Tab 2 and 3).
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DISCUSSION

Previous studies have indicated that CD4"CD25" regulatory T cells (Treg) were a heterogeneous cell
population comprising different subsets that play distinct roles in diverse animal models or human clinical
disease, mediating immune suppression or immune tolerance (Pankratz et al., 2014, Erfani et al., 2014;
Lee et al., 2014). Thus, the investigation involved in regulation of function of distinct subset of Tregs is
valuable. Recent evidence showed that CCR6" subsets of Tregs played an important role in various immune
responses. Such as Villares et al reported that CCR6™Tregs could inhibit the function of pathological
CD4'Th1 cells mediated EAE pathology (Villares et al., 2009). We also found that CCR6 Tregs, but not
their CCR6™ counterpart, could dominantly enriched in tumor mass and potential inhibited the function of
effector T cells in vivo (Xu et al., 2010; Xu et., 2011). These finding might support the fact that
CCR6"subset of Tregs played a critical role in tumor immunity. However, the regulation mechanism
involved in the function of this subset Tregs remains largely unknown. Recent studies provided some clues
to solve this problem since they showed that miRNAs may play a regulatory role in the development and
function of Tregs (Smigielska-Czepiel et al., 2014; Fayyad-Kazan et al., 2012). To gain new insight into the
role of miRNAs in the function of CCR6 Tregs, differentially expressed miRNAs were investigated by
microarray assay. Moreover, the regulatory pathways of putative target genes were also analyzed in
CCR6'Tregs. It was found that there were significantly different miRNA expression patterns in
CCR6'Tregs and CCR6Tregs. The difference could be described one handred and twenty miRNAs,
including 58 up- and 62 down-regulated, had more than 2-fold differential expression between CCR6 Tregs
and CCR6Tregs. We speculated that the above two differences might be a reason for the different function
such as proliferation activity of CCR6 Tregs compared with CCR6 Tregs.

miR-142, a distinct member of miRNAs family, is highly conserved across species and is linked to
chromosome 3p22.3/12q14. Recent evidence showed that miR-142 was highly expressed in Tregs and
could regulate the expansion of Tregs in response to stimulation (Zhou et al., 2013). In this study, we
observed that miR-142 was significantly upregulated in CCR6'Tregs. Predicated by TargetScan and
FINDTAR3, 14 genes were putative target of miR-142, in which 4 genes was downregulated (Fig S2). We
also noticed that Gfil was downregulated in CCR6'Tregs, indicating Gfil might be a target of miR-142.
Supportively, Shi et al demonstrated that Gfil was critical for the development of Tregs. Moreover, loss of
Gfi-1 could endow the aberrant expansion of Tregs through IL-2 signaling pathway (Shi et al., 2013). Thus,
further study on miR-142 function will help us understand the regulatory role of miR-142 in the function
and proliferation of CCR6'Tregs.

MiR-21 is one of the first discovered miRNAs that is known to be widespread in human tissues such as
heart, lung, brain and liver. Accumulating data highlighted that miR-21 can regulate the biological
character of various cells including survival, invasion and apoptosis (Shi et al., 2013;Bullock et al., 2013;
Niu et al., 2012). Especially, miR-21 was documented as an important regulator actor in the proliferation of
cells. For example, Liu et al reported that miR-21 could enhance the proliferation of cancer cells through
Akt pathway(Liu et al., 2014). Interestingly, recent evidences further showed that miR-21 was also

functional expressed in T cells (Sommers et al., 2013). Such as miR-21 could support survival of CD4" T
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cells and was an important signature in CD4'T cells proliferation. And silencing of miR-21 could alter the
proportion of CD4™T cells in lupus mice (Wang et al., 2014). Consistently, we observed an increase in the
expression of miR-21 in CCR6"Tregs. Therefore, further study on the possible role of miR-21 also was
valuable for the understanding of proliferation of CCR6" Tregs.

The data from gene expression microarray showed that 1391 genes (651 downregulated and 740
up-regulated) were significantly changed with more than three fold in CCR6"Tregs. Among them, some
genes have been demonstrated to be involved in the proliferation and function of Tregs. For example, TCR
signaling pathway was critical for the proliferation and function of CCR6 Tregs. We noticed that there were
some genes such as ZAP70, LAT and PLC-1 was downregulated, indicating weak transduction of TCR
signaling pathway in CCR6Tregs. Consistently, previous literatures showed that CCR6 " Tregs displayed a
memory/effector phenotype and more sensitivity for the stimulation of TCR (Kleinewietfeld et al., 2005). In
addition, Hanschen et al reported that TCR stimulation could induce rapid and higher activation of ZAP70
in Tregs (Hanschen et al., 2012), indicating that phosphorylation of ZAP70 also might be important for the
proliferation of CCR6Tregs. Therefore, these altered genes might be good targets for the proliferation and
function of CCR6'Tregs in successive research work. In addition, we would point out that we did not find
any prominently annotated biological category using miRNA-mRNA anti-correlations in present study. We
proposal it reflect the fact that the interaction of miRNA and mRNA in the biology of CCR6"Tregs is
complex, which remains to be exactly elucidated in next work.

In summary, to our knowledge, it is the first time to show that CCR6Tregs, a distinct subset of Tregs,
expressed distinct miRNA profile, which will help us to understand the potential role miRNAs in the

biological function of CCR6 Tregs.
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400
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Table 1. 120 miRNAs altered in CCR6" Tregs.

mmu-miR-30e-5 35.12 mmu-miR-344d-3; 2.35 mmu-miR-881-3 0.37

mmu-miR-5117-3 13.35 mmu-miR-1947-3; 2.27 mmu-miR-140-5 0.36

u-let-7a-5 10.21 -miR-467c-3 2.25 -miR-130b-3 0.33

:
g
:

mmu-miR-29a-3 8.8 -miR-467c-3 2.25 -miR-467e-3 0.32

:
:

mmu-miR-25-3 5.99 mmu-miR-691 2.24 mmu-miR-24-2-5 0.31

-miR-142- mmu-miR-1193-3; 2.19 mmu-let-7g-5 0.29

-miR-744-5 4.15 -miR-5625-3 2.14 mmu-let-7d-3 0.28

:
-

mmu-let-7¢-5 3.73 mmu-miR-207 2.08 mmu-miR-431-5 0.28

mmu-miR-3474 3.37 -miR-465a-5 2.05 -miR-30b-5 0.28

:
-

mmu-miR-3470a 3.16 mmu-miR-1900 2.02 mmu-miR-1843a-3 0.27

mmu-miR-3097-5 3.07 mmu-miR-5616-3; 0.5 mmu-miR-127-3 0.24

u-miR-665-3 3.05 -miR-30e-3 0.49 -miR-669c-5 0.23

:
g
:

u-miR-665-3 3.05 -miR-340-3 0.47 -miR-30d-5 0.2

:
g
:

mmu-miR-466j 3.03 mmu-miR-467h 0.46 mmu-miR-466d-5p 0.19

u-miR-491-3 3.02 -miR-669d-5 0.44 -miR-3069-5 0.17

:
g
:

-miR-5099 2.94 -miR-30c-5 0.44 -miR-3082-5 0.15

-
:
:

mmu-miR-26a-5p 2.88 mmu-miR-467e-5p 0.44 mmu-miR-669e-5p 0.12

u-miR-1971 2.74 mmu-miR-466a/b/c/e/p-3 0.43 mmu-miR-3096a-3 0.1

i

mmu-miR-5129-5 2.61 mmu-miR-3095-5 0.41 mmu-miR-1231-3 0.1

u-miR-5627-5 2.5 mmu-miR-511-3 0.38 mmu-miR-1843b-5 0.06

I
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Over 3-fold up-regulation genes (651) in CCR6 Tregs
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Table2. Over 3-fold up-regulation genes (651)in CCR6" Tregs

Kcnh7 21.32 Aurkb 3.94 Fam195b 3.33

Gm11623 13.12 AU022751 3.93 Chi3l13 3.32

Dcn 11.30 Gda 3.92 Tef712 3.32

B) 9.22 Gm4698 391 Cecr2 3.32

x
=N

Dlgap5 9.12 S100al6 391 Haao 3.32

Cts6 8.32 2610035F20Rik 391 Vephl 3.32

Dnahcl12 8.24 Kissl 391 Dhdds 3.31

AWS551984 8.11 crl 3.89 N/A 3.31

D630033011Rik 7.87 Igh 3.88 2010204K13Rik 3.31

Igh 7.50 Clip2 3.87 Gzmb 3.30

Ly6g5b 7.15 Gysl 3.87 Pdgfra 3.30

Neurod6 6.62 Xreel 3.87 Txndcl7 3.29

P2ry4 6.43 Zfp553 3.85 Fcerl 3.29

Trappc2 6.39 Tsen54 3.85 Olfm4 3.29

Clec4n 6.38 Tcfeb 3.85 Erall 3.28

N/A 6.36 Hist1h2b, 3.84 Gm13403 3.28

Cagel 6.31 Cadps2 3.83 Chd5 3.28

N/A 6.27 2310061104Rik 3.83 Cbwdl 3.28

0 6.09 Klhl13 3.82 Whscl 3.27

|

AI324046 6.04 Zdhhc3 3.81 1 3.27

4933411K16Rik 5.98 Zbtb34 3.81 Cd180 3.27

Havcer2 5.94 Adamla 3.79 rcSa 3.26

Myom1 592 C86187 3.79 1810034E14Rik 3.26
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Olfr514 5.65 Pi 3.79 C330016010Rik 3.26

Dnajc28 5.59 Nuak?2 3.78 Ins2 3.25

4930517G24Rik 5.57 Igh 3.77 Trp53rk 3.25

N/A 5.53 Adam9 3.76 Asgrl 3.24

49a 5.50 Cenf 3.76 N/A 3.24

Klhdc7b 5.48 Vps53 3.75 Geet2 3.24

4930467D21Rik 5.42 Rbm8a 3.73 Piral 1 3.24

N/A 5.32 Pcbpl 3.73 Usp35 3.24

i 5.31 Smox 3.73 Vtila 3.23

|

f 5.27 Txnl4b 3.72 nk1 3.23

=2}
=
=

4930432E11Rik 5.24 Rims1 3.72 Hspbl1 3.23

N/A 5.22 N/A 3.71 Zdhhc4 3.23

Plinl 5.18 $36 3.70 Micalcl 3.22

Snca 5.15 Trmt2a 3.70 RP23-480B19.10 3.22

Ranbp17 5.14 Anxal 3.70 1110037F02Rik 3.22

Vmn2r121 5.09 Asb4 3.69 Cd22 3.21

Ltb4r2 5.02 Rps6kbl 3.69 2700008G24Rik 3.21

Gm2705 5.00 Wdfy4 3.68 Chst14 3.21

Fam108b 4.93 Lta4h 3.67 Gm2739 3.20

Akrlcl3 491 Psg29 3.66 Timpl 3.20

117¢ 4.89 4933421E11Rik 3.65 1700012CO8Rik 3.20

Tmed9 4.88 L 3.65 Sytl3 3.20

N/A 4.87 Gm2586 3.64 Pex11b 3.19

Gm5153 4.85 A530023014Rik 3.64 Sh3pxd2a 3.19

Hemtl 4.82 Gm11981 3.64 Trim29 3.19
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Retnl; 4.78 Lmo2 3.63 Mtus1 3.18

Tmem63b 4.77 Apoo 3.63 Gm2461 3.17

4933416MO6Rik 4.73 Med8 3.62 Acpl 3.17

Kik1b4 4.72 Med31 3.62 Kdelc2 3.17

sc 4.65 Hes6 3.61 Gprc5b 3.16

|

2] 4.62 Cdk15 3.60 Rassf4 3.16

|

Igh-VJ558 4.61 F5 3.60 Cd36 3.16

Cpne2 4.61 Clock 3.59 Acot4 3.15

Rasl10a 4.58 Coas 3.58 Igl-V1 3.15

Fn3k 4.58 Cybb 3.56 Gm6127 3.15

Gm13083 4.55 Igh 3.56 Kcnb2 3.15

4933412E24Rik 4.53 BC005705 3.56 Gm10883 3.15

Rapgefl1 4.52 Ncapd2 3.55 Mtus1 3.14

Rab711 4.49 Gem 3.55 Tdpl 3.14

N/A 4.48 Sepx1 3.55 Lmbrl 3.14

Odf4 4.46 Cpne2 3.54 2210009G21Rik 3.14

Topbp1 4.46 Ebf3 3.54 Dhx35 3.13

Gufl 4.45 N/A 3.54 4930406D18Rik 3.13

Ciita 4.43 N/A 3.54 Gm6425 3.13

Igh 4.42 Homer2 3.53 Slc22al7 3.13

Wac 4.42 Ifltd1 3.52 Sln 3.12

Plac8 441 Ptgs1 3.52 Adiporl 3.12

Gm13446 4.37 V1rc29 3.51 119 3.11

Pfkfb4 4.37 Noval 3.51 Carl 3.10
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Gpatch4 4.36 4930578N18Rik 3.49 Siglec5 3.10

Gm13154 435 Hsf4 3.49 Igk-C 3.10

Ptplad2 435 Arhgap24 3.48 3.10

Nkd1 4.34 Igh 3.48 G630018N14Rik 3.09

27 433 4930529M08Rik 3.47 Gm8787 3.08

|

Fam81b 4.29 Hist1h2bb 3.46 Gm7170 3.08

Gprl12 4.28 E030019B13Rik 3.46 Wrfdcl 3.08

m3 4.27 Gm15498 3.46 6330416G13Rik 3.07

|

Zfp354b 4.25 Stard4 3.46 Scdl 3.07

Ric3 4.24 Rpapl 3.45 Lmbrdl 3.07

Abcc3 4.22 Olfr1431 3.44 Gm5468 3.07

C230096C10Rik 4.22 Vwc2 3.44 Prom?2 3.07

Gm15623 4.20 5830477G23Rik 3.43 Clgb 3.07

Lsml 4.19 Slc25a42 3.43 Ebfl 3.06

D130009118Rik 4.17 Ccl6 3.42 Terf2 3.06

Pcdh17 4.16 Snx29 3.42 N/A 3.06

Alk 4.16 Slclal 3.41 Gm14206 3.05

Zc3h7b 4.15 D930016DO6Rik 3.41 Dhrs3 3.05

Sept8 4.13 Pou3f3 341 Map3K7ipl 3.05

N/A 4.12 Olfr1434 3.41 Itsnl 3.05

2700050LO5Rik 4.11 N/A 3.40 Gm9121 3.04

Gm11686 4.11 Pla2g7 3.40 Gprl16 3.04

1600012P17Rik 4.10 Genl 3.40 Igk-C 3.04

Caskinl 4.08 Prpf19 3.39 Cel 3.04
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Oospl 4.07 Rhox2c 3.39 N/A 3.04

Nol4 4.07 V1rb8 3.38 Gm9880 3.03

Gm5577 4.05 Tmeff1 3.38 Gm2436 3.03

Sec1411 4.04 LOC677563 3.38 Spsbl 3.03

Slpi 4.03 A430075N02 3.37 Acrvl 3.02

Tex101 4.03 Snx8 3.36 Bcllla 3.02

Gm3323 4.02 Pnmt 3.36 Ly6 3.02

Slc35e4 4.01 Serpinalf 3.35 Fchsd2 3.02

Retnl; 4.00 Kel 3.35 3300005D01Rik 3.01

Plekhm3 3.99 Axl 3.35 Hyoul 3.01

Scfd2 3.98 Spink12 3.34 Pla2g15 3.01

Yifla 3.96 Cd3001f 3.33 Gm10270 3.00

N/A 3.95 Zfp800 3.33 C730027P07Rik 3.00

448
449

PeerJ pPrePrints

Peerd PrePrints | http://dx.doi.org/10.7287/peer].preprints.471v2 | CO3BY 4.0 Open Access | received: 22 Aug 2014, published: 22 Aug



450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

Table 3(on next page)

Over 3-fold down-regulation genes (740) in CCR6 Tregs
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Table3. Over 3-fold down-regulation genes (740) in CCR6 ' Tregs

I12ra 25.65 Atxn711 4.27 Trim37 3.41

Gmo9119 15.47 St3gal3 4.25 ENSMUSG00000079376 3.41

N/A 14.55 Trerfl 4.24 9230117E06Rik 3.40

Gal3stl 12.37 2610042L04Rik 422 N/A 3.40

Gal 12.20 Clenl 421 Trav3n-3 3.39

Foxp3 11.69 Besll 4.20 Olfr109 3.39

Phkgl 10.53 Sectmla 4.18 Odf1 3.39

Evc2 10.17 Pnkd 4.17 Ifna6 3.38

Plekhg5 9.93 Gprl10 4.17 Cntn4 3.38

Acer2 9.56 Gatsl3 4.17 Gm10228 3.38

145 4.15 R3hccel 3.37

Brunol5 9.44 1700001 E04Rik 4.14 Inpp4b 3.37

Gpr83 9.43 Slc35f2 4.13 Csnklgl 3.36

Gm3727 9.36 Penk 4.13 Arhgdi, 3.36

N/A 9.24 Casp3 4.12 Cul2 3.36

Gm3339 8.66 Gm3182 4.12 Ppp2r3a 3.36

Caskin2 8.31 Acsl4 4.11 Tspanl2 3.35

Tubgep5 8.17 AI987944 4.09 1110059M19Rik 3.35

C230088HO6Rik 8.08 Tox 4.09 Parp4 3.34

Gm14005 8.04 Zscanl2 4.06 Adam33 3.34

Gm8297 7.93 Neb 4.06 Ptgdr 3.33

Slc22al2 791 BC106179 4.05 B 1 3.33
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Cadm3 7.81 Stabl 4.04 Dctn4 3.33

B630019K06Rik 7.58 Mdfi 4.03 Gm3764 3.32

Ctlad4 7.49 Slc23a3 4.03 Atg2a 3.32

Gm3182 7.44 Ghrh 4.01 Gm7225 3.32

Vwce 7.41 Itih51 4.01 Cdo6 3.31

1700029101Rik 7.31 Itga6 4.00 Thns12 3.31

Rfc3 7.29 1700042G15Rik 3.99 Robo4 3.31

N/A 7.20 nl3 3.98 1700026L06Rik 3.31

544988 7.09 1700028MO3Rik 3.98 Ehbpl 3.31

LOC100038847 6.95 Pxmp2 3.97 Zbtb37 3.30

N/A 6.92 Gm10250 3.97 Zfp30 3.30

m 6.90 Csmd1 3.96 N/A 3.29

|

Foxp3 6.85 Gm3990 3.95 Sh2d6 3.29

Grial 6.82 Olfr623 3.94 Mapk8 3.29

Gm2888 6.79 March7 3.94 Gm2046 3.29

Gm3642 6.72 Slc9a3 3.93 Tnfrsf4 3.28

Adamtsl4 6.64 Dtwd1 3.93 1700092C10Rik 3.28

Gm3269 6.59 N/A 3.92 DmxI2 3.28

544988 6.53 Amz2 3.92 ENSMUSG00000079376 3.27

2010109N18Rik 6.51 Plxna3 3.92 Plcll 3.27

Bray 6.51 Gegr 3.90 Prss39 3.27

4930486G11Rik 6.46 N/A 3.89 Fbxw24 3.26

1110017D15Rik 6.46 Olfr658 3.88 Mta 3.26

N/A 6.43 Mrgprb4 3.88 Cypt6 3.25

Gm3518 6.36 Grinl 3.87 I12rb 3.25
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Gm13620 6.23 Vmn2172 3.87 Ecel 3.24

Zscanl0 6.22 Igl 3.86 Pik3r2 3.24

1700023L04Rik

I

1600002D24Rik . 1700029G01Rik

Gm4801

Pitpncl 5.94 Gjb4 3.83 Dlgap1 322

6430562015Rik 5.92 Cntnl 3.82 Osbpl3 322

Gm3029 591 Itk 3.82 Fam186a 3.20

Nd 5.84 HI1fx 3.81 Timp4 3.20

164 5.82 Ctsj 3.80 Srd5al 3.20

Aven 5.80 Serpinale 3.79 Selll 3.19

Grik5 5.76 Tbcld4 3.79 Plac9 3.19

Ovol2 5.70 Olfr961 3.79 Slc12al 3.19

Gm10371 5.65 BC060267 3.78 Dok7 3.18

Luzp2 5.60 Argl 3.77 Gm2643 3.18

1700021F07Rik 5.58 Suclgl 3.71 Pard6b 3.18

Cul7 5.55 Synpo2 3.71 93301 11NO5Rik 3.17

Fmnl3 5.54 1190002H23Rik 3.71 Tub 3.17

Serpinb9d 5.49 Gm6710 3.76 AW495222 3.17

Skapl 5.49 N/A 3.76 Tle2 3.17

Piwil2 545 Speerdf 3.75 Ndell 3.16

Ykt6 5.43 S 3.74 Hnrpll 3.16

i
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N/A 5.39 9030624G23Rik 3.72 Cyp2j13 3.16

Gm3149 5.34 9130401MO1Rik 3.72 Mupl 3.15

Ttn 5.28 Gm12836 3.72 Snx11 3.15

Cntfr 5.26 Fastk 3.71 Dnml 3.15

LOC100038847 522 N/A 3.70 Olfr1120 3.14

Cdon 5.16 Mcm8 3.70 Morc2a 3.14

Dom3z 5.14 Gm4926 3.69 Irf6 3.14

Gm16521 5.14 N/A 3.69 1700024B18Rik 3.13

C230099D08Rik 5.13 Pcdhl5 3.68 Vmn2r10 3.13

4930599N23Rik 5.11 4933432109Rik 3.68 Mapkapk3 3.13

Gm5634 5.09 Fbpl 3.67 Ccdc65 3.13

Pax3 5.07 Gm8159 3.66 Al428936 3.12

4632404H12Rik 5.05 Kdm4a 3.66 Cenpk 3.12

Gm8050 5.02 Sgoll 3.65 Tm2d3 3.11

St3gal6 4.96 Rnf26 3.65 Tle2 3.11

Gm3172 4.95 Bubl 3.64 Olfr1128 3.11

Plcgl 4.92 Slc6a9 3.62 Grin3a 3.11

Ntn4 4.90 Al428936 3.61 Bcatl 3.10

Cyp2c50 4.88 Esrrb 3.60 Pla2gde 3.10

N/A 4.86 Ttyhl 3.59 Olfr638 3.10

Tnfrsf18 4.85 8030463A06Rik 3.59 4921509009Rik 3.09

Snhgl1 4.81 Cacnb2 3.57 Pcsk4 3.09

Ncoa7 4.80 N/A 3.57 Bree3 3.09

S100a7a 4.75 Magea3 3.56 Gm8362 3.09
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Crem 4.73 Gm3127 3.55 Fam118b 3.08

1ft80 4.71 Tmem176a 3.55 Fbxw4 3.08

1110019B22Rik 4.67 N/A 3.55 N/A 3.08

Gm7750 4.64 1700008F21Rik 3.54 Alox12b 3.07

N/A 4.61 Smc2 3.54 Caskinl 3.07

4933407CO3Rik 4.61 3.54 Helz 3.06

=
o]

Tnfrsf25 5 53 Gm3602 (U]

b
o
=
&
b
w
=N

Gm8297 5 5 n9 0

»
4
=
=
hed
by
by
X

4831440E17Rik 4.55 4833442J19Rik 3.51 Gm7696 3.06

Maf 4.54 Snapc4 3.51 Cav3 3.06

4932431H17Rik 4.53 Saps2 3.50 Cacna2dl 3.06

Gm3264 451 9930013L23Rik 3.50 Gm5134 3.05

Olfr725 4.50 LOC432958 3.49 Gm2282 3.05

Reck 4.47 B230216N24Rik 3.49 Ly6g6c 3.05

Themis 4.46 Bex1 3.48 Suox 3.05

Olfr1356 4.45 Slc35d1 3.48 4931422A03Rik 3.05

Ninj2 4.44 Zfp444 3.47 Gm8301 3.04

LOC100038847 4.43 Gm9893 3.47 Exoc31 3.04

Rsadl 4.42 Tecprl 3.46 Carl2 3.04

N/A 4.40 V1rc26 3.46 Ipcefl 3.03

Duxbl 4.38 Myolb 3.45 Stk30 3.03

k4 437 Dzipl 3.45 Klra4 3.03

I

Sfmbt2 4.33 Olfr781 3.45 Ciapinl 3.02

Myctl 4.32 Fam98c 3.44 Gm3278 3.02
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Zbtb16 431 Plekhgl 3.44 0610031016Rik 3.02

2010005H15Rik 4.29 Epb4.111 343 Numbl 3.02

Ephb3 4.28 Kenk13 343 N/A 3.01

Krt72 4.28 Gm8519 3.42 Kir; 3.01

\

Tox 4.28 N/A 3.41

N/A 18.99 Gm5282 4.25 Ksr2 3.41

112ra 15.05 4930417013Rik 4.24 n5 3.40

Ctla4 14.24 Kik6 4.23 N/A 3.40

Gm3453 12.21 Cyp4fd1-ps 4.22 Plekhal 3.39

ENSMUSG00000072735 11.93 Abcb7 4.20 Lrsaml1 3.39

Cyb5r2 11.65 Stk19 4.18 Rsbnl 3.39

Ikzf2 10.44 Fmrlnb 4.17 Mc2r 3.38

1117rc 10.00 N/A 4.17 Gm7223 3.38

ENSMUSG00000072735 9.66 Inpp4b 4.17 N/A 3.38

Neb 9.55 Dapk1 4.16 Gm5169 3.37

D15Wsul69e 9.47 Gm14717 4.14 Slc38al 3.37

Pxdn 9.44 Pdeda 4.13 Nphp3 3.37

ENSMUSG00000072735 9.43 Adam6b 4.13 Jazfl 3.36

Gm3727 9.25 2510048L02Rik 4.13 Etaal 3.36

Gm11744 9.05 Dcaf17 4.12 Gm10837 3.36

Dpy1912 8.60 1500015010Rik 4.11 Gm1574 3.35

2 8.22 Ddx43 4.10 Magi3 3.35

\

Gm2974 8.16 Plinl 4.09 Cpsfal 3.34

Fbxw27 8.05 Gm10338 4.07 Galr3 3.34

Gm8362 7.95 Fam7lel 406 Frs3 333
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Pla2g2d 7.93 100039441 4.05 BE691133 3.33

N/A 7.87 N/A 4.05 Gm11468 3.33

1 7.58 Tnfsf13b 4.04 E330021D16Rik 3.33

Q
g

Inpp4b 7.50 A930002C04Rik 4.03 Cd3001 3.32

Cyp2ul 7.47 Col6a3 4.02 Ankrd9 3.32

Tgfb2 7.43 A930017MO1Rik 4.01 Pnpla7 3.32

LOC100036568 7.32 Aurkc 4.00 4833422F24Rik 3.31

Olfr701 7.29 M 3.99 Pdcd11 3.31

Gm10014 7.22 Magehl 3.98 Aven 3.31

LOC100038847 7.16 Olfr227 3.98 Lrig2 3.31

Gm4489 7.07 Gpatch4 3.98 Kctd9 3.30

Nirx1 6.94 Milit3 3.97 Lrrc34 3.30

Gm3642 6.92 Cux1 3.96 Ano2 3.29

Dmd 6.88 Ptger3 3.96 Tmem134 3.29

ENSMUSG00000072735 6.82 2010005J08Rik 3.94 Olfr78 3.29

Arhgef15 6.81 ENSMUSGO00000072735 3.94 Uppl 3.29

Fdftl 6.73 N/A 3.94 Tex21 3.28

Nck2 6.70 Rbm9 3.93 Noll1 3.28

Zfp142 6.60 C77370 3.93 Gm3916 3.28

Gm3411 6.56 Fbxw13 3.92 ENSMUSG00000072735 3.28

9630058J23Rik 6.53 Nsll 3.92 4930587E11Rik 3.27

N/A 6.51 Ppmel 3.90 Srgap3 3.27
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Table 4(on next page)

KEGG pathway annotation of abnormal miRNA target genes

1. Gray indicated downregulated target genes in KEGG pathway.
2. In differentially expressed genes, 15 miRNA target genes were enriched into T cell receptor (TCR)
signaling pathway (Fig 3)
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Table 4. KEGG pathways annotation of abnormal miRNA target genes

Pathway MAPP name Enrichment Score
mmu00562 Inositol phosphate metabolism 3.988221
mmu04070 Phosphatidylinositol signaling system 3.533671
mmu05410 Hypertrophic cardiomyopathy (HCM) 2.394271
mmu04725 Cholinergic synapse 2.227839
mmu05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 2.126784
mmu04724 Glutamatergic synapse 2.109772
mmu03460 Fanconi anemia pathway 2.017738
mmu05142 Chagas disease (American trypanosomiasis) 2.010757
mmu04150 mTOR signaling pathway 1.906663
mmu04660 T cell receptor signaling pathway 1.713143
mmu05322 Systemic lupus erythematosus 12.6937
mmu04640 Hematopoietic cell lineage 6.723747
mmu05034 Alcoholism 6.20107
mmu05152 Tuberculosis 5.152889
mmu04662 B cell receptor signaling pathway 4.675411
mmu05202 Transcriptional misregulation in cancer 4.643977
mmu04672 Intestinal immune network for IgA production 4281526
mmu04380 Osteoclast differentiation 4255375
mmu05150 Staphylococcus aureus infection 3.867061
mmu05340 Primary immunodeficiency 3.857659

570 1. Gray indicated downregulated target genes in KEGG pathway.
571 2. In differentially expressed genes, 15 miRNA target genes were enriched into T cell receptor (TCR) signaling pathway
572 (Figure 3).
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Figure 1

miRNA expression in CCR6 Tregs.

CCR6'Tregs and CCR6 Tregs were purified from splenocytes in Balb/c mice. The expression of miRNAs
in cells was analyzed by microarray array. (A) A heat map of miRNA microarray. (B) A pie graph of

miRNA distribution. (C) Predication of putative 6 miRNAs associated with potential proliferation activity

of CCR6"Tregs based on functional similarity of target sets.
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Figure 2

Gene expression in CCR6 " Tregs detected by microarray assay

CCR6'Tregs and CCR6 Tregs were purified from splenocytes in Balb/c mice. The global expression of
genes in cells was analyzed by microarray array. (A) A heat map of gene microarray. (B) The scatter plot

for the variation between CCR6"Tregs and CCR6Treg (C). The fold change and frequency between
CCR6'Tregs and CCR6 Tregs
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Figure 3

Abnormal target genes of differentially expressed miRNAs were significantly enriched in the TCR

signaling pathway.

The p value calculated by the hypergeometric distribution was set to 0.01. Downexpressed genes were

shown in yellow.
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