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Abstract6

Motor activity, like that producing locomotion, is generated by networks of neurons.7

At the last output level of these networks are the motor neurons, which send signals to8

the muscles, causing them to contract. Current research in motor control is focused on9

finding out how motor neurons contribute to shaping the timing of motor behaviors.10

Are motor neurons just passive relayers of the signals they receive? Or, do motor11

neurons shape the signals before passing them on to the muscles, thereby influencing12

the timing of the behavior? It is now well accepted that motor neurons have active,13

intrinsic membrane properties - there are ion channels in the cell membrane that allow14

motor neurons to respond to input in non-linear and diverse ways. However, few direct15

tests of the role of motor neuron intrinsic properties in shaping motor behavior have16

been carried out, and many questions remain about the role of specific ion channel17

genes in motor neuron function. In this study, two potassium channel transgenes were18

expressed in Drosophila larvae, causing motor neurons to fire at lower levels of current19

stimulation and at higher frequencies, thereby increasing excitability. Mosaic animals20

were created in which some identified motor neurons expressed the transgenes while21

others did not. Motor output underlying crawling was compared in muscles innervated22

by control and experimental neurons in the same animals. Counterintuitively, no effect23

of the transgenic manipulation on motor output was seen. Future experiments are24

outlined to determine how the larval nervous system produces normal motor output in25

the face of altered motor neuron excitability.26
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McKiernan, 2014 2

Introduction27

To produce essential motor behaviors like breathing and walking, muscles must contract in28

the same order, for roughly the same duration, each time a breath or step is taken. There is29

a pattern of activity, called a motor pattern, that must be reliably produced by the nervous30

system (for reviews on motor pattern generation see Büschges et al., 2011; Grillner , 2003;31

Harris-Warrick , 2010; Kiehn, 2006; Marder & Bucher , 2001; Selverston, 2010). However,32

the system also has to be flexible enough to respond to changing internal and external33

conditions (Blitz & Nusbaum, 2011; Harris-Warrick , 2011). There are open questions about34

how the nervous system controls rhythmic movements, permitting reliability and flexibility.35

What determines the timing of the motor pattern? Under what conditions can the timing36

be altered, and how?37

Rhythmic motor behaviors are controlled by networks of neurons which communicate38

electrically and chemically (Büschges et al., 2011; Grillner , 2003; Harris-Warrick , 2010;39

Kiehn, 2006; Marder & Bucher , 2001; Selverston, 2010). Since motor neurons (MNs) repre-40

sent the direct connection between neurons in those networks and the muscles, it is important41

to understand how MNs receive, integrate, and generate signals (Heckman et al., 2009; Kiehn42

et al., 2000; Perrier & Hounsgaard , 2000). What happens as signals pass from the MNs to43

the muscles? Do MNs transmit a temporally similar pattern of activity to the one they44

received, or do they change the pattern? If the latter, to what extent do MNs contribute to45

shaping the final timing of motor behavior?46

MNs express channels that allow ions such as calcium, potassium, and sodium to cross47

the membrane, producing currents that change electrical activity (Harris-Warrick , 2002;48

McLarnon, 1995). Studies have demonstrated that persistent inward currents (PICs) car-49

ried by sodium and calcium can shape MN responsiveness to synaptic input and firing50

output (Hultborn et al., 2003; Lee & Heckman, 1998, 2001; Perrier & Tresch, 2005). A re-51

cent study combining modeling and experimental approaches showed that MN currents, not52

necessarily just PICs, can shape the phasing of the motor pattern (Wright Jr & Calabrese,53

2011). However, the common drawback of many of these studies is that the role of MN54

currents was not examined during ongoing, spontaneous motor behavior. Open questions55

remain about the extent to which the intrinsic properties of MNs contribute to the timing56

of rhythmic motor output and furthermore, which ion channel genes may be involved in MN57

responsiveness.58

The aim of this study was to examine the effects of altering MN intrinsic properties on59

the timing of a spontaneous rhythmic motor behavior. Two dominant-negative potassium60

channel transgenes were expressed in Drosophila larval MNs using the recombinant line61

known as ‘Electrical Knock-In’ (EKI). The EKI manipulation reduces both transient and62

sustained potassium currents and increases the excitability of larval (Hartwig et al., 2008)63

and adult Duch et al. (2008) MNs. EKI was expressed in two identified MNs, MN1-Ib and64

MNISN-Is, which display different levels of excitability and contribute in distinct ways to65
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McKiernan, 2014 3

rhythmic locomotor activity (Schaefer et al., 2010). Mosaic animals were generated using66

the FLP/FRT system (Golic & Lindquist , 1989; Ryder & Russell , 2003) in which some MNs67

expressed the manipulation while others did not, permitting the comparison of control and68

experimental conditions in the same animal and the relative effects of changing excitability in69

MN1-Ib or MNISN-Is. Despite changes in MN excitability, the activity of muscles receiving70

signals from manipulated MNs was no different from controls. This counterintuitive result71

raises important questions about how networks maintain locomotor behaviors in the face of72

perturbations.73

Material & Methods74

Fly lines and genetics75

Drosophila melanogaster were reared at 25 ◦C under 12-hour light-dark cycles on standard76

yeast-sugar-cornmeal media. Wandering third-instar larvae were used for all experiments.77

To alter MN activity, UAS-ether-a-go-go Broughton et al. (2004) and UAS-Shaker Mosca78

et al. (2005) dominant-negative transgenes were expressed using a recombinant line (+;UAS-79

eagDN932,USDT-207/Cyo), also known as ‘Electrical Knock-In’ (EKI) (Hartwig et al., 2008).80

Larval MNs expressing EKI have reduced transient and sustained potassium currents, fire81

action potentials at lower levels of current injection, show a decreased latency to first spike,82

and fire at higher frequencies than control neurons (Hartwig et al., 2008). EKI expression83

in adult Drosophila MNs converts them from single to repetitive spikers (Duch et al., 2008).84

Other studies have also used EKI as a tool to increase neuron firing (Hindle et al., 2013;85

Timmerman et al., 2013; Vonhoff et al., 2013).86

Expression of EKI in MN1-Ib and MNISN-Is (Hoang & Chiba, 2001) was driven by RN2-87

GAL4 (Fujioka et al., 2003) (w-;UAS::mRFP;RN2::FLP,Tub<FRT<GAL4,UAS::mRFP)88

(Zwart et al., 2013). A FLP/FRT recombinase cassette was included in the driver line to89

create mosaic animals (Golic & Lindquist , 1989; Ryder & Russell , 2003) in which MN1-Ib90

and/or MNISN-Is neurons in some nervous system hemisegments expressed EKI, while the91

same identified MNs in other hemisegments did not. Thus, control and experimental cells92

could be compared in the same animal. MNs expressing EKI were identified by co-expression93

of a red fluorescent protein (RFP) tag attached to the promoter and a green fluorescent94

protein (GFP) tag attached to the EKI construct Mosca et al. (2005).95

Larval preparation96

Larvae were dissected using the off-midline preparation (Fig. 1), as described previously (McK-97

iernan, 2013). Briefly, a cut was made from the tail to the head near muscle 4, and larvae98

were opened and pinned out flat. Organs and trachea were removed to expose the muscles99
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McKiernan, 2014 4

and nervous system. This preparation minimizes damage to the dorsal-most muscle 1, in-100

nervated by MN1-Ib and MNISN-Is (Hoang & Chiba, 2001). Larvae dissected in this way101

generate spontaneous crawling-related motor activity comparable to larvae dissected with102

the more common dorsal-midline preparation, although at a faster rate (McKiernan, 2013).103

Figure 1: Schematic of the larval preparation. The larva is organized into multiple segments
(abdominal segments A5-A7 labeled). Each hemisegment contains a repeated set of 30 muscles
(rectangles; 1,4,6,7 labeled). This organization is mirrored across the midline (dashed vertical
line). Motor neurons are found in the ventral nerve cord (zoom at right) and screened for GFP
(green) to determine if they express EKI. Dual intracellular recordings are made from muscles
innervated by EKI-expressing MNs (green) or wildtype MNs. For clarity, not all muscles, nerves,
or neurons are shown.

Electrophysiology104

Larval preparations were bathed and recorded in HL3.1 saline (Feng et al., 2004) containing105

(in mM): 70 NaCl, 5 KCl, 1.5 CaCl2, 4 MgCl2, 10 NaHCO3, 5 Trehalose, 115 Sucrose,106

5 HEPES, pH 7.1-7.3. All chemicals were obtained from Sigma (St. Louis, Missouri).107

Dual intracellular recordings were made at 21 − 23 ◦C from dorsal muscle 1 in abdominal108

segments 2-6, as described previously (McKiernan, 2013). Sharp electrodes were pulled109

from thin-walled borosilicate glass using a filament puller (Sutter Instrument Co., P-87110

Flaming/Brown) to a 30-50 MΩ resistance. This produced a long and flexible electrode tip,111
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McKiernan, 2014 5

which could move with the muscle during spontaneous waves of contractions. Electrodes112

were filled with 3 M potassium chloride for recording. Recordings were amplified using a113

Axoclamp 2B amplifier (Molecular Devices) in bridge mode and digitized at a sampling rate114

of 10 kHz by Digidata 1320A (Axon Instruments). Recordings were stored using PClamp115

8.2 (Molecular Devices) and were imported into Spike2 (Cambridge Electronic Design) for116

processing.117

Experimental design118

Forward locomotion in Drosophila larvae is produced by peristaltic waves of muscle con-119

tractions that travel from the back to the front of the animal and can be recorded in the120

dissected preparation (Barclay & Atwood , 2002; Cattaert & Birman, 2001; Cooper & Neck-121

ameyer , 1999; Fox et al., 2006; McKiernan, 2013; Song et al., 2007; Ueda & Wu, 2006).122

The body of a Drosophila larva is comprised of multiple segments, and in each hemisegment123

is a repeated set of 30 muscles (Hoang & Chiba, 2001; Keshishian et al., 1996). This or-124

ganization is mirrored across the midline. The central nervous system, where the MNs are125

located, has the same repeated and mirrored organization, with the same group of identi-126

fied neurons found in each segment. Since the relationship between MN action potentials127

and muscle excitatory junctional potentials is one-to-one (Choi et al., 2004), muscle activ-128

ity can be recorded as a proxy for the activity of the MNs. One of the muscles involved129

in locomotion is dorsal muscle 1 (M1), which is innervated by two MNs known as MN1-Ib130

and MNISN-Is (Hoang & Chiba, 2001). When M1s in neighboring abdominal segments are131

recorded, the activity is very similar, only with a short temporal delay. Thus, two samples132

of M1 activity and the MNs that innervate it, can be obtained from the same animal. Tests133

were conducted to establish that there is no gap-junctional coupling between M1s in adjacent134

segments (Supplemental Fig. 1), as reported for ventral muscles (Gho, 1994). Therefore, the135

activity recorded from each muscle should only arise from its innervating neurons. If one136

muscle receives signals from a MN expressing EKI and the other from a control MN, their137

activity can be compared to see how it differs due to the genetic manipulation.138

Data Analysis139

Preparations were observed through an Olympus BX51WI microscope, and the occurrence140

of peristaltic waves recorded manually and/or marked with electronic timestamps to restrict141

analysis only to electrical activity underlying forward locomotion (for more details on inclu-142

sion criteria see McKiernan, 2013). Burst start and end times were marked manually using143

cursors in Spike2 and exported to .csv files. Analysis code was written in Python (version144

2.7.6) to extract burst durations (time from the start to the end of a burst), cycle durations145

(time from the start of one burst to start of the next), duty cycles (burst duration divided146

by cycle duration), and quiescence intervals (time from the end of one burst to the start of147
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McKiernan, 2014 6

the next) from the recordings. Although intraburst firing frequency was of interest due to148

the effects of the EKI manipulation on MN firing (Hartwig et al., 2008), recordings showed149

it could not be effectively analyzed due to problems with event detection and separation150

of units coming from individual MNs (for more information see Supplemental Fig. 2). All151

animals exhibited multiple bursts, though not necessarily the same number. As such, pool-152

ing bursts would constitute pseudoreplication and give more weight to some animals in the153

sample than others. To avoid this, the distributions of each measure for the control and154

experimental conditions were first calculated in single animals. Then, distributions from155

multiple animals were averaged to generate group distributions in which each animal was156

represented only once for each condition. The minimum, maximum, and quartile (Q25, Q50,157

Q75) values for each measure are reported to give a complete description of the averaged158

group distributions. To statistically test for differences between control and experimental159

conditions, the Wilcoxon Signed-Rank test for paired samples was used with an alpha of160

0.05. The Python SciPy library was used for all analysis (Jones et al., 2001). Graphs were161

generated using Python Matplotlib (Hunter , 2007). All other figures were created using162

GIMP 2.8.163

Results164

EKI expression in MN1-Ib165

MN1-Ib innervates muscle 1 (M1) with Type I glutamatergic terminals, forming big (‘b’166

designation) synaptic boutons (Choi et al., 2004; Hoang & Chiba, 2001). Whole-cell patch167

clamp recordings during spontaneous locomotor activity have shown that MN1-Ib fires sooner168

and with a greater number of action potentials during a single burst than the other MN169

innervating M1, MNISN-Is (Schaefer et al., 2010). Thus, MN1-Ib may be the primary170

contributor to locomotor activity recorded from M1.171

Recordings were analyzed from four larvae in which EKI was expressed in MN1-Ib in one172

hemisegment while adjacent hemisegments were innervated by wildtype (WT) MNs (Fig. 2).173

(Recordings from two larvae were excluded due to a lack of rhythmic activity.) Histograms174

comparing burst duration, cycle duration, duty cycle, and quiescence interval for WT versus175

EKI segments are shown in Fig. 3. Minimum, maximum, and quartile values can be found176

for comparison in Table 1. Although in some larvae, measures were significantly different177

between WT and EKI recordings, no consistent effect was observed. For example, in one178

animal, quiescence interval was shorter in the WT than the EKI segment, while in another179

animal, the opposite was seen. In two other larvae, the recorded muscles showed no difference180

in quiescence interval. This suggests any differences were due to variability in measures across181

segments, rather than induced by EKI. Comparing the averaged group distributions revealed182

no significant differences between WT and EKI recordings on any measure (p>0.05).183
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McKiernan, 2014 7

Figure 2: Simultaneous intracellular recordings from muscles innervated by WT MNs
or MN1-Ib expressing EKI. A. Recording from one larva. M1 in A3 was innervated by MN1-Ib
expressing EKI (top trace), while M1 in A4 was innervated by WT MNs (bottom trace). Scale bar
is 20s. B. Recording from second larva. M1 in A4 (top) was innervated by MN1-Ib expressing EKI,
while M1 in A5 was innervated by WT MNs (bottom). Scale bar is 6s. C, D. Single bursts from
recordings in A and B, respectively. Scale bar is 2s in C and 0.5s in D.

EKI expression in MNISN-Is184

MNISN-Is innervates muscles 1-4, 9, 10, and 18-20 via the intersegmental nerve (ISN) with185

Type I glutamatergic terminals ending in small (‘s’) boutons (Hoang & Chiba, 2001; Choi186

et al., 2004). Whole-cell patch clamp recordings have shown that MNISN-Is activates later187

and fires less than MN1-Ib during locomotor activity and may not be recruited during every188

cycle (Schaefer et al., 2010). However, at least in ventral muscles, Type Is boutons are189

associated with larger excitatory junctional currents (EJCs) and potentials (EJPs) than190

Type Ib boutons, and have been likened to the “phasic” or “fast” motor axons found in191

crustaceans (Atwood et al., 1993; Kurdyak et al., 1994). The multiple innervation provided192

by Type Is MNs could also be important for coordinating the activity of muscle groups (Choi193

et al., 2004).194

Recordings were analyzed from seven larvae in which EKI was expressed in MNISN-Is195

in one hemisegment while adjacent hemisegments were innervated by WT MNs (Fig. 4).196

(Recordings from seven other animals were not included in the analysis due to a lack of197

rhythmic activity, or electrode instability in one of the channels.) Histograms comparing198

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.469v1 | CC-BY 4.0 Open Access | received: 19 Aug 2014, published: 19 Aug 

P
re
P
rin

ts



McKiernan, 2014 8

Figure 3: Quantification of motor activity. Histograms of burst durations (A), cycle dura-
tions (B), duty cycles (C), and quiescence intervals (D) as calculated from recordings of muscles
innervated by WT MNs (black) and MN1-Ib expressing EKI (white). N=4. Bins: A,B,C = 1s; D
= 0.04.

burst duration, cycle duration, duty cycle, and quiescence interval for WT versus EKI seg-199

ments are shown in Fig. 5. Minimum, maximum, and quartile values can be found for200

comparison in Table 2. As with MN1-Ib, in some larvae, select measures were significantly201

different between WT and EKI recordings. However, no consistent effect was observed,202

again suggesting these differences were due to inherent variability across segments. Com-203

paring the averaged group distributions revealed no significant differences between WT and204

EKI recordings on any measure (p>0.05).205

EKI expression in MN1-Ib and MINISN-Is206

Since M1 is innervated by both MN1-Ib and MNISN-Is (Hoang & Chiba, 2001; Choi et al.,207

2004), it is possible the effect of EKI expression in one MN could be compensated for by the208

other. To test this, recordings were analyzed from two larvae in which both MN1-Ib and209

MNISN-Is innervating a given segment expressed EKI, while MNs in adjacent segments were210

WT (Fig. 6). (A recording from one larva was excluded due to a lack of rhythmic activity.)211
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McKiernan, 2014 9

measure n min Q25 Q50 Q75 max

WT

burst duration 4 4.02 5.87 8.93 12.01 28.52

cycle duration 4 6.99 9.24 15.04 18.85 31.34

duty cycle 4 0.34 0.56 0.64 0.73 0.91

quiescence interval 4 1.73 3.16 4.25 6.51 18.40

EKI in MN1-Ib

burst duration 4 2.78 5.14 8.66 12.64 28.81

cycle duration 4 6.89 9.00 15.55 19.51 31.72

duty cycle 4 0.33 0.57 0.66 0.73 0.91

quiescence interval 4 2.26 3.14 4.46 6.06 18.82

Table 1: Bursting measures in M1s innervated by WT MNs or MN1-Ib expressing EKI

Histograms comparing burst duration, cycle duration, duty cycle, and quiescence interval for212

WT versus EKI segments are shown in Fig. 7. Minimum, maximum, and quartile values can213

be found for comparison in Table 2. Neither of the two larvae showed a significant difference214

in burst duration or cycle duration between muscles innervated by WT or EKI MNs. In one215

larva, quiescence intervals were longer and duty cycles were smaller in muscles innervated by216

EKI versus WT MNs (p < 0.05). However, no differences in either duty cycle or quiescence217

interval were seen between muscles recorded in the second larva. Comparing the averaged218

group distributions revealed no significant differences between WT and EKI recordings on219

any measure (p>0.05).220

Discussion221

This study used transgenic mosaics to study the role of MN intrinsic properties in shaping222

the timing of a rhythmic motor behavior. The most obvious advantage of this approach223

is that animals act as their own controls, reducing the confounding effects of extraneous224

variables and permitting smaller sample sizes. Furthermore, the model system (Drosophila225

larva) allowed for examining the effects of changing MN excitability on spontaneous motor226
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McKiernan, 2014 10

Figure 4: Simultaneous intracellular recordings from muscles innervated by WT MNs
or MNISN-Is expressing EKI. A. Recording from one larva in which M1 in segment A5 was
innervated by MNISN-Is expressing EKI (bottom trace), while M1 in A4 was innervated by WT
MNs (top trace). Scale bar is 10s. B. Recording from second larva in which M1 in A6 (top) was
innervated by MNISN-Is expressing EKI, while M1 in A5 was innervated by WT MNs (bottom).
Scale bar is 10s. C, D. Single bursts from recordings in A and B, respectively. Scale bar is 1s in
both.

behavior. Surprisingly, although previous studies have shown that EKI expression alters the227

firing properties of larval MNs (Hartwig et al., 2008), no difference was seen in the patterned228

activity of muscles innervated by EKI-expressing MNs relative to controls.229

Importance of MN intrinsic properties230

Although the results reported herein did not show an effect of changing MN excitability on231

motor output, this does not mean MN intrinsic properties are not important for motor con-232

trol. Several key studies conducted in the late 1970s and 1980s showed that MNs have active233

membrane properties (voltage-gated ion currents) that can influence their responsiveness to234

input and firing output (Hounsgaard et al., 1984, 1988b; Schwindt & Crill , 1977, 1980). More235

recent studies have confirmed these results and specifically emphasized the role of persistent236

currents in MN recruitment, amplification of synaptic input, and repetitive and prolonged237

firing behaviors in MNs (Lee & Heckman, 1998, 2001; Li et al., 2004; Manuel et al., 2012;238

Perrier & Tresch, 2005). Several MN ion currents are altered by the presence of neuromodu-239

lators such as serotonin and norepinephrine (Hounsgaard & Kiehn, 1985; Hounsgaard et al.,240
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McKiernan, 2014 11

Figure 5: Quantification of motor activity. Histograms of burst durations (A), cycle dura-
tions (B), duty cycles (C), and quiescence intervals (D) as calculated from recordings of muscles
innervated by WT MNs (black) and MNISN-Is expressing EKI (white). N = 7. Bins: A,B,C = 1s;
D = 0.04.

1988a; Hounsgaard & Kiehn, 1989; Perrier & Hounsgaard , 2003; Lindsay & Feldman, 1993;241

Zhang & Harris-Warrick , 1995); (for reviews see Heckman et al., 2009; Perrier et al., 2013).242

Recordings in cat have shown that changes in the firing patterns of serotonergic neurons cor-243

respond to the onset and offset of specific motor behaviors (Fornal et al., 1996; Veasey et al.,244

1995). These results provide correlative, though not direct, evidence that MN excitability245

may be modulated to meet changing motor demands. In the crustacean stomatogastric246

(STG) system, dopamine-induced changes in MN potassium currents alter digestive motor247

behavior (Kiehn & Harris-Warrick , 1992). Correlations have been found between potassium248

ion channel expression in MNs and the period of the STG motor pattern (Goaillard et al.,249

2009). However, it is important to recognize that in the STG, MNs themselves participate250

in generating the motor rhythm (Marder & Calabrese, 1996). In many other systems, MNs251

do not generate the rhythm, in which case the effects of changing MN intrinsic properties in252

these systems may be distinct. Recent work studying heartbeat in the leech - a system in253

which the rhythm-generating network is composed of interneurons - used a combination of254

experimental and computational approaches to show that MN currents contribute to motor255
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measure n min Q25 Q50 Q75 max

WT

burst duration 7 3.55 6.91 9.10 12.77 25.47

cycle duration 7 6.42 10.48 13.35 18.99 28.00

duty cycle 7 0.36 0.60 0.68 0.74 0.91

quiescence interval 7 1.34 3.01 4.46 5.56 16.95

EKI in MNISN-Is

burst duration 7 3.68 7.46 9.49 12.12 25.47

cycle duration 7 6.18 10.44 13.44 18.83 27.63

duty cycle 7 0.37 0.62 0.66 0.77 0.96

quiescence interval 7 0.40 2.69 4.30 6.09 16.40

Table 2: Bursting measures in M1s innervated by WT MNs or MNISN-Is expressing EKI

pattern phasing (Wright Jr & Calabrese, 2011).256

A number of studies have shown that ion channel expression in Drosophila larvae and257

adults is important for producing different types of excitability and response properties in258

MNs (Chang et al., 2013; Duch et al., 2008; McKiernan, 2013; Ryglewski & Duch, 2009;259

Ryglewski et al., 2012, 2014; Srinivasan et al., 2012a,b; Wolfram et al., 2012). Recordings260

from larval MN1-Ib (also referred to as aCC) neurons in abdominal or thoracic segments261

of the ventral ganglion show differences in the size of transient and sustained potassium262

currents, leading to differences in delay to first spike and firing frequency (Srinivasan et al.,263

2012b). Decreasing expression of eag, which contributes to transient and sustained potassium264

currents, causes hyperexcitable responses to current injection and increases in amplitude265

and frequency of EPSPs during rhythmic oscillations recorded from MN1-Ib (Srinivasan266

et al., 2012a). In a mutant larval model of amyotrophic lateral sclerosis (ALS), expression267

of the calcium channel gene cacophony in MNs was sufficient to recover normal crawling268

behavior (Chang et al., 2013). Manipulating expression of the calcium-dependent potassium269

channel gene slowpoke in larvae suggests that MNs may contribute to the frequency of270

crawling activity (McKiernan, 2013). In adult Drosophila, EKI expression in MNs increases271

the probability of induced flight behavior in response to a wind stimulus and the duration272

of flight activity (Duch et al., 2008).273

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.469v1 | CC-BY 4.0 Open Access | received: 19 Aug 2014, published: 19 Aug 

P
re
P
rin

ts



McKiernan, 2014 13

Figure 6: Simultaneous intracellular recordings from muscles innervated by WT MNs
or both MN1-Ib and MNISN-Is expressing EKI. A. Recording from one larva in which M1
in segment A5 was innervated by MNISN-Is expressing EKI (top trace), while M1 in A4 was
innervated by WT MNs (bottom trace). Scale bar is 20s. B. Recording from second larva in which
M1 in A5 (bottom) was innervated by MNISN-Is expressing EKI, while M1 in A6 was innervated
by WT MNs (top). Scale bar is 10s. C, D. Single bursts from recordings in A and B, respectively.
Scale bar is 1s in both.

Why was an effect of EKI not seen?274

There are several possible explanations for why an effect of the EKI manipulation was not275

seen in this study. First, while there was not an effect on the timing of muscle contractions,276

there could have been an effect on the force of contractions. Force could be altered by277

an increase in MN firing frequency, as is observed in EKI-expressing MNs under current278

injection (Hartwig et al., 2008). However, such an effect, if present, was below the threshold279

for detection in this preparation due to issues with analyzing intraburst firing frequency.280

EJPs recorded from muscle 1 arise from two different MNs, MN1-Ib and MNSIN-Is. These281

MNs are recruited at different times, fire at different frequencies, and the latter may not282

spike during every locomotor cycle (Schaefer et al., 2010). Dual recordings from muscles 1283

and 2, innervated by 1 common (MNISN-Is) and 1 non-common MN (MN1-Ib or MN2-Ib,284

respectively) (Hoang & Chiba, 2001), showed that unit separation during the majority of a285

motor burst was not possible (Supplemental Fig. 2). Thus, a rigorous analysis of the firing286
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Figure 7: Quantification of motor activity. Histograms of burst durations (A), cycle dura-
tions (B), duty cycles (C), and quiescence intervals (D) as calculated from recordings of muscles
innervated by WT MNs (black) or MN1-Ib and MNISN-Is expressing EKI (white). N=2. Bins:
A,B,C = 1s; D = 0.04.

frequency of control and transgenic MNs could not be extracted from muscle recordings.287

Such analysis would require patching on to individual MNs during motor behavior.288

Second, although larval MNs expressing EKI show altered responses to square-pulse cur-289

rent injections, their responses to synaptic input may not be different from controls. As290

a simple first approach, MNs expressing EKI could be stimulated with ramps instead of291

square-pulse currents. The non-instantaneous change in membrane potential initiated by292

ramp stimulation allows for gradual activation and inactivation of ion currents and can re-293

veal distinct neuron response properties (Estacion & Waxman, 2013; Guan et al., 2007;294

Izhikevich, 2007; Magistretti & Alonso, 1999; Li et al., 2002). MNs could also be stimu-295

lated with different types of stochastic current inputs (e.g. white noise) to determine their296

responsiveness (Bryant & Segundo, 1976; Destexhe et al., 2001; Tateno et al., 2004). An297

even better but more difficult approach is to record genetically manipulated MNs as they298

receive endogenous motor-related input, as done recently by others in WT MNs (Schaefer299

et al., 2010). If the response to synaptic input is not altered in EKI neurons, this would300

explain why motor output was unchanged. In this case, it would be interesting to investigate301

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.469v1 | CC-BY 4.0 Open Access | received: 19 Aug 2014, published: 19 Aug 

P
re
P
rin

ts



McKiernan, 2014 15

which ionic currents might compensate for the change in potassium channel expression. Ion302

channel homeostasis has previously been reported in Drosophila (Bergquist et al., 2010; Lee303

et al., 2008; Peng & Wu, 2007) and other animals (MacLean et al., 2003; Swensen & Bean,304

2005); (for review see Marder & Goaillard , 2006).305

If, however, the response of EKI-expressing MNs to synaptic input is altered, then this306

would suggest that the network is somehow compensating for changes in MN excitability307

such that normal motor output is maintained, as seen in other systems (Maffei & Fontanini ,308

2009). The embryonic predecessors of MN1-Ib and MNISN-Is, aCC and RP2, adjust their309

excitability in response to changes in synaptic input (Baines , 2003). It is possible the reverse310

happens - neurons in the motor network may adjust their output in response to changes in311

MN excitability. However, the upstream synaptic partners of larval MNs will need to be312

identified before this could be tested directly. Although candidate interneurons involved in313

locomotor pattern generation have been identified (Suster et al., 2004; Iyengar et al., 2011),314

their connections with one another and with MNs have not yet been established.315

The presence of an eag dominant negative transgene in the recombinant EKI line could316

be important for compensation. Eag channels can activate calcium/calmodulin-dependent317

protein kinase II (CaMKII) (Sun et al., 2004), a kinase shown to regulate neuronal excitabil-318

ity and motor behavior in Drosophila (Park et al., 2002; Yao & Wu, 2001), as well as other319

animals (Nelson et al., 2005) (for review see Liu & Murray , 2012). Work in Xenopus oocytes320

has shown that eag channels can regulate intracellular signaling pathways that induce cell321

proliferation - an effect not observed in response to Shaker channel transfection (Hegle et al.,322

2006). Expression of an activity-dependent spliced form of the eag protein alters the struc-323

ture of cultured cells (Sun et al., 2009). In mice, eag-related gene (ERG) expression is324

regulated in response to changes in neural activity (Hagendorf et al., 2009). All of these325

studies suggest that eag could act as a ‘sensor of excitability’ (Srinivasan et al., 2012a),326

inducing compensation in EKI-expressing larvae through a variety of possible downstream327

mechanisms. Recording from mosaic larvae expressing the eag or Shaker dominant nega-328

tive transgenes individually could help to tease apart the role(s) of each gene in locomotor329

behavior.330

Possible role of sensory feedback in compensation331

In many animals, sensory feedback is important for regulating the timing of motor be-332

haviors (Hiebert et al., 1996; Sinkjær et al., 2000; Borgmann et al., 2009; Ausborn et al.,333

2007); (for reviews see Grillner , 2003; Pearson, 2000; Büschges et al., 2011). In Drosophila,334

studies have reported that input from multi-dendritic (MD) sensory neurons found in the335

larval body wall supports wave progression from one segment to the next (Cheng et al., 2010;336

Hughes & Thomas , 2007; Song et al., 2007). Labeling of MD neurons has shown that some337

project into the same area of the neuropile where the MN dendrites are located, indicating338

that MNs may receive direct input from MD neurons (Grueber et al., 2007). If this is the339
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measure n min Q25 Q50 Q75 max

WT

burst duration 2 2.80 5.51 8.00 11.29 15.02

cycle duration 2 6.34 9.36 11.17 15.90 22.99

duty cycle 2 0.39 0.56 0.64 0.75 0.82

quiescence interval 2 2.49 3.32 3.89 4.46 12.90

EKI

burst duration 2 3.28 6.00 8.26 11.25 16.15

cycle duration 2 6.68 9.40 11.18 15.89 22.77

duty cycle 2 0.36 0.59 0.68 0.74 0.81

quiescence interval 2 2.45 3.36 3.59 4.27 11.81

Table 3: Bursting measures in M1s innervated by WT MNs or MN1-Ib and MNISN-Is expressing
EKI

case, increased firing of MNs induced by the expression of EKI, and thus changes in the con-340

tractions of target muscles, could be detected by MD cells and relayed to MNs. Since in this341

study EKI was expressed throughout development, it is possible sensory feedback during em-342

bryonic stages, when peristaltic contractions first begin (Crisp et al., 2008), could allow the343

system to recalibrate and produce normal motor output. Alternatively, it may be sufficient344

to have cycle-by-cycle sensory feedback during the larval stages to compensate for altered345

motor neuron excitability. Acute expression of EKI during the third larval instar, for exam-346

ple using temperature-sensitive GAL80 in concert with the UAS/GAL4 system (McGuire347

et al., 2004), would help determine whether expression during earlier developmental stages348

is necessary for compensation to occur.349

What can transgenic mosaics tell us about motor behavior?350

The results of this study bring into question whether using mosaics to study locomotion in351

larval Drosophila is the best approach. The original idea was to be able to compare the352

activity of control and experimental cells in the same animal to determine the effects of353

manipulating MN excitability. However, given that the locomotor activity being examined354
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consists of peristaltic waves that progress from one segment to the next, it is questionable355

that one could see normal activity in one segment and altered activity in an adjacent one.356

The work on sensory feedback in this system suggests that termination of bursting in one357

segment is important for the initiation of bursting in an adjacent segment (Hughes & Thomas ,358

2007; Song et al., 2007). If the wave is progressing from back to front and activity in a359

posterior segment is altered due to innervation by a manipulated MN, the activity in the360

next segment, although innervated by control MNs, could in turn be altered. Even if the361

control muscle is posterior to the manipulated muscle, activity could still be altered as362

the wave slows or fails to complete and initiate a new cycle. Alternatively, sensory feedback363

from the recorded or surrounding muscles could help to maintain the proper bursting pattern364

even in the manipulated muscle. In other words, it is possible that either activity will be365

altered in multiple segments, or that compensation will occur and normal activity will be366

maintained in all segments. Related to this, the fact that only rhythmically active animals367

were included in the analysis constitutes a form of selection bias. If the dominant negative368

transgenes express with variable strength across animals, then it is possible that larvae with369

stronger expression would not show rhythmic activity, leading to a very different conclusion370

regarding the effect of the EKI manipulation. For this reason, it was important to report the371

percentage of recordings that were excluded from each sample, which varied from 33-50%.372

Since this percentage includes some rhythmically active animals that were excluded due to373

electrode instability in the recordings, the percentage of ‘non-crawlers’ tended toward the374

low end of the range for all samples. However, to determine whether EKI expression strength375

is important, quantification of potassium current reduction could be compared in ‘crawlers’376

and ‘non-crawlers’.377

Mosaics could be used to study the role of intrinsic MN properties in isolated CNS prepa-378

rations in which sensory input and muscle coupling would not play a role. However, previous379

studies have shown that the motor pattern is irregular in such preparations (Fox et al., 2006),380

which could make evaluating the effects of any manipulation more difficult. Furthermore,381

an isolated preparation would defeat attempts to link gene expression to ongoing motor382

behavior.383

Mathematical modeling could answer open questions384

A mathematical modeling approach could help answer several lingering questions from this385

study. Model MNs could be constructed in which ion channel expression is alterable (Herrera-386

Valdez et al., 2013) to mimic the effects of the EKI manipulation. The output of these model387

neurons could then be characterized under different patterns of rhythmic synaptic input or388

even network connectivity. A hybrid system could also be constructed in which real WT389

and EKI-expressing MNs receive different patterns of input from model neurons, similar to390

recent work in other systems (Wright Jr & Calabrese, 2011).391
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Conclusions392

There is still a lot we do not understand about the interactions between MNs and other cells393

in the network during the generation of rhythmic motor behaviors. This study used a char-394

acterized transgenic manipulation to increase MN excitability. However, this manipulation395

failed to produce changes in motor output. This work raises several important questions396

regarding reliability and flexibility in motor networks. A number of future experiments are397

needed to increase our understanding of the role of MN intrinsic properties in motor pattern398

generation and, more specifically, our understanding of how networks may compensate for399

altered MN excitability to maintain proper locomotion.400
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Supplemental material679

Supplemental Fig.1: Electrical coupling of body wall muscles in WT larvae. A.
Current was injected into a muscle 1 (M1) segment (top trace) and the response measured in
an adjacent M1 segment (bottom trace). Dashed lines indicate that the records were made
simultaneously. B. Same as in A, but for two adjacent muscle 6 (M6) segments. Note that
a voltage change is measured in the adjacent segment (bottom trace) in response to current
injection in the top segment, indicating electrical coupling. C. Same as in A, but for M1 and
M2 in the same segment. D: Average coupling coefficient calculated for M1 pairs (n=9), M4
or M6 pairs (n=8), and M1M2 pairs (n=7). Error bars shown are standard deviations.
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Supplemental Fig.2: Activity of two dorsal muscles receiving common and non-
common MN input during rhythmic motor activity. A: Simultaneous intracellular
recordings from muscle 2 (top trace) and muscle 1 (bottom trace) in segment A4. Shaded
rectangles 1-6 indicate regions of the burst which were examined at higher temporal resolu-
tion below. Scale bar is 1 second. A1-A6: Each panel is a 1 second window corresponding
to the shaded and numbered regions in A. Dashed lines in A5 indicate coincident EPSPs.
M1 and M2 are innervated by 1 common (MNISN-Is) and one non-common MN (MN1-Ib or
MN2-Ib, respectively). It was hypothesized that by looking at coincident and non-coincident
EPSPs, a unit separation could be performed. However, EPSP summation and compound
events throughout the majority of the burst made this not possible.
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