
An experimental test of a Bayesian method for inferring 
extinction with varying search efforts 

Determining whether a species is extinct or extant is notoriously difficult, but is fundamental to

both our understanding of biodiversity loss, and our ability to implement effective 

conservation measures. Many methods have been proposed in an attempt to infer 

quantitatively whether a species has gone extinct, with many seeking to do so by using sets 

of historic sighting events. Until recently, however, no methods have been proposed that 

explicitly take into account search effort (the proportion of a habitat searched when looking 

for a species), a key determinant of if/when historic sighting events have occurred. Here we 

present the first test of a recently proposed Bayesian approach for inferring the extinction 

status of a species from a set of historic sighting events where the search effort that has 

produced the sightings can be explicitly included in the calculation. We utilize data from a 

highly tractable experimental system, as well as simulated data, to test whether the method is

robust to changing search efforts, and different levels of detectability of a species. We find 

that, whilst in general the method performs well, it is susceptible to both changes in search 

effort through time, as well as how detectable a species is. In addition, we show that the 

value of the prior expectation that the species is extant has a large impact on the accuracy of 

the methods, and that selecting correct priors is critical for accurate inference of extinction 

status.
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Abstract 21 

Determining whether a species is extinct or extant is notoriously difficult, but is 22 

fundamental to both our understanding of biodiversity loss, and our ability to 23 

implement effective conservation measures. Many methods have been proposed in an 24 

attempt to infer quantitatively whether a species has gone extinct, with many seeking 25 

to do so by using sets of historic sighting events. Until recently, however, no methods 26 

have been proposed that explicitly take into account search effort (the proportion of a 27 

habitat searched when looking for a species), a key determinant of if/when historic 28 

sighting events have occurred. Here we present the first test of a recently proposed 29 

Bayesian approach for inferring the extinction status of a species from a set of historic 30 

sighting events where the search effort that has produced the sightings can be 31 

explicitly included in the calculation. We utilize data from a highly tractable 32 

experimental system, as well as simulated data, to test whether the method is robust to 33 

changing search efforts, and different levels of detectability of a species. We find that, 34 

whilst in general the method performs well, it is susceptible to both changes in search 35 

effort through time, as well as how detectable a species is. In addition, we show that 36 

the value of the prior expectation that the species is extant has a large impact on the 37 

accuracy of the methods, and that selecting correct priors is critical for accurate 38 

inference of extinction status.  39 

 40 

Introduction 41 

Accurately determining whether a species is extant or extinct is notoriously 42 

difficult (Keith & Burgman 2004), with many quantitative methods developed to infer 43 

extinction status (e.g. Solow 1993a, 2005; McCarthy 1998; Gotelli et al. 2011). Such 44 

methods have typically concentrated on inferring the extinction status of a species 45 

from sets of historic sighting events (i.e. a species has been observed as being extant 46 
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at a given point in time, e.g. Roberts & Solow (2003)), as these are often the only 47 

records of a species prior to a possible extinction event. Such sighting events are a 48 

product of the detectability of a species (how easy it is to observe), the amount of the 49 

species’ habitat you search, and the abundance of that species. For example, if a 50 

species has a very high population size, and is very detectable, only a small fraction of 51 

its habitat needs be searched for the species to be observed, whereas low population 52 

sizes and low detectabilities mean that even searching a large proportion of the habitat 53 

may not guarantee a sighting. Consequently, information on the search efforts that 54 

produced a set of historic sighting events could provide important additional 55 

information in determining whether species is extant or extinct. Whilst in the majority 56 

of instances these data are unlikely to be available, in some circumstances active and 57 

systematic searches for particular species are conducted to determine population size, 58 

or to definitively classify a species as extant or extinct (e.g. Turvey et al. 2007). Such 59 

scenarios can provide information in addition to simple presence/absence data. This 60 

potentially important additional information is disregarded by many estimators of 61 

extinction (Solow 1993b, 2005; Roberts & Solow 2003).  62 

Recently, in an attempt to overcome this issue, a Bayesian approach has been 63 

proposed that explicitly accounts for the effort invested in producing sighting events, 64 

as well as implicitly taking into account the detectability of a species (Thompson et al. 65 

2013). Such a method might significantly improve attempts to classify a species as 66 

extant or extinct, if data are available to parameterize it. However, as with many 67 

traditional parametric and non-parametric based methods, testing the performance of 68 

these techniques for inferring extinction remains limited (Clements et al. 2013).  69 

Here we tackle this problem by using data generated in highly controlled, small-70 

scale experimental systems  (shown to provide realistic sets of historic sighting events 71 
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(Clements et al. 2014)), and simulated population declines, to test the reliability of a 72 

proposed Bayesian method for estimating extinction status (Thompson et al. 2013). 73 

We simulate a range of search efforts, and species detectabilities, to produce sets of 74 

historic sighting events (as proposed in Clements et al. 2013). We then assess whether 75 

the method of Thompson et al. (2013) performs better than a Bayesian method for 76 

inferring extinction that does not incorporate search effort (Solow 1993a), and how 77 

robust the method is to varying search efforts, and levels of detectability, and values 78 

of the prior. 79 

 80 

Methods 81 

Model details 82 

A common Bayesian method used to infer extinction is that of Solow (1993a). 83 

Solow's method is straightforward to use, where the likelihoods are easily generated 84 

from the time of the last sighting (TN), the total number of time periods (T, usually in 85 

years) and the total number of sightings (S). However, the method only considers one 86 

record of certain sightings. Thompson et al. (2013) built upon Solow's method to 87 

allow parallel sighting records that may include uncertain sightings (for example 88 

sightings that cannot be verified, or poor quality photographs) or records of survey 89 

effort. For simplicity, we use point estimates for the prior (and therefore a point 90 

estimate of extinction generated by the model, rather than a distribution of 91 

probabilities) and detectability, and no uncertain sightings. The model does, however, 92 

allow for uncertainty around the prior and detectability estimates. The model requires 93 

at least one sighting record, which is a vector of ones and zeros, with each element of 94 

the vector corresponding to a particular time period. When at least one observation 95 

occurred during a sighting period, the corresponding sighting record element is a one, 96 

whereas zero denotes no observation. The model can include parallel sighting records 97 
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denoting uncertain sightings but this is not needed here. Similar methods which use 98 

parallel sighting records to include uncertain records, such as those of Solow et al. 99 

(2011) and Lee et al (2014), require the sighting record to comprise of zeros and ones 100 

only. However, when including a sighting record for survey effort, there may be a 101 

successful survey, an unsuccessful survey, or no survey. To include search effort, 102 

Thompson et al. (2013) devised the first method that can allow a parallel sighting 103 

record comprising of ones, zeros, and NAs (to represent years where no survey effort 104 

occurred).  Here we use two sighting records, one record to denote certain sightings, 105 

and a second to denote whether a survey was conducted (Table 1). For this 106 

experiment – sightings can only occur during a survey, but in reality a sighting could 107 

occur without a survey (e.g. from a random event such as roadkill). 108 

To account for (i) the detectability of the species and (ii) the proportion of area 109 

surveyed, we define probabilities of observing the species at given point in time under 110 

the two different records (Table 1). We infer detectability (!!) as !! = ! = !/!!, 111 

where S is the total number of observations and TN is the time of the last sighting (that 112 

is, extinction could not have occurred before TN), as suggested by Thompson et al. 113 

(2013). Note that in cases of high detectability d≈�. The proportion of an area 114 

surveyed at time interval ti is !!. Thompson et al. (2013) use the detectability d and 115 

proportion surveyed !! to determine the likelihoods defined by Bayes theorem. For 116 

simplicity we present only the results based on the microcosm data; the results from 117 

simulations run with the modelled population declines are presented in the 118 

supplementary information (appendix S1).  119 

 120 

Creating sighting events 121 

We simulated sighting data by sampling from the abundance time series from five 122 
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replicate populations of the ciliate Paramecium caudatum that went extinct in a 123 

micrcocosm study (Fig. 1a; Clements et al. 2013), and 10 simulated populations that 124 

declined at varying rates (Fig. 1b, Appendix S1). The experimental data were selected 125 

as they provided a long (~100 generations) time series of abundance (and therefore 126 

potential sighting events, whilst the simulated data provided very different population 127 

decline trajectories (Fig. 1b). Details on the experimental setup and sampling method 128 

can be found in Clements et al. (2013), whilst details on the modelled population 129 

declines can be found in the supplementary information (appendix S1). 130 

To create sighting events from the experimental abundance data (times at which 131 

sightings of an extant individual occurred) we applied four different regimes of search 132 

effort (the proportion of the habitat searched): (i) constant, (ii) increasing, (iii) 133 

decreasing, (iv) random. The “constant” search regime was simulated with search 134 

efforts (proportion of the habitat searched) from 0.05 to 0.95, in 0.01 steps. For 135 

“increasing” search efforts, the initial effort was randomly assigned (between 0.05 136 

and 0.95), and then the search effort increased by a random fraction at each 137 

subsequent time step, until the search effort reached 0.95. “Decreasing” mirrored 138 

“increasing”, but the fraction of the habitat searched decreased over time. The 139 

“random” search regime had the search effort at each time step drawn from a uniform 140 

distribution between 0.05 and 0.95.  141 

The number of individuals observed at each time interval was calculated from a 142 

binomial distribution, where the probability of an observation is defined as the search 143 

effort multiplied by detectability. For example with a population of 100 individuals, a 144 

detectability of 0.1 and a search effort of 0.1, on average there would be one 145 

individual observed. 146 

We used the models proposed by Thompson et al. (2013) and Solow (1993b) to 147 
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estimate the probability that the species remained extant at each time step for 350 148 

days after the last sighting event, which were then normalized by subtracting the 149 

observed date of extinction. Normalized extinction times were calculated for each of 150 

the scenarios with different search regimes and detection probabilities. We present 151 

detailed results from simulations with a constant search regime. Results of increasing, 152 

decreasing, and random search regimes, and results of simulations using the model’s 153 

population declines are in the supplementary information (Appendices S1, S2). All 154 

simulations and analyses were carried out using the R statistical software (R 155 

Development Core Team 2013). 156 

 157 

Results  158 

Constant search regime 159 

The estimated probability that a species was extant produced by both models was 160 

altered by the amount of the habitat searched (search effort), and also the detectability 161 

of the species (Fig. 2). At high search efforts, Thompson et al.’s model tended to be 162 

pessimistic, and in the majority of cases predicted the species to have a very low 163 

probability of persisting prior to the actual extinction event occurring, a pattern 164 

enhanced when detectability was low (Fig. 2, 3). When search efforts were low 165 

Thompson et al.’s model suggested that the species was likely to still be extant, even 166 

after extinction had occurred (Fig. 2). The detectability of the species shifted the 167 

distribution of probabilities that that species was extant, with lower detectabilities 168 

producing lower probabilities, and higher detectabilities producing higher 169 

probabilities (Fig. 3). However, regardless of detectability the model produced low 170 

estimates of probability after the species went extinct (Fig. 3). 171 

Solow’s model showed the opposite pattern; high search efforts produce 172 

optimistic estimates of the species surviving, and low search efforts suggested 173 
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extinction had occurred before it had (Fig. 2). Overall, the model tended to be overly 174 

optimistic about a species persisting (Fig. 3). 175 

 Altering the value of the prior expectation that this species was extant had a large 176 

impact on the distribution of inferred probabilities that the species was still extant 177 

(Fig. 4).  The Thomson et al. model was overly pessimistic when the prior was set at 178 

0.1, and overly optimistic when the prior was 0.9. A prior of 0.5 provided a balance 179 

between optimism and pessimism, and thus the most reasonable inferences of a 180 

species persisting (Fig. 4). The value of the prior had less of an effect on the Solow 181 

model, with, in general, the model providing overly optimistic estimates of a species 182 

persisting regardless of the prior (Fig. 4). The most accurate estimates produced by 183 

the Solow model were made with a prior of 0.1 (Fig. 4). 184 

 Results produced using the simulated population declines showed almost 185 

identical results to those produced using data from the microcosm experiments 186 

(appendix S1). 187 

 188 

Other search regimes 189 

As well as the constant search regime, the model was tested with decreasing, 190 

increasing, and random search regimes (Appendix S2). At high detectabilities the 191 

model performed well across the different search regimes, although with a decreasing 192 

search regime the estimates were often overly optimistic, but low detectability 193 

typically meant that the method suggested the species was extinct significantly earlier 194 

than observed (Appendix S2).  195 

 196 

Discussion 197 

Accurately inferring extinction status, and consequently the current rates of 198 

biodiversity loss, has been a key goal for conservation biology for many years. Many 199 
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methods have been proposed to tackle this issue, but until recently these have not 200 

explicitly incorporated search effort (Thompson et al. 2013). Our results suggest that 201 

this recently proposed method for inferring extinction status generally performs better 202 

than a similar Bayesian based method that does not incorporate search effort (Solow 203 

1993a), although the accuracy of the method depends on both historic survey effort 204 

and the detectability of a species, as well as the value of the prior belief that the 205 

species is still extant. 206 

The amount of a habitat searched to produce historic sighting events, as well as 207 

how this search effort has changed through time, are both known to significantly alter 208 

how accurately we can infer the extinction status of a species (Clements et al. 2013). 209 

Thompson et al. noted that Solow's method is a specific case of their method: the case 210 

when search effort is constant and perfect; our observations for regular sampling 211 

demonstrated this statement. That is, as the proportion searched tends to 100%, the 212 

method of Thompson et al. converges to the method of Solow (which does not 213 

incorporate different search efforts). We show that explicitly taking into account 214 

historic search efforts reduces the uncertainty in declaring a species as extinct (Fig. 3), 215 

producing more reasonable estimates of whether a species persists compared with not 216 

incorporating search effort (Fig. 2, 3). However, changes to historic search effort can 217 

still drive significant error (Appendix S2). Ideally, once search effort has been 218 

explicitly incorporated into a model, search regime should have no effect on the 219 

probability of the inferred date of extinction, but this is clearly not the case (Fig. 2, 220 

Appendix S2). As with other methods for inferring extinction status (e.g. Clements et 221 

al. 2013), search effort (particularly when it has declined through time) drives 222 

significant error. However, the model performs well when search efforts are high 223 

(Fig. 2).  224 
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Two other factors significantly affect the accuracy of this method: the 225 

detectability of the species and the value of the prior used (Fig. 2, 3, 4).  Of these two 226 

factors only the value of the prior can be controlled. Consequently, choosing an 227 

informative value for the prior is a prime concern when applying Thompson et al.’s 228 

model (Fig. 4). In reality, determining a reliable value for the prior will be difficult. 229 

Thompson et al.’s method does allow for uncertainty surrounding the prior probability 230 

of persistence, which, instead of a point estimate of extinction (as generated in this 231 

paper), would produce a probability distribution around the date of extinction. Whilst 232 

the results presented here serve to test how well this model performs, using a 233 

distribution of priors is likely to be more suitable in real-world scenarios where the 234 

value of the prior is unknown. For inferring extinction in real-world instances, an 235 

expert may provide a prior based on information such as available habitat and food 236 

source. Nonetheless, in our analyses, a prior of approximately 0.5 appeared suitable. 237 

 Whilst the value of the prior given to the model is controllable, the inherent 238 

detectability of species is not.  Detectability has been shown, for example in birds, to 239 

vary with habitat, species, survey quality, and observer ability (Boulinier et al. 1998). 240 

Detectability can also change as a function of population size (McCarthy et al. 2013). 241 

2013), which can be compounded by behavioral changes as a population gets smaller 242 

(e.g. conspecific attraction may increase as population’s numbers decline (Stephens & 243 

Sutherland 1999)). Thompson et al.’s method tends to underestimate the probability 244 

of persistence, which is exacerbated when the species’ detectability is low (Fig. 3). 245 

After the species has gone extinct the model is robust to various levels of 246 

detectability, in almost all cases predicting the species has a low chance of persisting 247 

(Fig. 3). Consequently, we suggest future models should seek to concentrate on 248 

reliably incorporating the detectability of species, to produce less pessimistic 249 
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estimates of the probability of a species persisting prior to extinction. 250 

In conclusion, we present the first test of a newly proposed method for inferring 251 

extinction when historic search effort is known (Thompson et al. 2013). We 252 

demonstrate that, while this method in general produces reasonable predictions of 253 

whether a population is extant or extinct, other factors (specifically the value of the 254 

prior and the detectability of the species, but also search regime) may drive significant 255 

errors. However, this method is a marked improvement on similar methods that do not 256 

explicitly incorporate historic search efforts, and in scenarios where such data are 257 

available, the method proposed by Thompson et al. (2013) should be employed. 258 
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18#

Time Certain sighting  Survey  Detectability Search effort 
1 1 1 0.1 0.1 
2 0 1 0.1 0.3 
3 0 0 0.1 0 
     
   !(!! = |!!) !(!! = |!!) 

 1 

Table#1:#An#example#of# the# sigh6ng# records,#where#one#denotes# an#observa6on#
and# zero# denotes# no# observa6on.# In# reality,# sigh6ngs# can# occur# during# a# nonB
surveyed#6me#period.##
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Figure#1.#Popula6on#dynamics#of#the#five#replicate#of#Paramecium)caudatum,#and#
turn# simulated# popula6on# declines,# to#which# the# search# effort# and# detectability#
simula6ons#were#applied.##
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Figure# 2.# Probability# of# persistence# at# each# 6me# point# when# search# effort# is#
constant,#and#across#3#levels#of#detectability,#with#the#prior#set#at#0.5.#Probabili6es#
of# persistence# are# only# calculated# aLer# the# final# sigh6ng# event.# Because# the#
different#replicates#went#ex6nct#at#different#points#in#6me,#days#are#normalised#by#
subtrac6ng#the#observed#date#of#ex6nc6on#of#each#of#the#replicates#from#the#6me#
steps#at#which#probability#of#ex6nc6on#was#es6mated.#Red#ver6cal#line#highlights#
the#observed#date#of#ex6nc6on.#P#values#may#increase#because#when#there#is#no#
searching#at#a#given#6me#point,#the#model#assumes#the#probability#of#persistence#
returns#to#the#prior#assump6on#that#a#species#is#extant#(1Bprior).#
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21#

Figure#3.#Distribu6on#of#probabili6es#of#persistence#produced#by#Thompson#et#al.#
(2013)’s#method# and# Solow# (1993)’s# across# the# three# detectability# levels# at# two#
days#prior# to#ex6nc6on# (day# B2,# the# last#day# the#microcosms#were#sampled),# the#
day#of#ex6nc6on#(day#0,#the#first#day#the#species#was#observed#as#ex6nct),#and#two#
days#aLer#ex6nc6on#(day#2).#Data#shown#is#for#constant#search#efforts#with#a#prior#
of#0.5.#P#values#of#1#indicate#a#species#has#been#observed#as#extant.#
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Figure#4.#Distribu6on#of#probabili6es#of#persistence#produced#by#Thompson#et#al.#
(2013)’s#method#and#Solow#(1993)’s#across#the#three#prior#values#at#two#days#prior#
to#ex6nc6on#(day#B2,#the#last#day#the#microcosms#were#sampled),#the#day#of#
ex6nc6on#(day#0,#the#first#day#the#species#was#observed#as#ex6nct),#and#two#days#
aLer#ex6nc6on#(day#2).#Data#shown#is#for#constant#search#effort#with#all#three#
levels#of#detectability#Included#(0.1,#0.5,#1).#P#values#of#1#indicate#a#species#has#
been#observed#as#extant.#
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