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Throughout the animal kingdom, internal fertilization - the merging of sperm and egg
inside the female body - nearly invariably relies on the use of a copulatory organ. In
contrast, males of advanced salamanders (Salamandroidea) attain internal fertilization by
depositing a spermatophore on the substrate in the environment, which females
subsequently take up with their cloaca. The aquatically reproducing modern Eurasian
newts (Salamandridae) have taken this to extremes, since the majority does not display
physical contact between the sexes and largely rely on females following the male track at
spermatophore deposition. Although the use of pheromones has been widely assumed
during their courtship, molecules able to induce the female following behaviour that
culminates in insemination have not been identified. Here we show that uncleaved
glycosylated SPF protein pheromones, secreted during courtship, are sufficient to elicit
such behaviour in palmate newts (Lissotriton h. helveticus), indicating that these molecules
obviate the need for copulation in these salamanders. Surprisingly, our finding of side-by-
side secretion of Late Palaeozoic diverged proteins in a single species suggests that these
molecules already had a courtship function in stem salamanders about 300 million years

ago, rendering them one of the oldest vertebrate pheromone systems.

1. Introduction

Internal fertilization (i.e., the merging of sperm and egg inside the female body) is a widespread
reproductive mode that is generally accomplished through copulation, i.e. the insertion of a
copulatory organ into the female sex organ [1]. In contrast, males of most advanced salamanders
(Salamandroidea, making up about 90 % of the more than 650 species of extant salamanders)
reproduce by internal fertilization, but deposit a sperm package (spermatophore) on the substrate

in the environment which females subsequently take up with their cloaca. In most families, an
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enhanced success rate of insemination is accomplished through contact, such as a coordinated
tail-straddling walk, or amplexus in which the male sometimes drags the female over the
spermatophore [2,3]. However, some male salamanders have abandoned close physical contact
altogether and instead largely rely on tail-fanning courtship pheromones to the female [2,4,5].
These pheromones induce following behaviour, so that the female passes over the spermatophore
and picks it up with her cloaca (Figure 1A, movie S1) [6].

In Caudata, the use of protein pheromones during male courtship rituals is known from
terrestrial plethodontid salamanders, and a decapeptide attractant in Asian newts has been
intensively studied [7-14]. However, no studies are available that have characterized pheromones
that directly affect the female sexual following behaviour that is crucial for attaining
insemination in aquatically reproducing newts. Here we purified courtship proteins that are tail-
fanned by palmate newts (Lissotriton helveticus, Salamandridae) from water, experimentally
tested them, and used transcriptomics and phylogenetics to estimate the age of the earliest

divergence of present-day secreted proteins.

2. Material and methods

(a) Animals

The research was done with permission and according to the guidelines of Agentschap
voor Natuur en Bos (permits ANB/BL-FF/V12-00050 and ANB/BL-FF/V13-00134). All
experiments complied with EU and Belgian regulations concerning animal welfare. Animals
were released back to the pond of their origin after the experiments were finished. We used 40
adult males and 40 females of each of the three species of newts (Lissotriton helveticus, L.

vulgaris and Ichthyosaura alpestris). All species have an overlapping breeding season and were
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87  collected in spring from ponds near Ternat, Belgium. The catching method and the housing
88  conditions were the same to those described elsewhere [6].

89

90  (b) Behavioural experiments

91 Behavioural experiments were done in aged tap water with and without stimuli added.
92  All experiments were performed on consecutive days, at the same time of the day, and under the
93  same light and temperature conditions (see [6] for more details). To evaluate suitability of the
94  animals to be used, all experiments were preceded by a receptivity test before the first
95  experiment, and only receptive animals were selected [6]. For the species-specificity
96  experiments, L. vulgaris and 1. alpestris females were tested in parallel to confirm the potency of
97  their courtship water used to test L. helveticus females. In all tests, female behaviour was
98  recorded for twelve minutes, and the first two minutes of the experiment were discarded to allow
99  acclimatization of the animals. Experiments were recorded using a digital camera connected
100  directly to a computer, and the recordings were analysed for following and pointing. Following
101  is female courtship behaviour similar to that under natural conditions with a courting male,
102  where a female starts to closely follow his movements. Here we measured the cumulative
103 amount of time in which at least one of the females incessantly shows interest towards the other
104  one, including turning towards the other female and following her. More than 30 seconds of
105  following was scored as positive. Pointing is a way to measure the change in behaviour without
106  having to understand or observe specific types of female behaviour and is therefore more
107  objective. Here we measured the cumulative amount of time (seconds) per couple that an
108  imaginary straightforward line, perpendicular to the line connecting the eyes of the following
109  female, intersects the other female’s body. The differences in pointing between stimuli were
110  tested with the Kruskal-Wallis test followed by post hoc two-tailed Mann-Whitney U test for
111 pairwise comparisons [15]. The analyses were done using IBM SPSS Statistics for Windows

112 [16].

PeerJ PrePrints | http:/dx.doi.org/10.7287/peerj.preprints.457v1 | CC-BY 4.0 Open Access | received: 11 Aug 2014, published: 11 Aug



113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

(c) Collection and extraction of molecules from courtship water

Pheromone collection was done by placing a male and female for one hour in a plastic
container (25x16x14 cm) filled with 600 ml of water (details are outlined in [6]). During
sampling, couples were monitored for courtship behaviour and the amount of time a male fanned
his tail was measured. For each condition, we sampled a minimum of 15 courting couples in
which at least ten minutes of male tail-fanning occurred. Pheromones were extracted by applying
non-courtship or courtship water of a single couple onto two separate solid phase extraction
cartridges (300 ml per filter; RP-C8 and RP-C18 Sep-Pak plus cartridge, 400 mg sorbent,
Waters, Milford, MA, USA) using a vacuum pump. Proteins were eluted from both cartridges
with 7.5 ml of 90% (v/v) acetonitrile containing 0.1% (v/v) TFA. All acetonitrile was evaporated
using a SpeedVac concentrator (SCV-100H, Savant instruments, Farmingdale, NY) for 1 h.

After concentration, samples were pooled per condition and subjected to RP-HPLC.

(d) Purification of proteins

Peptides and proteins were partially separated using reversed-phase high-performance
liquid chromatography (RP-HPLC). Pooled and concentrated samples were loaded onto a Source
SRPC column (4.6x150 mm, GE Healthcare Life Sciences, Uppsala, Sweden) pre-equilibrated
with 0.1% (v/v) TFA (A). After loading, the column was washed for 10 minutes at a constant
flow rate of 1 ml/min using the same solvent. Proteins were eluted with 80% acetonitrile in 0.1%
TFA (B) by applying a linear (from 0-100 % B in 80 minutes at 1 ml/min) or flattened gradient
(30-65% B in 56 minutes at 1 ml/min). Detection of eluting proteins was performed at a
wavelength of 214 nm and the eluate was collected in fractions of 1 ml. Fractions of interest
were subjected to non-reducing SDS-PAGE using precast gels (Any kD Mini-PROTEAN TGX,
Biorad, Hercules, CA, USA). Proteins were visualized by silver staining (Silverquest Silver

Staining kit, Invitrogen, Carlsbad, CA, USA).
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To further purify the candidate pheromones, HPLC fractions of interest were submitted
to ion exchange chromatography. After evaporating the acetonitrile (SCV-100H, Savant
instruments, Farmingdale, NY) samples were brought to pH of 7.5 by addition of buffer
containing 20 mM bis-tris propane, 20 mM piperazine and 20 mM N-methyl piperazine (Sigma).
Samples were loaded onto a 1 ml Hitrap DEAE Fast Flow (GE Healtcare Bio-sciences, flow rate
Iml/min) column pre-equilibrated with binding buffer containing 15 mM bis-tris propane, 15
mM piperazine and 15 mM N-methyl piperazine (buffer A, pH 7.5, Sigma) and washed for at
least 10 minutes with the same buffer until all material in the effluent disappeared. Proteins were
eluted with 15 mM bis-tris propane, 15 mM piperazine and 15 mM N-methyl piperazine (buffer
B, pH 3, Sigma) by applying a linear gradient (from 0-100% B in 20 minutes). Detection of
eluting proteins was performed at a wavelength of 280 nm and the eluate was collected in
fractions of 1 ml. Purity of the fractions was assessed by mass spectrometry and non-reducing
SDS-PAGE, using precast gels (Any kD Mini-PROTEAN TGX, Biorad, Hercules, CA, USA).
After electrophoretic separation, proteins were visualized by silver staining (Silverquest Silver

Staining kit, Invitrogen, Carlsbad, CA, USA).

(e) Mass spectrometry and amino acid sequence analyses

Mass analyses of the HPLC fractions were performed by electrospray ionization ion trap
mass spectrometry on an ESQUIRE- LC MS (Bruker, Brussels, Belgium). In addition mass
analyses of the desalted ion exchange fractions (Zip Tip C18, 10 ul, Millipore) were performed
on an Amazon Speed ETD ion trap mass spectrometer. Characterization of the glycan moiety
was done through in-source fragmentation on the Esquire ion trap mass spectrometer by
gradually elevating the potential on skimmer 1 and the exit caps in the electrospray source. Peak
fractions of courtship water collected during breeding season were subjected to a non-reducing
SDS-PAGE using precast gels (Any kD Mini-PROTEAN TGX, BioRad, Hercules, CA, USA).

After electrophoresis, proteins were transferred from the gel onto a PVDF membrane by semi-
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dry blotting (Trans Blot Turbo System, Bio-Rad) and stained with 0.1% Coomassie Brilliant
Blue R-250 (Sigma, St. Louis, MO, USA; membrane not shown). All protein bands were excised
from the blot for N-terminal sequencing on a 491 Procise cLC protein sequencer (Applied

Biosystems, Foster City, CA, USA).

(f) Transcriptomics and gene expression estimates

Abdominal glands for RNA sequencing (RNA-seq) were sampled from a single male.
Total RNA was extracted using TRI Reagent (Sigma-Aldrich) and the RNAeasy mini kit
(Qiagen). Extracted RNA was sent to Baseclear (Leiden, The Netherlands) for RNA sequencing,
de novo transcriptome assembly, and gene expression estimations. A pair-end cDNA sequencing
library (PE50) was created with Illumina TruSeq RNA Library Preparation Kit and 52040842
fragments were sequenced on an Illumina HiSeq 2500 instrument. FastQ reads were generated
after analyses with Illumina Casava pipeline (version 1.8.3), a post-filtering script (Baseclear)
and FASTQC quality control tool (version 0.10.0) to remove low quality, PhiX-control and
adapter reads. De novo transcriptome assembly was performed with Trinity [17] and transcript
expression levels were estimated by mapping reads to the de novo assembled transcripts, on the
RNA-seq module of the CLC Genomics Workbench (allowing two mismatches per read).
Sodefrin precursor factor-like (SPF) sequences were identified through aligning assembled
transcripts to a dataset containing SPF sequences from the Uniprot database using RAPsearch
[18].

RACE (rapid amplification of cDNA ends) was performed to obtain complete protein
sequences from different SPF precursors. Primers were designed on the 3’-untranslated region to
amplify full-coding sequences of SPF transcripts as follows:

SPF Primer A, 5-TTGTTAATAAWYATTCTGTAAAGARGCT-3"; SPF_Primer B, 5'-

GCCTTGTTGBCAAAAHKTCTTC-3"; SPF_Primer C, 5'-ACAAYTWCTAAGCTGGHKTAG
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GA-3'; SPF Primer D, 5-GTGTGTATWTGRGGTATRAACAAAGGTC-3', SPF Primer E,
5'-CCAACAATTACTRRGMKGGAGTAGG-3"; SPF Primer F, 5'-
CAACTACTAAGCTRRAGTM

RGAGTGC-3"; SPF Primer G, 5'-GGRTAGGATTGCGTCAGATGTT-3'; SPF Primer H, 5'-
TAGGAATGTTTCTAYKGACKACTACTRAG-3"; SPF Primer I, 5'-CTATTGCTAAGCTG
KGGTG-3'"; SPF_Primer J, 5'-GCTGGCACATGGGCATGT-3"; SPF_Primer K, 5'-GCCCAWA
CASKACTAAGCACATT-3"; SPF_Primer L, 5-GACTCTGVATTHCAGGTACTTGTAGAG-
3"

A total of 1 1 g total RNA from the same extraction procedure as in RNA-seq was used to create
RACE cDNA with the SMARTer-RACE c¢cDNA amplification kit (Clontech). PCR products
were amplified with FastStart High Fidelity Taq DNA polymerase (Roche). Amplification
products were cloned into a pGEM-T Easy cloning vector (Promega) and vectors were
transformed into TOP10 Competent Cells (Invitrogen). Colonies were picked randomly and
inserts were amplified with Faststart Taq DNA polymerase. Amplification products were
purified and sequenced by the VIB genetic service facility (Antwerp, Belgium). For comparison
with protein masses found in courtship water, contiguous sequences (contigs) were assembled
with CodonCode Aligner 3.7.1.1 (CodonCode Corporation) using a 99% similarity threshold,
after quality trimming. Signal peptides, predicted using SignalP 4.0 [19], were removed and
protein  masses were calculated  with  the pI/Mw  tool on Expasy
(http://web.expasy.org/compute pi/). Gene expression differences between SPF homologs were
estimated using RNA-seq read counts (as described above) on the assembled homologs from our

RACE procedure. Expression levels were determined using RPKM values [20].

(g) Phylogeny and divergence time estimates
We combined protein sequences of a representative set of 16 SPF precursors of

Lissotriton helveticus found in this study with four plethodontid, three ambystomatid and six
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other salamandrid sequences from Genbank. Two frog sequences were chosen as outgroup.
Alignment of the protein sequences was done with MAFFT [21] using the L-INS-i method and
resulted in a data matrix of 216 amino acids. Bayesian and likelihood analyses were performed
using a LG amino-acid rate matrix. Maximum Likelihood (ML) analyses were run in PAUP [22],
with empirical frequencies, estimated proportion of invariable sites (0.0527345) and distribution
of rates at variable sites following a gamma distribution with four categories and estimated shape
parameter 1.79548. This resulted in a single ML tree with likelihood score -Ln L = 8271.589.
Bayesian analyses and Bayesian posterior probabilities were calculated in MrBayes [23]. Two
runs of four Markov chain Monte Carlo (MCMC) chains each were executed in parallel for
5,000,000 generations, with a sampling interval of 500 generations and a burn-in corresponding
to the first 1,000,000 generations. Speciation-duplication analyses were done using Notung [24].
To estimate the age of the earliest diversification in our SPF pheromones, we used a Bayesian
relaxed molecular clock model implemented in Beast [25]. As a calibration point, we used the
divergence of the (Salamandridae, Ambystomatidae) clade from Plethodontidae, a relationship
that is widely accepted [26-30] and was also strongly supported in our ML tree. We used the
mean (175.7 Mya) and standard deviation (14.8) of the last five studies [26-30] presented on
Timetree [31] (version of 13 January 2014) to calibrate our tree with a central 95% range of
146.7-204.7 Mya. The sodefrin precursor sequence of Cynops was not included, because the end
of the sequence (containing the sodefrin peptide) is not homologous with our full-length

proteins.

3. Results and Discussion

We first optimized a behavioural assay in which female courtship responses can be
measured in the absence of a male, thus giving experimental control over the application of

candidate pheromones. A two-female experiment (modified from [6]) with palmate newts
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(Lissotriton h. helveticus) was used in which females are exposed to male molecules emitted
during tail-fanning (Figure la). Under natural conditions, females respond to male courtship
pheromones by following the male closely for a prolonged period (Movie S1). The set-up of our
two-female behavioural assay removes the secondary sexual morphological and chemical
characteristics, as well as the visual cues of tail-fanning of a male, while retaining the required
presence of another individual necessary to exhibit following behaviour. Using this assay, we
first measured whether water in which a male had been tail-fanning (henceforth termed courtship
water) was able to induce such following behaviour in females. As a first indication, we counted
the number of couples in which a trained observer measured more than half a minute of
following behaviour during ten minutes of observation (henceforth termed Nf). However, to
have a fully objective way of measuring following behaviour, statistical comparisons (Kruskal-
Wallis test followed by post hoc two-tailed Mann-Whitney U test) were performed with the time
period that females faced each other during the experiment (which is largely caused by the
following behaviour). Our behavioural assays indicate that palmate newt courtship water induced
following of conspecific females (Figure 1b and see the electronic supplementary material, Table
S1; Lhl: Nf = 9/12, compared to control 1: Nf = 1/11; P < 0.01). These tests confirm that
courtship water is able to induce female courtship responses in palmate newts, even in the
absence of the male secondary sexual characteristics and visual cues associated with tail-fanning.
Females of palmate newts show a reduced response in courtship water of the congeneric species
L. vulgaris (Figure 1b and Table S1; Lv: Nf = 4/12; P = 0.065), and no response in that of the
more distantly related alpine newts (Ichthyosaura alpestris) (Figure 1b and Table S1; Ia: Nf =
0/12; P < 0.01), suggesting that tail-fanned courtship pheromones quickly evolve towards
species-specificity.

We optimized a protocol for sampling proteins emitted during male tail-fanning directly
from water and compared reversed-phase high-performance liquid chromatography (RP-HPLC)

elution profiles of courtship water with that of water in which a non-courting male and female
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had been held. These analyses show a recurrent pattern of elution profiles showing a peak that is
present in water in which a male has been tail-fanning [>20 profiles, one shown; Figure Ic,
courtship peak, CP (orange)], but absent in (i) water in which non-courting males and females
were held for the same amount of time [5 profiles, one shown; Figure 1c, male-female water, MF
(blue)] and (ii) courtship water sampled at the end of the breeding season (see the electronic
supplementary material, figure S1). A behavioural assay with the fractions of the courtship peak
indicated that they induced following (Figure 1b, CP: Nf = 9/10, compared to water, control 2:
Nf = 1/12; P < 0.05) in a way that is not significantly different from that observed in courtship
water (Lh2: Nf = 11/13, P = 0.385). Conversely, non-courting male-female water resulted in
female reactions that were not significantly different from those in control water (MF: Nf = 2/11;
control 2: Nf = 1/12; P = 0.166). These observations indicate that the RP-HPLC fractions of the
courtship peak effectively contain the male courtship pheromones that induce female following
behaviour. N-terminal amino acid sequencing (Edman sequencing) of these pooled fractions
indicated the presence of multiple isoforms of the Sodefrin Precursor-like Factor (SPF) family
(see the electronic supplementary material, table S2). These proteins were considered ideal
pheromone candidates, because a full-length protein (i.e., not cleaved, except for the signal
peptide) of this family identified from the mental gland of the terrestrially reproducing
plethodontid salamander Desmognathus ocoee was shown to increase female receptivity [ 14].
We further characterized the diversity of SPF proteins by combining transcriptome
analyses of the pheromone-producing abdominal gland of a single male with proteome analyses
of RP-HPLC fractions of the courtship peak. Whole transcriptome sequencing (RNAseq) and de
novo assembly of nearly 52 million (Mio) reads revealed 4.1 Mio reads (7.9 %) belonging to this
SPF family of molecules. RACE-PCR sequencing revealed 32 different cDNA precursor
sequences (GenBank numbers KJ402326 - KJ402357) encoding for 31 unique mature proteins.
RNAseq expression analyses indicated five isoforms as most abundant, together making up

94.0% of the SPF transcripts identified in the transcriptome (Figure 2a, 2b). Interestingly, the
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pairwise amino acid divergences between these sequences were between 19.2 and 78.8 %,
indicating that these proteins do not only result from allelic variation. To determine the presence
of post-translational modifications and to confirm that these precursors are also effectively
translated and tail-fanned to the female, we performed an RP-HPLC with a prolonged gradient
(Figure 2c) to obtain a better separation of the SPF proteins, and combined mass spectrometry
analyses and Edman sequencing of individual fractions. Mass spectrometry analyses indicated
the presence of an oligosaccharide with 2 N-acetylglucosamine units (GlcNAc) and multiple
hexoses (see the electronic supplementary material, Figure S2) attached to the available
glycosylation sites of the proteins. Individual RP-HPLC fractions revealed the presence of
multiple proteins for which the glycosylated masses (up to eight hexoses) match the theoretically
predicted masses derived from the cDNA precursors (see the electronic supplementary material,
table S3). Additionally, several of these predictions could be confirmed by N- terminal amino
acid sequencing (see the electronic supplementary material, table S2). This indicates that SPF is
effectively present as multiple uncleaved proteins with different levels of glycosylation
(glycoforms) in the courtship peak.

Next we performed ion exchange chromatography to purify SPF from the courtship peak
fractions. SDS-PAGE, mass spectrometry and Edman sequencing all indicated that this led to
removal of non-SPF as well as some of the SPF proteins, and resulted in a sample containing two
SPF proteins (SPF 1: Mr = 21036.8; SPF 3: Mr = 20326.9) with multiple glycoforms (Figure
2d). A two-female behavioural experiment with these proteins resulted in a significant increase
of the female following behaviour (Nf = 8/10) compared to control water (Nf = 0/11, P < 0.01)
(Figure 2d), and confirms that SPF proteins alone are able to induce female following, even in
the absence of visual stimuli of a courting male. Finally, we used the same techniques to purify a
single SPF isoform (SPF 3: Mr = 20326.9) with its glycoforms (Figure 2¢). A behavioural test
with this protein induced following in half of the couples (Nf = 5/10, compared to none in

control water; P < 0.05) (Figure 2¢). This experiment indicates that a single isoform is able to
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elicit female courtship responses. Future investigations on the relative ability of various
individual SPF proteins to induce female courtship responses in the palmate newt and related
species could give important insights in the evolution of species-specificity of protein
pheromones.

Phylogenetic analyses combining our palmate newt SPF ¢cDNA precursors with available
sequences [11] on Genbank confirm that SPF diversification goes beyond allelic variation by
indicating multiple gene duplication events (Figure 3). Speciation-duplication analyses identified
speciation events that conform to established higher-level phylogenetic relationships of
salamanders (Figure 3a), but also recognized two duplications that occurred before the
Plethodontidae-Salamandridae divergence (Figure 3b, nodes 1 and 2). The strongly supported
relationship of SPF proteins from lungless salamanders (Plethodontidae) with a clade uniting an
Ambystoma and our salamandrid SPF3 precursors (Figure 3b, indicated with an asterisk) reveals
the orthologs corresponding to the Salamandridae-Plethodontidae divergence [15-20], and
defines a split (Figure 3b, node 3) that had remained unidentified in previous studies [11, 12].
We used the mean and standard deviation (175.7 +/-14.8 Mya) of the last five studies presented
on Timetree [26-31] (version of 13 January 2014) to calibrate this node with a central 95% range
of 146.7-204.7 Mya and to estimate precursor divergence times with a Bayesian relaxed
molecular clock model implemented in Beast [25]. Our results reveal a Late Palacozoic
duplication event (Figure 3b, node 1) that denotes the early onset of SPF diversification and
protein secretion (the latter as indicated by our protein characterization from courtship water) at
about 288.4 Mya (95% HPD = 200.6-385.1 mya) (see the electronic supplementary material,
table S4). Our time estimates for salamander speciation nodes in the gene tree (Table S4) are
close to the mean of the last five studies that estimated the divergence times of the
Ambystomatidae-Salamandridae split (146.8 MYA +/- 33.1) and the onset of diversification of
Plethodontidae (72.1 +/- 23.9) [25-30]. Additionally, the two nodes that represent the same

speciation event in Lissotriton in our gene tree (Figure 3b, nodes 9 and 10) have similar age
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estimates. All these results together strengthen confidence in our divergence time estimates,
including the duplication events of SPF genes. The timing of the earliest SPF divergence
therefore is close to the origin of stem salamanders (Anura-Caudata divergence, estimated at
295.5 +/- 21 Mya, Figure 3) [26] and considerably predates the currently known use of this
protein system (i.e., in crowngroup plethodontids, Figure 3, green circle and branches).

Our study not only characterizes the pheromones behind the intriguing female following
behaviour in salamandrid newts, but also expands the evidence for the use of uncleaved SPF
pheromones from a single family (Plethodontidae) to potentially all salamanders. Uncleaved SPF
proteins until now were shown to be functional as a pheromone in a single plethodontid species
Desmognathus ocoee (Figure 3b, green circle) [14]. Although an SPF-derived pheromone was
initially discovered in a salamandrid, the cleaved active decapeptide (sodefrin, an attractant in
Cynops) originated through a translational frame shift and as a consequence shows no homology
with uncleaved SPF protein pheromones. Additionally, the short peptide obtained its pheromone
function in the genus Cynops, and therefore independently from uncleaved proteins
(Janssenswillen et al., submitted). To our knowledge, our study of an aquatic salamandrid is the
first to expand the effective behavioural evidence for a courtship pheromone function of
uncleaved SPF proteins outside the family of plethodontids. Additionally, the side-by-side
secretion of anciently diverged proteins (Figure 3b, red circles) in our newt species suggests that
the courtship function for these proteins considerably predates the Salamandridae-Plethodontidae
divergence. Although cDNA studies in individual species already indicated the presence of
multiple isoforms [11,12], the known diversity of SPF precursors in each of these families
resulted from family-specific gene duplications and/or polymorphisms [11,12]. In contrast, our
palmate newts tail-fan proteins of which the estimated divergence dates back to the Late
Palaeozoic (Figure 3b, node 1) and our results therefore strongly suggest a pheromone function
for these molecules already in the earliest salamanders, about 300 mya.

Our combined evidence indicates that, although very different courtship behaviours can be
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372  observed across the evolutionary tree of salamanders [3,10,14], the function of uncleaved SPF
373  proteins to regulate female sexual receptiveness originated early in salamander evolution and has
374  been conserved with various observable effects in multiple salamander lineages ever since. In
375 palmate newts, and likely also in related species with female following behaviour, these
376  pheromones obviate the copulatory organ by ensuring that eggs and sperm can merge in the safe
377  environment of the female body.
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478  FIGURES

479
480
(a) Following behavior (b) Behavioral experiments (¢) RP-HPLC elution profiles
Natural Species specificity Courting couple
Female follows male 400 027
300 _
2 200 ht
& 2
0 o=
Lhl Lv Ia  Control 1 10 30 50 70
Time (min)
Experimental Courtship specificity Non-Courting couple
Female follows female 27
= <
ni M
Lh2 CP  MF Control2 10 30 50 70
j 481 Time (min)
482 Figure 1. Identification and isolation of male courtship pheromones. (a) up: Tail-

483  fanning of the pheromones towards the nose of the female persuades her to follow the path of the
484  retreating male; down: analogous response of a female in pheromone-containing water during a
485  two-female behavioural bio-assay. (b) Behavioural assays and species-specificity. up: The time
486  that females of L. helveticus showed following behaviour in courtship water of their own species
487  (Lhl), L. vulgaris (Lv), I. alpestris (Ia) and control (Control 1, H,O); down: The fractions
488  composing the courtship peak (CP, orange) induced female responses that are similar to those in
489  full courtship water (Lh2). Male-female water (MF) resulted in few female responses, and was
490  similar to the control (Control 2, H,O) (¢) Comparison of RP-HPLC profiles of courtship water
491  and male-female (non-courtship) water. Courtship water shows a courtship peak (orange) that is
492  absent in MF water (blue), indicating that males largely release courtship pheromones (that

493  induce female following) during tail-fanning.
494
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(a) Expression of SPF (b) Most abundant SPF precursors
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496

497 Figure 2. Transcriptomic and proteomic analyses of SPF proteins. (a) RNAseq
498  expression level (percentage of total SPF) of the ten most abundant SPF precursors in the
499  abdominal gland of a male (Reads Per Kilobase per Million mapped reads, RPKM). (b) MAFFT
500 alignment and theoretical masses of the five most abundant SPF proteins. Cysteins are indicated
501 in grey. (¢) SDS-PAGE (silver staining) and RP-HPLC elution profile of SPF proteins in a
502  courtship peak. See the electronic supplementary material, table S2 for Edman sequencing and
503 table S3 for mass spectrometry analysis of individual fractions. (d, e) Anion exchange
504  chromatography (AEC) elution profile, silver stained SDS-PAGE, mass spectrometry
505  (deconvoluted mass spectra), Edman sequencing, and behavioural tests of two SPF pheromones
506 (d) and a single SPF pheromone (e). Asterisks indicate significance levels: *P < 0.05, **P <
507  0.01.
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Figure 3. Time estimates (a) species diversification. The mean and standard deviations for
species diversifications were calculated from the last five published estimates [26-30]. The
origin of internal fertilization in the ancestor of Salamandroidea is indicated in gray. (b) SPF
protein diversification. The tree shows Bayesian dating estimates, the asterisk denotes the
calibration point. The diversity of plethodontid precursors was chosen to reflect the largest
known SPF divergences in this family. The fact that our gene tree of plethodontid SPF's
corresponds to the higher taxonomic level relationships of these species therefore indicates that
the known SPF variation is the result of family-specific variation and/or gene duplications (in
agreement with [12]). Bayesian Posterior Probabilities >95 are indicated with black squares.
Speciation nodes are indicated with S, all other nodes are considered duplication nodes [by

Notung analyses, see Materials and methods]. Node numbers refer to age estimates in table S4.
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521  Numbered SPF's all indicate sequences from the abdominal gland of the palmate newt. The top
522 five expressed proteins, which were also confirmed in courtship water, are indicated with red

523  circles. The green circle denotes the species in which the pheromone function was demonstrated

524 in plethodontids.
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