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Error correction and diversity analysis of population 

mixtures determined by NGS

The impetus for this work was the need to analyse nucleotide diversity in a viral mix taken 

from honeybees; the methods are illustrated using honeybee viral samples. The paper has 

two �ndings. First, a method for correction of next generation sequencing error in the 

distribution of nucleotides at a site is developed. Second, a package of methods for 

assessment of nucleotide diversity is assembled. A statistically based error correction method

is presented, which works at the level of the nucleotide distribution rather than the level of 

individual nucleotides. The method relies on an error model and a sample of known viral 

genotypes that is used for model calibration. A compendium of existing and new diversity 

analysis tools is also presented, allowing hypotheses about diversity and mean diversity to be

tested and associated con�dence intervals to be calculated. Software in both Excel and 

Matlab and a guide are available at 

http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/, the Warwick University 

Systems Biology Centre software download site.
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ABSTRACT

The impetus for this work was the need to analyse nucleotide diversity in a viral mix

taken from honeybees; the methods are illustrated using honeybee viral samples. The

paper has two findings. First, a method for correction of next generation sequencing

error in the distribution of nucleotides at a site is developed. Second, a package of

methods for assessment of nucleotide diversity is assembled. A statistically based error

correction method is presented, which works at the level of the nucleotide distribution

rather than the level of individual nucleotides. The method relies on an error model and

a sample of known viral genotypes that is used for model calibration. A compendium of

existing and new diversity analysis tools is also presented, allowing hypotheses about

diversity and mean diversity to be tested and associated confidence intervals to be

calculated. Software in both Excel and Matlab and a guide are available at

http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/, the Warwick

University Systems Biology Centre software download site.

Keywords: calibration, error correction, honeybee, metagenome, nucleotide diversity,

standard sample, viral mix

INTRODUCTION

Next generation sequencing (NGS) is an extremely powerful tool for the analysis of

mixed populations in ecology and biology, providing a means to assess community

composition (metagenomics) whilst also aiding the discovery of new species, Radford

et al., 2012. The relatively high error rate of NGS, however, limits the ability to analyze

population diversity directly. Population diversity is a crucial ecological measure,

relating particularly to selection pressure and (relative) evolutionary fitness. Diversity is

critical within biological arenas as well, for instance T cell and viral diversity are key

complementary measures of the immune system and infection status respectively. There

is thus a pressing need to create tools to appropriately correct NGS error, to estimate

diversity introduced by NGS and to estimate inherent virus diversity. This study was

motivated by the prevalence and pathogenicity of honeybee deformed wing virus (DWV)

and related viruses. It is known that these may cause both asymptomatic low-level

and symptomatic high-level infection; the Varroa mite is the likely causal factor that
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produces a shift from the benign to the pathogenic state, correlating with a shift in the

level of viral population diversity (Martin et al., 2012; Ryabov et al., 2014).

The Varroa mite is now endemic in honeybee colonies throughout Europe, North

America and New Zealand, causing significant colony losses (Neumann and Carreck,

2010). Varroa acts as a vector for a range of honeybee viral pathogens, most important

of which is the picorna-like deformed wing virus, a close relative of Varroa destructor

virus-1 (VDV-1). At high Varroa levels a virulent virus, a recombinant between DWV

and VDV-1, is amplified in the colony leading to overt deformed wing disease and colony

loss (Ryabov et al., 2014). Thus, to determine the degree of selection for that strain there

is a need to compare viral diversity between Varroa-free and Varroa-infested honeybee

viral RNA samples. Viral RNA samples, extracted from individual newly-emerged adult

bees from Varroa-free or Varroa-infested colonies, were subjected to next-generation

sequencing (NGS) and the resulting reads used to estimate diversity. In particular, there

was the need to compare the diversity in the distribution of nucleotides at each nucleotide

position, from one sample to the other. Next generation sequencing, however, is subject

to error which in turn inflates diversity measures. An accurate measure of nucleotide

diversity at each position is needed in this context, and thus the statistical structure of

the nucleotide distribution can be used to achieve a means for correction.

An extensive literature on the correction of next generation sequencing error is

available, entirely devoted to methods for correction of individual nucleotides rather

than the distribution of nucleotides at each position. A useful recent review of the

existing literature can be found in Yang et al. (2013), where it is pointed out that all

methods depend on “alignment and consensus”, with more powerful approaches being

developed over time. Methods are classified into three types: k-spectrum based (all

k-mers are identified, then clustered by Hamming distance and clusters assumed to

come from the same genomic location), suffix tree/array-based (a generalisation of the

k-mer approach which accommodates multiple values of k) and methods dependent on a

multiple sequence alignment. Early methods (Quince et al., 2009; Zagordi et al., 2011)

assumed that errors occur at random while Skums et al. (2012) builds in known platform

influences. In Macalalad et al. (2012) the authors utilised the fact that biological variants

and process errors exhibit different covariation. Here we develop a simple but effective

method for nucleotide distribution correction. This is a problem at a coarser level than

rectification of the assignation of each nucleotide, allowing us to use a different approach.

Additionally, the method appears to be unique in that it uses a standard sequence for the

purposes of error calibration.

A careful examination of the distribution of Shannon diversity first appeared in the

ecology literature (Hutcheson, 1970). Beerenwinkel et al. (2012) provides an excellent

overview of the state-of-the-art in estimating viral diversity from next-generation se-

quencing data; diversity can be measured at single sites (for single nucleotide variant

detection), locally in windows of a multiple sequence alignment and globally over the

entire genomic region. In Gregori et al. (2014) the authors look at three measures of

diversity and compare their values (the variance of diversity is incorrectly stated in

Gregori et al. (2014), but corrected here in Section 2.2). To conclude the review of

literature on a broader note, in Schreiber and Brown (2002) a method for correcting

systematic bias in the nucleotide distribution (the “distortion”) in a genome is presented.

The novel stochastic method for NGS error correction of diversity measures intro-
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duced here is based on use of an evolutionary model (in the first instance, the Jukes-

Cantor model (Jukes and Cantor, 1969)) and requires the availability of an accurately

known sequenced sample. The corrected nucleotide distribution is used to calculate both

the expected diversity and the diversity variance. These in turn can be used to test hy-

potheses about single diversities, or to test the hypothesis of equality of diversity across

two samples. Hypotheses about mean diversities and comparisons of mean diversities of

two samples are also discussed, taking into account correlation of diversities across the

averaged sites. Finally, the ideas are used to produce a diversity threshold for a sample

to be consistent with a clonal (zero nucleotide diversity) population. The methodology

is illustrated with NGS datasets drawn from the honeybee study. The methods discussed

extend our understanding of NGS error correction and provide a core set of tools useful

in the study of diversity.

MATERIALS AND METHODS

Error and diversity correction

We first correct the NGS error in the nucleotide distribution and then use this distribution

to calculate the (corrected) diversity. Our starting point is the true (to be estimated)

nucleotide distribution, p. Assuming independence of errors, the error introduced

through NGS can be modelled by a 4×4 matrix M whose entries give the probability

of a particular nucleotide change during sequencing, conditional on the initial value of

the nucleotide, whence the theoretical distribution of nucleotides following sequencing

is q = Mp. In practice we sequence finitely many nucleotides n so the empirical

distribution is q̂ with E(q̂) = q. The simplest error model is the Jukes-Cantor model,

where a nucleotide mutates to any other with equal (low) probability α , summarised as

M(α) =









P(A|A) P(A|C) P(A|G) P(A|T )
P(C|A) P(C|C) P(C|G) P(C|T )
P(G|A) P(G|C) P(G|G) P(G|T )
P(T |A) P(T |C) P(T |G) P(T |T )









=









1−3α α α α

α 1−3α α α

α α 1−3α α

α α α 1−3α









Since Mp = p+α(1−4p), this transformation has the effect of moving all probabilities

closer to 0.25, thereby increasing diversity. Richer mutation models can be incorporated,

for example allowing different mutation rates between purines and pyrimidines; for this

study the Jukes-Cantor model is sufficient for our purposes.

The NGS error can be partly corrected by reversing the mutation process, first

multiplying q̂ by M−1. In practice, thanks to the sampling variation introduced during

NGS, the reversal can yield negative components. For this reason we must bring these

back to zero and then normalize so that the nucleotide proportions sum to one. Thus,

the corrected nucleotide distribution r̂ is the component-wise maximum of M−1(q̂)
and (0,0,0,0), denoted (M−1q̂)+, normalised, so r̂ = (M−1q̂)+/∑

4
i=1

(

(M−1q̂)+
)

i
.

Since M−1(q̂) = (q−α)/(1−4α), this transformation has the effect of moving all

probabilities away from 0.25, so decreasing diversity. Only when q̂ = Mp does
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this reversal process work exactly, returning p. Figure 1 (a) lays out these stages,

from p, the true nucleotide distribution in the organism, to q̂ the distribution follow-

ing NGS, to r̂, the corrected distribution. To illustrate this numerically, with p =
(1,0,0,0), α = 0.001 and n = 10,000 then (n1,n2,n3,n4) could be (9,989,4,3,4) (us-

ing a multinomial distribution) whence q̂ = (0.9989,0.0004,0.0003,0.0004), M−1q̂ =
(1.0019,−0.0006,−0.0007,−0.0006), (M−1q̂)+=(1.0019,0,0,0), and r̂ =(1,0,0,0)=
p. In this example the correction is exact, but this is not always the case, whence the

estimate r̂ will still be subject to error.

Errorठ⃚

introduc�onठ⃚

b)ठ⃚Diversityठ⃚

H(p)H

p)H(q̂)H

(q̂)H(r̂)

0

Errorठ⃚

correc�onठ⃚

Calibra�onठ⃚

Correc�onठ⃚

Aठ⃚ Cठ⃚ Gठ⃚ Tठ⃚

Aठ⃚ Cठ⃚ Gठ⃚ Tठ⃚

Aठ⃚ Cठ⃚ Gठ⃚ Tठ⃚

NGSठ⃚errorठ⃚introduc�onठ⃚

ठ⃚

Errorठ⃚correc�onठ⃚ठ⃚ठ⃚ठ⃚ठ⃚ठ⃚ठ⃚ठ⃚

ठ⃚viaठ⃚ठ⃚

ठ⃚

) q̂ = (n1, n2, n3, n4)/n

M−1

q p

a)ठ⃚Nucleo�deठ⃚distribu�onठ⃚correc�onठ⃚

(n1, n2, n3, n4) ∼ MN(n, q = Mp)

r̂ = (M−1q̂)+/
P

4

i=1

�

(M−1q̂)+
�

i

Figure 1. The stages of NGS nucleotide distribution error correction. (a) Error is

introduced to the true nucleotide distribution p, giving distribution q̂, the result of

multinomial sampling with n (the coverage, the number of nucleotides sequenced) trials

in which the true sequenced nucleotide distribution is given by q = Mp. The error is

corrected by forming r̂, the normalisation of (M−1q̂)+. In practice M must be estimated

(the calibration step), using a known initial distribution p. (b) The initial diversity H(p)
increases to H(q̂) under NGS, but falls back to H(r̂) when corrected.

To utilize this correction method, we need the matrix M; in the case of the Jukes-

Cantor model this requires an estimate of the mutation rate α . This can be achieved

by estimating it on a sample of known composition and genotype, denoted here the

“standard” sample. This provides a two-step method to correct an empirical nucleotide

distribution q̂ for NGS error. The first (calibration) step uses pstandard and q̂standard to

estimate α (as α̂ , so giving an estimate of M, M̂) while the second (correction) step uses

M̂ and q̂ to estimate p with r̂, as follows.

1. Calibration Step. This is the estimation of α , the error rate in NGS sequencing.

We begin with a sample in which the nucleotide mix pstandard = (p1, p2, p3, p4)
T
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is known at each nucleotide position along a genome. We then sequence the

mix using NGS, giving nucleotide mix q̂standard = (q̂1, q̂2, q̂3, q̂4)
T . For each site

we can solve for α̂ using q̂ = M̂p. Equating ith components provides estimates

α̂i = (q̂i − pi)/(1−4pi) for i = 1, . . . ,4; these can be averaged across nucleotides

to give a lower variance estimate of α ,

α̂ =
α̂1 + α̂2 + α̂3 + α̂4

4
=

1

4

4

∑
i=1

q̂i − pi

1−4pi
(1)

These estimates can be averaged across nucleotide positions to improve the esti-

mate further.

2. Correction Step. Given nucleotide distributions q̂ produced from NGS of a sample,

form the corrected counts r̂ = (M̂−1q̂)+/∑
4
i=1

(

(M̂−1q̂)+
)

i
, where M̂ = M(α̂).

Example 1 in the Results section illustrates these calibration and correction steps with a

numerical example.

It is possible to estimate the residual error rate remaining after correction, given

an NGS error rate α and coverage n. This is done by using the calibration step with

pstandard = (1,0,0,0) and q̂standard = r̂, denoting the estimated residual error rate by β̂ .

Here r̂ is found by generating n values using q = M(α)p , then correcting using rate

α . A graph of β̂ against α is given in Figure 2, for the case pstandard = (1,0,0,0) and

n = 1,000, 2,000, 5,000, 10,000 and 20,000. This demonstrates, for these parameters,

that correction reduces the error by a factor of over 10 for a coverage of n = 1,000.

Simulations also show that the curves have little dependence on the value of p.

Given a nucleotide probability mass distribution p = (p1, p2, p3, p4) the nucleotide

diversity is H =−∑
4
i=1 pi log4 pi. This can be thought of as the geometric mean ∏i p

pi

i

of the distribution probability masses, transformed by taking the natural logarithm of the

reciprocal so that no diversity, for example (1,0,0,0), has H = 0 while complete diversity,

a uniform distribution of (0.25,0.25,0.25,0.25), has H = 1. Figure 3 shows the graph

of a component −x log4 x of diversity. The steep slope at the extremes, particularly at

zero, shows that correction to a component at these extremes has most effect on diversity

measurement. Of interest here is detection of clonality, where H = 0, so correction of

very small probabilities is critical.

With the corrected nucleotide distribution available, the Shannon diversity can be

estimated as

Ĥ = H(r̂) =−
4

∑
i=1

r̂i log4 r̂i (2)

Figure 1(b) shows the relative levels of H(p) (true diversity), H(q̂) (uncorrected diver-

sity) and H(r̂) (corrected diversity).

Diversity analysis

Two questions are key in an analysis of population diversity. Firstly, whether the diversity

is equal to a given value, H = H , and secondly, whether two populations have the same
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Figure 2. The estimated error rate β̂ after correction plotted against the initial error

rate α , when the true initial distribution p = (1,0,0,0) is degenerate. The larger the

coverage n, the more accurately q̂ estimates q and so the more dependable the

correction, hence the smaller is β . Curves are shown for coverage n of 1,000 (blue),

2,000 (green), 5,000 (red), 10,000 (cyan) and 20,000 (magenta). Each point on the

graph is the mean of N = 5,000 replicate trials.
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Figure 3. The graph of a component of diversity, −x log4 x. The gradient converges to

infinity as x goes to zero. A consequence is that corrections in this region have a large

influence on diversity measurement.

6/15
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.441v1 | CC-BY 4.0 Open Access | received: 18 Jul 2014, published: 18 Jul 

P
re
P
ri
n
ts



diversity, or alternatively whether one is more diverse than the other. Specifically, we

want to test the null hypotheses that, firstly, the nucleotide diversity H is equal to a given

value H , null hypothesis H0: H = H , and secondly, H0: H1 = H2 for two samples

labeled 1 and 2. We will examine both of these tests for diversity measured at a single

nucleotide position and for the mean diversity across segments comprising multiple (N)

possibly correlated sites.

In all cases we will have one or more true nucleotide distributions p, true post NGS

nucleotide distributions q = Mp, estimates q̂ determined using a sample of n nucleotides

drawn from q, so q̂i = ni/n for each i = 1, . . . ,4, where ni is the number of draws

resulting in the ith nucleotide and finally, corrected distributions r̂. Given r̂, Ĥ = H(r̂),
as in (2), estimates the true diversity H =−∑i pi log4 pi with H evaluated at corrected

values r̂ of estimates q̂ of true values after error introduction, q. When n is large, this

approximation will be close to the true value. In general, since the diversity function

is concave, diversity is increased when we replace p with q and decreased when we

replace q with q̂ (since Ĥ is known to underestimate H, Hutcheson (1970)), and then r̂

(since r̂ corrects q̂). This compensation is fortuitous.

The variance of Shannon diversity Var(Ĥ) at a nucleotide position with coverage n

and empirical distribution r̂ = (r̂1, r̂2, r̂3, r̂4) is approximated to first order (Hutcheson

(1970)) with the following expression,

Var(Ĥ)≈ 1

n

(

4

∑
i=1

r̂i(log4 r̂i)
2 − (

4

∑
i=1

r̂i log4 r̂i)
2

)

(3)

This can be shown using the ∆-method and that Var(ri) = ri(1− ri)/n and Cov(rir j) =
−rir j/n, where E(r̂) = ri for i = 1, . . . ,4.

For testing and estimation we also need the variance of the mean of diversities

averaged across a segment of sites. For ease of presentation (though it is readily

generalised), we now assume that (3) provides the variance of estimated diversity at each

nucleotide position, denoted s2. Empirical evidence shows that diversity is correlated

across positions. We assume an exponential decay of the diversity correlation, with

correlation between nucleotide positions i and j given by ρ j−i+1. Then the average

diversity across N consecutive nucleotide positions, denoted H̄, has variance Var(H̄)
given by

Var(H̄)≈ s2

N

(

1+2
N −1

N

ρ

1−ρ
− 2

N2

(

ρ

1−ρ

)2

(1−ρN−1)

)

(4)

=
s2

N

(

1+
2ρ

1−ρ

)

for N large (5)

We estimate ρ using the correlation between adjacent diversities (the one-step lagged

correlation) along the segment of interest. With these variance estimates we can conduct

hypothesis tests and construct confidence intervals in all cases considered. These are

summarised in Table 1 and illustrated numerically in Example 2 in Section 3.

Clonal threshold estimation

Suppose that a clonal sample (one with zero diversity) is sequenced by next generation

methods with error rate α . This is corrected to level β̂ , as shown in Figure 2. This
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Number of samples

1 2

Hypothesis Test statistic z Hypothesis Test statistic z

µH = H
Ĥ −H
√

Var(Ĥ)
µH1

−µH2
= 0

Ĥ1 − Ĥ2
√

Var(Ĥ1)+Var(Ĥ2)
[

Ĥ ± z0.975

√

Var(Ĥ) Ĥ1 − Ĥ2 ± z0.975

√

Var(Ĥ1)+Var(Ĥ2)
]

Table 1. Test statistics and two-sided 95% confidence intervals, in brackets, for

diversity testing and estimation with a single position and one or two samples

(columns). A population mean is denoted by µ . For the corresponding formulae

involving means across multiple positions, H̄ replaces Ĥ.

level of error remains in the sample, whence an upper 95% threshold for H̄, the average

diversity across N sequential positions, with lagged correlation ρ , is

H̄ + z0.95

√

Var(H̄)

where z0.975 = 1.96 is the 97.5th percentile of the standard normal distribution. Note

that this threshold depends on both the coverage n and the segment length N. A larger n

typically decreases H̄ and so the threshold level, while a larger N decreases the width of

the confidence interval around H̄, so also decreases the threshold level.

Sequence Data

Three viral samples were sequenced by next generation sequencing (Illumina HiSeq1000).

These comprised a sample that could be used for estimation of the error (standard sam-

ple), and two experimental samples, from low viral load and high viral load bees. After

trimming adapters and barcodes, the first reads (the reads are paired), 101nts long, were

used to calculate the NGS error rate and illustrate the methods.

Standard sample: an accurately known mix of two viral recombinants, X59 This

was composed of two of the DWV-like viral recombinant RNA genomes described in

Moore et al. (1992), VDV-1DV D and VDV-1VV D (NCBI Accession Nos. HM067437 and

HM067438 respectively). The mixture was produced by in vitro RNA transcription using

linearized plasmid clones with full-length cDNA inserts of VDV-1DV D and VDV-1VV D

(Moore et al., 1992) with the T7 mMESSAGEmMACHINE kit (Ambion). The RNA

transcripts were purified using RNAeasy columns (Quiagen), quantified, mixed 25%

VDV-1DV D, 75% VDV-1VV D and sequenced using the Illumina platform protocol. The

NGS reads are available in the EBI Sequence Read Archive, study accession PRJEB5249,

ERS395188. The reads were aligned using Bowtie 2 (Langmead.B. and Salzberg, 2012)

to a single reference sequence (VDV-1DV D). SAMtools mpileup (Li et al., 2009) was

used to produce the number of nucleotides covering each position in the reference. We

excluded positions of mismatches between the VDV-1DV D and VDV-1VV D sequences,

about 4% of the genome length. This produced nucleotide pileups where all diversity

was a result of NGS errors. This dataset is used for calibration of NGS error.
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A viral population mix from low DWV level (F3) and from high DWV level (E7)

honeybees. Samples from honeybee nurse bees for which qRT-PCR showed either low

DWV levels (EBI SRA study accession PRJEB5249, ERS395182) or high DWV levels

(EBI SRA study accession PRJEB5249, ERS395180) were used. In each case, in order

to assemble the required nucleotide distribution data, the following computational steps

were carried out. “First reads” of length 101nt were aligned using Bowtie 2 to DWV

(NC 004830) and VDV-1 (NC 006494) reference sequences. SAMtools mpileup was

then used to produce the number of nucleotides covering each position in the references.

Deformed wing virus

A map of the deformed wing virus adapted from (Lanzi et al., 2006) is shown in Figure 4.

In the Results section we select a single site in the helicase region of the genome

(Examples 2.1 and 2.2), and average across the capsid region (Examples 2.3 and 2.4).

Capsidठ⃚ Helicaseठ⃚59ठ⃚ 39ठ⃚

Nucleo�deठ⃚posi�onठ⃚

1ठ⃚ 1,750ठ⃚ 4,593ठ⃚ 6,556ठ⃚ 10,129ठ⃚

UTRठ⃚ UTRठ⃚

Figure 4. Map of the genome of the deformed wing virus, a positive-stranded RNA

virus. The capsid region codes for the four structural proteins, multiple copies of which

are used to build the icosahedral virus shell, while the helicase region is involved in the

unfolding of the RNA strand. Untranslated regions (UTRs) flank the coding sequence.

RESULTS

Example 1. Calibration and error correction

i) Calibration - estimation of the NGS error rate α . Nucleotide pileups resulting

from the X59 mix of two viral recombinants were used for calibration of the NGS error

rate. Nucleotide positions where DWV and VDV-1 are identical were selected; for these

the true distribution is one of p = (1,0,0,0), (0,1,0,0), (0,0,1,0) or (0,0,0,1). For ex-

ample, Table 2 shows the pileup counts for the first three capsid (see Figure 4) nucleotide

sites. Since the p here place all weight on one nucleotide, Equation (1) reduces, when

p = (1,0,0,0), for example, to (q̂2 + q̂3 + q̂4)/3 or the average error proportion. Thus,

for the first position in Table 2 we would estimate α as (0.0010+0.0016+0.0008)/3

or 0.0011; for the second and third positions the corresponding averages are 0.0014 and

0.0007, giving a local average of 0.0011. This was done for the entire capsid region of

the genome (2,843nts in length), yielding α̂ = 0.001949, so the overall NGS error rate is

estimated at a little under 2 in 1000.

ii) Correction of the distributions q̂. Correction of the proportions q̂ in Table 2 yielded

the r̂ distributions shown in each case.
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Position no. A C G T Diversity

1 Counts {ni} 87573 86 142 73

Proportion q̂ 0.9966 0.0010 0.0016 0.0008 0.0222

Proportion r̂ 1 0 0 0 0

2 Counts {ni} 90 130 156 86961

Proportion q̂ 0.0010 0.0015 0.0018 0.9957 0.0270

Proportion r̂ 0 0 0 1 0

3 Counts {ni} 68 29 87998 93

Proportion q̂ 0.0008 0.0003 0.9978 0.0010 0.0149

Proportion r̂ 1 0 0 0 0

Table 2. Correction of NGS errors. The raw nucleotide counts, the relative frequency

distribution q̂ of nucleotides after next generation sequencing and the relative frequency

after correction r̂ are shown for the first three capsid positions. For each position the

correct distribution of bases was recovered.

Example 2: Diversity testing and confidence intervals

2.1 Single site, single population

The nucleotide distribution, in A, C, G, T order, at arbitrarily chosen position 5201

(within the helicase region of the viral genome, Figure 4) in F3 is (1,0,58,1) giving

q̂=(0.0167, 0, 0.9667, 0.0167), and after correction using estimate α̂ = 0.001949, we

obtain corrected proportions r̂ = (0.0148, 0, 0.9704, 0.0148). True diversity is then

estimated as H(r̂) = 0.1110 using (2) and Var ˆ(H) = 0.0044 using (3), whence the test

statistic z is 1.6814 with p-value of 0.0463, leading to rejection of the null hypothesis

that the true diversity H = 0 at the 5% level. A 95% confidence interval for true

diversity is [0,0.2404].
Sample E7 at nucleotide position 5201 has counts of (38,35,26497,48) giving

q̂ = (0.0014,0.0013,0.9954,0.0018) and r̂ = (0,0,1,0). True diversity is estimated as

Ĥ = 0 and Var ˆ(H) = 0 (since (3) converges to zero in this case), whence the hypothesis

of zero diversity is not rejected. A 95% confidence interval for true diversity is {0}.

2.2 Single site, two populations

We test whether the diversities are equal at nucleotide position 5201 for F3 (first

sample) and E7 (second sample), using the data in Example 2.1. The test statistic

z described in Table 1 is 1.6814 with p-value = 0.0463. Hence we reject the null

hypothesis of equal true diversities for the two populations at this site, concluding that

F3 has higher diversity. A 95% confidence interval for the true diversity difference is

[−0.0184,0.2404].

2.3 Multiple sites, single population

We test whether the mean diversity across the capsid region (see Figure 4) of the

viral genome is zero, for both E7 and F3 (N = 2,843). For E7, H̄ = 0.0037, the serial

correlation of diversities is estimated as ρ̂ = 0.1728 and mean site diversity variance
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is s2 = 7.714× 10−7 whence Var(H̄) = 3.847× 10−10 using (5), giving z = 187.5 so

that the p-value is negligible. Here the sample size is so large and hence the power

so great that we conclude that the true diversity is non-zero. Of greater interest is a

95% confidence interval for the true diversity, namely [0.0036,0.0037]. Corresponding

calculations for the more varied F3 sample give values of H̄ = 0.0410, ρ̂ = 0.1195,

s2 = 0.0019, Var(H̄) = 8.702×10−7, z = 43.98 and again a negligible p-value. A 95%

confidence interval for the true mean diversity value is [0.0392,0.0429].

2.4 Multiple sites, two populations

We test the null hypothesis that the true mean diversities, over the capsid region,

of F3 (first sample) and E7 (second sample) are equal. Using values already given

in Example 2.3, we find that z = 40.03, again giving a negligible p-value. Hence we

conclude that the mean diversity of F3 is greater than that of E7. A 95% confidence

interval for the true mean diversity difference is [0.0355,0.0392].

Example 3: Clonal threshold Using α̂ = 0.001949 and with coverage of n = 20,000

we find that β̂ = 0.0001233. This gives H(β̂ ) = 0.002748, by direct calculation using

r̂ = − log4(1−3β̂ )1−3β̂ −3log4 β̂ β̂ . Then s =

√

Var(H(β̂ )) = 0.0008940 using (3).

The 95% clonal diversity threshold for a single site is therefore 0.002748+ 1.64×
0.0008940 or approximately 0.0042. For mean diversity, with N = 2,843 and ρ̂ =
0.1728 (appropriate for E7 on the capsid) the 95% clonal mean diversity threshold is

H(β̂ )+1.64(s/
√

N)
√

1−2ρ̂/(1− ρ̂) = 0.0028.

Figure 5 illustrates the confidence intervals found in Example 2.3, labelled “After

correction”, together with corresponding confidence intervals for the uncorrected data,

labelled “Before correction”. The corrected clonal mean diversity threshold of Example

3 is also shown. The highly significant difference between the Varroa-free and Varroa-

infested nucleotide diversities are evident. Correction of the low diversity sample has a

far greater effect on diversity than correction of the high diversity sample, due to the

steep slope of the diversity component near zero (Figure 3). The corrected low diversity

sample lies just above the clonal threshold.

DISCUSSION

Here we have proposed a simple method for correction of nucleotide distributions

containing errors arising from NGS. The correction method assumes an independent site

error model. Throughout we have used the simplest error matrix M, the Jukes-Cantor

matrix, with the error rate assumed to be constant across the genome and mutation

parameter fitted from a standard (known genotype) sample. The method could be

extended to use a richer evolutionary model, with parameters tailored to regions of

the genome. For instance, the two-parameter Kimura model assumes transversion and

transition errors differ, while the Generalized Kimura model adds a further parameter,

allowing transversion error probabilities to differ according to transversion direction

(Ewens and Grant, 2005). At an extreme, a full 12-parameter model could be used, fitted

in sets of three consecutive nucleotides, since four linear equations are available per

position. In principle, both the statistical nature of the error mechanism of the NGS

platform and errors introduced in sample generation (e.g. PCR) should be captured in
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Figure 5. Confidence intervals for true mean diversity across the capsid region, for

the high diversity (F3) and low diversity (E7) samples, both before and after correction

for the NGS error. A considerable reduction in diversity is evident, whilst correction has

a larger effect when the (uncorrected) diversity is low. The clonal threshold for the

mean shows that the corrected E7 data plausibly has non-zero diversity.
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the model used.

The diversity testing and estimation stage uses a diversity correlation structure.

We have assumed serial correlation of diversities, since this was seen in the samples

considered. Other correlation structures could be employed, such as a structure that

decays more rapidly with separation.

Finally, it may be possible to use the “clonal threshold” to detect SNPs or the more

general SNVs. This is a topic for future research.

CONCLUSION

Movement of a virus to a new host can trigger changes in the level of diversity of variants

of the virus. Such diversity changes can be detected using next generation sequencing

of the viral mix, but error introduced in the process may mask a diversity change. We

have presented a method for estimating measurement-error-corrected diversity from

NGS data, both at single nucleotide sites and along sections of a genome. A simple but

effective method is used to correct for NGS errors in the nucleotide distribution. With

these corrected estimates we are able to compare diversity between samples, assessing

whether they are consistent with equal diversity, and also assess whether a diversity

estimate is consistent with a clonal population. We demonstrated our method within

the context of viral diversity in bees that either have low viral load or high viral load,

showing that their viral diversity is significantly different and that under high viral load

the viral population is near-clonal. Correction for NGS error was particularly important

when applied to the sample with low diversity, since the diversity estimate decreased by

a factor of more than five. This analysis has demonstrated that the Varroa mite has a

significant effect on viral populations in honeybees, suggesting that a viral strain has

emerged under the influence of the interaction with Varroa that has a high growth rate in

honeybees. It rises to provide a high viral load, outcompeting all related strains, thereby

reducing viral diversity. Our method is applicable to any population structure analysis

using NGS data and thus adds a valuable tool to the study of selection pressure and

differential fitness within populations.
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