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ABSTRACT

There are well-known difficulties in using the cytochrome oxidase I (COI) mitochondrial gene region

for population genetics and DNA barcoding in corals. A recent study of species divergence in the

endemic Caribbean genus Agaricia reinforced such knowledge. However, the growing availability of

whole mitochondrial genomes may help indicate more promising gene regions for species delineation. I

assembled the whole mitochondrial genome for Agaricia fragilis from Illumina single-end 250bp reads

and compared this sequence to that of the congener A. humilis. Although these data suggest that the

cytochrome b (CYB) gene region is more promising, comparison of all available Scleractinian CYB

sequence data indicates that multilocus approaches are still probably necessary for phylogenetic and

population genetic analysis of recently-diverged coral taxa.
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INTRODUCTION

Coral reefs are widely recognized as being important representatives and biogenic harbors of biodiversity

(Plaisance et al., 2011). At the same time as coral reefs are in crisis due to disease and habitat change,

there is still new diversity being explored. With the incredible phenotypic diversity that may be found

in an individual taxon, as well as the potential for hybridization among taxa, biologists often turn to

molecular techniques for separating taxa.

In many animal species, this approach has been relatively straightforward and has often relied on

a single gene that is both highly variable at silent nucleotide positions as well as highly conserved for

amino acid sequence (Folmer et al., 1994; Hebert et al., 2003). This combination allows the sequencing

of this gene with ‘universal’ primers, yet the discovery of tremendous amounts of nucleotide variation

that may be used to distinguish taxa. Unfortunately, this gene region has proven nearly useless in corals

(Shearer and Coffroth, 2008). Researchers have also tried using other protein-coding loci such as atp6

(Bongaerts et al., 2013) to explore phylogenetic diversity in Agariciid corals, but still tended to recover

polyphyletic taxa. Similarly, Meyers (2013) showed that using intron regions within the mitochondrial

ND5 locus (Concepcion et al., 2006) could not resolve many species in the genus Agaricia.

The focus for such work has often been mitochondrial regions because the DNA is abundant in animal

tissues, often variable within and among populations, and the lower effective size of the mitochondrial

genome – thanks to being a haploid genome that is typically maternally inherited – tends to result in

diagnostic nucleotide characters for a population in less time than for a nuclear locus (Avise, 2000). For

both historical and empirical reasons, some groups of systematists and population geneticists have widely

used other mitochondrial regions with success. Population genetics in fishes, for example, frequently

explore cytochrome b or ND4, and some have used non-coding regions (e.g. ribosomal or the ‘D-loop’

origin of replication)(Muss et al., 2001; Taylor and Hellberg, 2003; Hyde and Vetter, 2007).

The brief goal of this study is to attempt to identify another useful mitochondrial region for population

genetics and systematics studies in Scleractinian corals, in particular the Agariciidae, as no complete

phylogeny has yet been completed that sufficiently resolves this endemic Caribbean group (Meyers,

2013; Bongaerts et al., 2013). Thus, this study first compares whole mitochondrial sequences between

two divergent taxa of Agaricia (A. fragilis and A. humilis), and identifies the most divergent protein-

coding region (using coding regions for increased likelihood of conserved primer development). I then
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analyze divergence in this region (cytochrome b, CYB) across available Scleractinian data to show that,

unfortunately, it is unlikely to improve our ability to separate taxa using PCR-based methods.

METHODS

To identify hopeful regions on the easily-sequenced mitochondrial locus, a single individual of A. fragilis

(AS1943) was shotgun sequenced with a single Illumina MiSeq library preparation as in Wares (2013).

Resultant single-end 250nt reads were trimmed and mapped to the A. humilis mitochondrial genome

(GenBank DQ643831) using Geneious 7.1.4 (Biomatters). Annotation of this assembled genome was

initiated using MITOS (Bernt et al., 2013) and corrected via re-alignment with the A. humilis sequence.

Aligned coding sequences were evaluated for K2P divergence between the two genomes using

PAUP*4.0b10 (Swofford, 2000) as in Shearer and Coffroth (2008); a sliding-window measure of diver-

gence was calculated for 500-bp regions in 25-bp increments along the whole mitochondrial genome.

Subsequently, sequence data for the CYB locus from Scleractinian corals were downloaded from

GenBank using Geneious 7.1.4 and aligned in CodonCode Aligner v4.2.2. Again, K2P distances among all

sequences were obtained using PAUP*, and all pairwise distances were coded as conspecific, congeneric,

or ”other”. The distances observed for these 3 classes of comparison were density plotted using ggplot2

in the R computational environment.

RESULTS

Illumina sequencing of the A. fragilis genomic DNA library resulted in a total of 31,957,468 reads.

Mapping these reads to the A. humilis mitochondrial genome generated a single contig of 18,667 bp. The

completed A. fragilis mitochondrial genome (Genbank KM051016) had no observed gene rearrangements

and is consistent with the standard type SII for Scleractinian corals (Lin et al., 2014).

Sliding window comparison of the two mitochondrial genomes is shown in Figure 1. The coding

region with highest divergence between the two sequences is cytochrome b (CYB) with a mean divergence

of 0.024 substitutions per site. All other coding regions exhibit lower divergence per nucleotide, with COI

only about 1.6 percent divergent.
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Figure 1. Sliding window divergence between mitochondrial genomes of A. fragilis and A. humilis.

Window size was 500bp, measured every 25bp. Coding regions are shaded in green; ribosomal regions in

red. Other non-coding regions (tRNA and the intron region for ND5) not indicated. Cytochrome b is

shaded blue and harbors highest mean divergence of 0.024 (dotted line).

Evaluation of CYB sequences across the Scleractinia for their utility in separating congeneric and

more distant species included 249 pairs of intraspecific contrasts, 2098 intrageneric contrasts, and a

total of 64981 contrasts that included 203 species from 94 genera of Scleractinian corals. The sequence
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alignment of these data is provided as Supplemental File S1. These contrasts, shown in Figure 2, indicate

that a divergence comparable to intraspecific diversity can be observed between members of the same

genus or even more distantly related taxon pairs.
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Cytochrome b Divergence in Scleractinia

Figure 2. Cytochrome b divergence, using K2P genetic distances, among Scleractinian taxon pairs.

Plots are separated by intraspecific contrasts, intra-generic contrasts, and all other observed distances.

Plot is truncated at 0.05 for clarity; all intraspecific and almost all intra-generic contrasts are shown.

DISCUSSION

Unfortunately, the results of this study do little to advance molecular methods for species identification

in corals. Mitochondrial DNA is often an optimal solution for metazoan species barcoding and a first

attempt at species delineation (Hebert et al., 2003). Yet, in corals the processes of mutation and DNA

error correction in mitochondrial DNA, along with the propensity for hybridization among some taxa,

has led to the need for more laborious locus development for such goals. Many studies are relying on

microsatellite development (Concepcion et al., 2010, 2014), which enables additional variation and the

benefits of a multi-locus study; however, the direct analysis of synapomorphy between populations is

more complicated.

Ultimately the goal of species delineation is identification of character states that are diagnostic.

Finding gene regions that provide sufficient information, above and beyond the variation found within a

population, is the challenge. Some nuclear gene regions have shown promise. For example, Concepcion

et al. (2008) identified the SRP54 exon-primed intron-crossing locus as being a single-copy locus that is

typically more variable than non-coding regions such as the ribosomal internal transcribed spacer (ITS)

regions. Other authors are combining data from several loci to attain the same goal (McFadden et al.,

2014).

Certainly the premise of this study, that more divergent regions could be found by comparing

mitochondrial genomes, is at best relevant only to the genus Agaricia from which these sequences derive.

Using only a single genome from each species presents an incomplete picture of overall net nucleotide

divergence (Nei and Li, 1979). However, given the typical problem of developing such markers in corals

it may make sense as a general strategy to first explore available genomic data - whether mitochondrial

or whole-genome - rather than blindly tackle the problem with available primer regions or attempt to
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shoe-horn the coral barcoding problem in with the rest of the Metazoa. It remains to be seen whether

using next-generation approaches, as in this study, to generate whole mitochondrial genome sequences,

may be more informative and nearly as cost-effective as attempting to capture several distinct gene regions

via PCR.
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