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Abstract

Today computational molecular evolution and bioinformatics are vibrant research areas
that flourish on large amounts of complex datasets generated by new generation
technologies - from full genomes and proteomes to microbiomes, metabolomes and
epigenomes. Yet the foundations for successful mining and the analyses of such data
were established long before the structure of the DNA was discovered. Darwin’s theory
of evolution by means of natural selection not only remains relevant today, but also
provides solid ground for computational research with a variety of applications. The
data size and its complexity require empirical scientists to work in close collaboration
with experts in computational science, modeling and statistics, as Sir R. Fisher has
beautifully demonstrated in early 20% century. Particularly, modern computational
methods for evaluating selection in molecular sequences are very useful for generating
biological hypotheses and candidate gene sets for follow-up experiments. Evolutionary
analyses of selective pressures in genomic data have high potential for applications,
since natural selection is a leading force in function conservation, in adaptation to
emerging pathogens, new environments, and plays key role in immune and resistance
systems. At this stage, pharma and biotech industries can successfully use this potential,
taking the initiative to enhance their research and development with the state-of the art
bioinformatics approaches. This mini-review provides a quick “why-and-how” guide to
the current approaches that apply the evolutionary principles of natural selection to real
life problems - from drug target validation, vaccine design and protein engineering to

applications in agriculture, ecology and conservation.
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The role of computational scientists in genomics and its applications

For well over a century computational scientists have been faithfully working side-by-
side empirical life scientists, supporting key developments in molecular and
evolutionary biology. While the impact of such work is easy to overlook, progress in life
sciences heavily relies on solid backing from statisticians and computational scientists.
One striking example is the monumental contribution of Sir Ronald A. Fisher, one of the
first bioinformaticians. Fisher single-handedly developed the essential statistical theory
for experimental design and hypothesis testing, contributing many widely used
techniques such as the analysis of variance and the method of maximum likelihood -
originally, to address the needs of the agricultural research at the Rothamstead
Experimental Station in Harpenden, UK. Today many disciplines beyond life sciences
rely on this methodology. Prominently, together with S. Wright and J. B. S. Haldane,
Fisher has established the field of population genetics, becoming one of the founders of
neo-Darwinian evolutionary synthesis - the current paradigm of the evolutionary
biology, where the principles of Mendelian genetics were reconciled with Darwin’s
theory of evolution by natural selection at the level of hereditary molecular information.

The discovery of the hereditary DNA molecule and its structure was followed by
rapid progress in sequencing technologies. Developments of statistical methodology
kept pace: we now also have a wide range of excellent statistical methods for analyzing
these vast genomics data so we can make inferences useful not only for our fundamental
understanding of molecular evolution but also for applications in medical genetics,
pharmacology, biotechnology, agriculture and ecology. The size and the complexity of
molecular data underline the importance of the interdisciplinary collaborations and the
crucial role of statisticians and computational scientists for the success of data

exploration in projects using genomics and omics data. The level of biological data
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complexity has clearly passed the so-called “Excel barrier”, and the industry using
genomics data can no longer rely on old practices. Consequently, pharma and
biotechnology companies saw an increasing demand for professional computational
scientists with strong skills in mathematical modeling, machine learning, data mining,
complex optimization and data representation (e.g., Price 2012). Bioinformatics and

computational biology are now embracing the challenges of translational research.

The importance of selection studies at the genomic level

The field of computational genomics has been growing steadily attracting more research
funding for both academic and applied research in biotech and pharma companies. Here
[ focus on the potential of computational methods to study how genomic changes occur
over time and their impact on phenotype or genetic fitness (Yang 2006, Anisimova 2012,
Cannarozzi and Schneider 2012). While Darwin has described how selection may act on
a phenotype, he had no knowledge of hereditary mechanisms, and would have been
pleased to see how far we have come today in our understanding of selective
mechanisms in molecular sequences. Current computational methods can detect
genomic regions under selection and help to elaborate on the biological mechanisms
generating the observed molecular patterns. Considering this, computational methods
provide effective means of narrowing down the space of plausible candidates or
hypotheses for further testing. A diversity of biological mechanisms may cause genetic
mutations with various fitness effects, leading to a variety of ways natural selection can
manifest itself. The central role of selective mechanisms at the molecular level has been
demonstrated in the adaptation to new environments, the host-pathogen “arms” race,
the emergence of competition, the evolution of complexity, and in the morphological and

behavioral evolution, for example see fig. 1 of (Anisimova and Liberles 2012). Natural
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selection may act on the protein, on the DNA sequence, and even on whole genomic
features. Negative or purifying selection conserves the sequence (or other molecular
features), while positive selection acts in a diversifying or a directional manner favoring
specific changes. Positive selection typically affects molecular regions involved in
genetic conflict, and often acts in an episodic manner - limited to certain time periods.
Studies of selective pressures across a genome help to understand the biological
constraints and to identify the mutational hotspots due to adaptive processes. This is
why selection scans became an indispensible element of modern genomic studies (e.g.,
Stapley, Reger et al. 2010, Fu and Akey 2013).

Studies of selective constraints in genomic sequences from populations and
species can have a variety of applications. Identification of deleterious mutations (e.g.,
mutations causing disease) may aid the development of gene therapies and personalized
treatments. Detecting hotspots of diversifying pressure in antigenic sites, epitopes and
pathogenic receptors can be used in drug and vaccine design. Phylogenetic methods are
increasingly used in immunology and cancer genomics. The analysis of selective
pressures and disease transmission rates using host and pathogen samples provides
important clues for epidemiology, helping to understand the disease dynamics and to
develop predictive strategies for disease control. This applies equally to animal and
plant hosts as well as their pathogens, thus having applications also in the domain of
agricultural research such as developing molecular-based strategies for increasing crop
resistance to pathogens. Similarly, evolutionary studies may provide insights to the
genetic basis for stress tolerance and yields of animal and plant products. Other
applications of molecular evolution and selection analyses may include biodiversity,
conservation, sustainable development, bioremediation, bioengineering and nutrition.

Below I briefly draw attention to some successful approaches for studying the

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.427v1 | CC-BY 4.0 Open Access | received: 28 Jun 2014, published: 28 Jun 2014

5



evolutionary dynamics in molecular sequences, illustrated by examples (summarized in

Table 1).

Computational approaches for evaluating evolution and selection in molecular
sequences

Evaluating selective pressures in molecular sequences relies on the comparative
evolutionary approach, and therefore requires at least two homologous sequences
(Nielsen and Hubisz 2005). The power of the approach depends on the number and the
range of sequences analyzed (Anisimova, Bielawski et al. 2001). For large samples from
well-designed experiments, it is possible to accurately predict the positions and the time
episodes where selection has operated (Anisimova, Bielawski et al. 2002, Anisimova and
Yang 2007, Lu and Guindon 2014). The basic idea behind all tests for selection is to
compare the molecular patterns observed in genomic sequences to what could be
expected by chance. Significant deviations point to interesting candidate regions, sites or
time episodes, and provide excellent hypotheses for further experimental and statistical
testing. Different methods use different statistics to make their inferences about
selection. Stochastic modeling of molecular changes through time has been particularly
successful, typically employing Markov models of character substitution. Among widely
used methods are likelihood ratio tests of codon substitution models, which detect
selection on the protein sequence using the comparison of nonsynonymous (amino-acid
altering) and synonymous (amino-acid preserving) substitution rates (for review see
Kosiol and Anisimova 2012). If a test is significant, Bayesian prediction is used to
identify the selected positions or lineages affected by selection. The pharmaceutical
giant GlaxoSmithKline (GSK) acknowledged the applied value of this methodology by an
award to the principal investigator Prof Ziheng Yang (UCL, UK). The relevance of
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selection analyses using codon models for downstream applications can be
demonstrated with a selection of case studies. A classic example is the human major
histocompatibility complex molecules of class 1 (glycoproteins mediating cellular
immunity against intracellular pathogens), where all residues under diversifying
selection pressure were found clustered in the antigen recognition site (Hughes and Nei
1988, Yang and Swanson 2002). In another example, selection analyses identified a
sequence region of 13 amino acids with many positive-selected sites in TRIM5aq,
involved in cellular antiviral defense (Sawyer, Wu et al. 2005). Functional studies of
chimeric TRIM5a genes showed that the detected region was responsible for the
difference in function between the rhesus monkey linage where TRIM5a restricts HIV-1
and the human TRIM5a that has only weak restriction.

More generally, the numerous genome-wide scans in mammals agree that genes
affected by positive diversifying selection are largely responsible for sensory perception,
immunity and defense functions (Kosiol, Vinar et al. 2008). Consequently, pharma and
biotech companies should make a greater use of computational approaches to detect
genes and biochemical pathways subject to differential adaptive evolution in human and
other lineages used as experimental model organisms (Vamathevan, Hasan et al. 2008,
Vamathevan, Hall et al. 2013). This type of studies can be valuable for example when
selecting drug targets. Particularly, evolutionary analyses can pinpoint evolutionary
differences between model organisms used for drug target selection. Such differences
can be responsible for unpredicted disparities in response to medical treatment, as it
has been highlighted by the tragic effects of TGN1412 treatment during human drug
trials in 2006 (Stebbings, Poole et al. 2009). Selection analyses are also important for
research in agriculture or conservation, since in plant genomes positive selection affects

most notably disease resistance genes (Meyers, Shen et al. 1998, Mondragon-Palomino,
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Meyers et al. 2002), defense enzymes such as chitinases (Bishop, Dean et al. 2000) and
genes responsible for stress tolerance (Roth and Liberles 2006). Consequently
evolutionary studies help to detect proteins, binding sites and their interactions relevant
for host-pathogen coevolution. For example, diversifying selective pressure drives the
evolution of several exposed residues in leucine-rich repeats (LRRs) of the bacterial type
[1I effectors (that attack plant defense system) from the phytopathogenic R. Solancearum
infecting hundreds of plant varieties including agriculturally important crops (Kajava,
Anisimova et al. 2008). Similarly, studies of phylogenetic diversity and selection in viral
strains and antibody sequences are contributing to the new HIV vaccine development
strategy, whereby antibodies are designed to bind to conserved epitopes of selected
viral targets (de Oliveira, Salemi et al. 2004, Mouquet, Klein et al. 2011, Scheid, Mouquet
et al. 2011, Klein, Mouquet et al. 2013). Moreover, molecular evolution modeling
approaches can greatly enhance the modeling of antigenic dynamics of pathogens over
time (e.g., Bedford, Suchard et al. 2014).

In protein coding sequences selection may also act on the DNA, whereby
synonymous codon changes may affect protein’s stability, expression, structure and
function (Komar 2007, Plotkin and Kudla 2011). Translational selection manifests itself
as the overall codon bias in a gene to match the abundances of cognate tRNA.
Remarkably, this property can be successfully used in biotechnology, for example to
dramatically increase transgene expression by synthesizing sequences with optimal
synonymous codons (Gustafsson, Govindarajan et al. 2004). Optimal codon usage may
be approximated by codon usage bias - using bioinformatics methods (Roth, Anisimova
et al. 2012). Besides this, more subtle selective mechanisms may act on certain codon
positions. These mechanisms may result in synonymous changes that can affect protein

structure, abundance and function. In human genes this may lead to disease or may be
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responsible for differences in individual responses to drug treatment. Haplotypes with
synonymous changes may have increased fitness and will be consequently increase in
frequency in a population. Therefore, the knowledge of these specific synonymous
polymorphisms may be important to explain differential treatment effects in population
and contribute to the development of personalized medicines. Molecular evolution
methods are powerful enough to detect such interesting candidate cases: Recent study
of synonymous rates detected many disease related genes, particularly associated with
various cancers, as well as many metabolizing enzymes and transporters, which affect
the disposition, safety and efficacy of small molecule drugs in pharmacogenetics
(Dimitrieva and Anisimova 2014). This shows that computational molecular evolution
studies have real power to predict genes and codon positions where a replacement of
synonymous codons changes protein fitness. Such predictions promise to be valuable for
applications in protein engineering. Indeed, some biotech companies such as DAPCEL
are already using the knowledge of interesting synonymous positions for enhanced
protein production. Compared to laborious and time-consuming trial-and error
experiments, computational prediction offers a fast way of obtaining candidate genes
and positions for experimental validation. Furthermore, monitoring of the synonymous
rates may be also informative for diagnostics purposes, as has been shown in
evolutionary studies of serial viral samples from HIV-positive patients (Lemey,
Kosakovsky Pond et al. 2007).

Species evolution is however a result of complex population dynamics, making
population scale studies of genetic diversity a powerful complement to codon-based
selection analyses. Successful population level techniques include tests of neutrality
(Nielsen 2001), Poisson random-field models (e.g., Sawyer and Hartl 1992, Amei and

Smith 2014) combined with demographic modeling and genome-wide association
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studies (Besenbacher, Mailund et al. 2012). These methods apply to full genome
sequences helping to identify also non-coding genomic regions of functional relevance
and those associated with certain population traits. For medical genetics, uncovering the
relevance of genomic variation in populations helps to pinpoint the disease variants and
use this information in the development of personalized medicines and treatments.
Determining fitness of specific mutations is now possible using macro-evolutionary
inferences and population genetics approaches (Boyko, Williamson et al. 2008, Chun and
Fay 2009, Adzhubei, Schmidt et al. 2010), which can be successfully combined with
genome-wide association studies (Manolio, Collins et al. 2009). These inferences could
be combined with applications in a clinical context (Ashley, Butte et al. 2010).

However, many traits are shaped by multiple loci so that the effects of any single
mutation can be observed only through their epistatic effects (Phillips 2008, Stranger,
Stahl et al. 2011). Consequently, computational approaches recently extended single loci
inferences to detecting epistatic effects of mutations through the identification of
polygenic selection, i.e., whereby selection affects whole gene clusters whose protein
products interconnected in the biological pathways that they share. Such analyses found
that polygenic selection often affects pathways involved in immune response and
adaptation to pathogens (Daub, Hofer et al. 2013), which is also consistent with results
from single loci studies.

Another approach for detecting selective signatures is based on detecting shifts
in evolutionary substitution rates over time, for example based on covarion or Markov
modulated models (Galtier 2001, Guindon, Rodrigo et al. 2004). Such methods may be
used to detect functional shifts in proteins of interest, providing evolutionary
information that aids structural and functional protein prediction. Therefore such

analyses can be helpful for many pharma and biotech applications that use structural
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modeling to design proteins and peptides for therapeutic or other biotechnology
applications (e.g., Khoury, Smadbeck et al. 2014). Alternatively, changing diversification
rates can provide evidence for changing environments, emerging pathogens and shed
light on epidemiological dynamics. Diversification bursts or exponential growth, for
example, may represent the emergence of particularly virulent strains resulting in
epidemics. Such selective signatures can be characterized by the birth-death models
describing on stochastic branching processes as phylogenies or genealogies relating
molecular sequence samples (Stadler, Kuhnert et al. 2013). This approach allows to
evaluate the effects of public health interventions by estimating the rates of
transmission, recovery, and sampling, and consequently, the effective reproductive
number. For epidemiology-related problems, these techniques become particularly
powerful when combined with classical epidemiologic models SIR or SIS (Kuhnert,
Stadler et al. 2014, Leventhal, Gunthard et al. 2014). Application of evolutionary
methods may be also useful for the analyses of somatic hypermutation in antibody
sequences during antibody maturation, or to monitor somatic mutations in cancerous
tissues (Litman, Cannon et al. 2005, Campbell, Pleasance et al. 2008, Yates and Campbell
2012, Zhu, Ofek et al. 2013). Indeed, applications of phylogenetic methods to cancer and
immunology research are now attracting more attention and funding.

Selection may also operate on whole genomic features, such as indels, gene order,
gene copy numbers, transposable elements, miRNAs, post-translational modifications,
etc. To detect selective signatures of conservation or adaptation, the observed genomic
patterns are compared with a neutral expectation, i.e., patterns that can arise by chance
alone. For example, Schaper, Gascuel et al. (2014) proposed evaluating phylogenetic
patterns produced by tandem repeats in eukaryotic proteins with respect to human

lineage, in order to identify interesting candidate genes that might be under diversifying
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pressures. In plants a similar analysis strongly pointed to lineages where diversification
(in terms of unit number and their order conservation) occurs in LRRs that are found in
abundance in plant resistance genes (Schaper and Anisimova 2014). Such analyses
allow for example to pinpoint the relevant genes and lineages where selection on
tandem repeat units is due to adaptation to emerging pathogens or to changing
environmental conditions. This opens the door to applications such as synthetically
introducing identified gene variants into plant genomes to produce crops with improved
resistance or better stress tolerance properties.

Even when detecting selection is not a focal part of the analyses, modeling its
influence on genomic data is of utmost importance. Failing to do so may lead to biased
and inaccurate inferences that could misguide follow-up experimental studies. However,
modeling selection enhances the predictive power of methods that are used to study
adaptive or antagonistic processes. A nice example is the recent predictive fitness model
for influenza, which couples the fitness values and frequencies of strains with molecular
evolution modeling on an influenza stain genealogy for haemaglutinin gene (Luksza and
Lassig 2014). This approach uses observed viral samples taken from year to year to
predict evolutionary flu dynamics in the coming year, which is practically relevant for

selecting vaccine strains for the new flu season.

Conclusions and perspectives

In summary, the last decades have seen the development of solid computational
methodology that can accurately detect selective signatures at the molecular level. The
methodological advancement is an open-ended process and will continue in order to

address the challenges from new large and complex datasets. Yet, the application of the
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existing state-of the art already provides powerful means for the rapid generation of
viable hypotheses and interesting candidates cases for further experimental testing.
Genomics and omics data provides immense opportunities for applications in industry,
but these need to be developed through close collaborations between computational and
empirical scientists, with a continued feedback loop. Computational predictions provide
ground for setting up new experiments that will generate new data with new levels of
complexity. These data are then again analyzed by computational scientists, in order to
refine the predictions and generate new hypotheses for further experimental validation
(Figure 1). Statistical expertise is necessary to design new experimental setup. Large
pharma and biotech companies have already seized upon this potential and use
computational molecular evolution approaches for their translational research. This
includes drug target identification and validation, animal model selection, preclinical
safety assessment, vaccine design, epidemics control and drug repositioning. These
techniques are promising to become mainstream, strengthening the current position of
translational research in industry. The translational value of computational molecular
evolution is not limited to health and pharma industry, but also include a variety of
other exciting applications - protein engineering, agriculture, environmental risk
assessment, ecology, biodiversity and conservation. Now that it is cheap and quick to
generate genomic data, but greater thought should be invested into experimental design,
which will make statistical and computational inferences more informative and more
accurate. This cannot be done without strong interdisciplinary partnerships. Indeed,
bioinformatics has now become a vibrant and highly interdisciplinary area of research
and the outlook for its future and its applications is very optimistic - “Bioinformatics

alive and kicking” (Stein 2008).
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Figure legends

Figure 1 - Feedback loop between experimental and computational stages of
research and development. Applications of genomics and omics in industry arise
through continuous collaborations between computational and empirical scientists, with
a continued feedback loop: Computational predictions provide ground for setting up
new experiments and generate new data with new levels of complexity. These data again
analyzed by computational scientists to refine the predictions and generate new

hypotheses for further experimental validation.
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Table 1. Selected examples of applications of molecular evolution and selection studies

Application type

Description

Citation

Computational approach

Control of HIV infection

—

Model species selection for
pharmaceutical discovery
HIV vaccine development

Flu epidemics prediction;
vaccine strain selection
Prediction of HIV progression

Evaluating epidemics
dynamics and the effect of
public health interventions

Flu epidemics prediction;
vaccine strain selection

Cron racictanca

PeerJ PyePRrints :
frﬁ’nn 1thknnao

Protein function study of HIV
restriction properties in
TRIM5«a

Assessment of pharmacological
target homology

Assessment of phylogenetic
diversity in viral proteins and
antibodies; identification of
conserved epitopes

Modeling of antigenic dynamics
of flu over time

Monitoring the synonymous
substitution rates in viral
protein samples from HIV-
positive patients over time
Estimating the rates of
transmission, recovery,
sampling, and the effective
reproductive number
Modeling adaptive epitope
changes and deleterious
mutations outside the epitopes

in flu from one year to the next
iy A racicfan

Sawyer, Wu et al. (2005)

Vamathevan, Hall et al. (2013)
de Oliveira, Salemi et al.
(2004); Klein, Mouquet et al.
(2013)

Bedford, Suchard et al. (2014)

Lemey, Kosakovsky Pond et al.

(2007)

Stadler, Kuhnert et al. (2013);
Kuhnert, Stadler et al. (2014);
Leventhal, Gunthard et al.
(2014)

Luksza and Lassig (2014)

/10°7287/peer].preprints.427v1 | CC-BY,4.0 Op

Codon model tests for selection

Phylogenetic analyses of gene
families

Phylogenetic analyses and codon
model tests for selection

Phylogenetic diffusion model of
antigenic evolution
“Relaxed-clock” modeling of codon
evolution

Birth-death phylogenetic models

Molecular evolution modeling over
viral genealogies

Access | recejved- 2 2014, published: 28 Jun 2014 . . .
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complex disease biology;
development personalized
medicine

*Disease biology;
identification of vaccine
targets

*Disease biology

*Conservation and
biodiversity; climate change

*Impact of climate change

—

of genomic diversification,
associations with diseases,
estimating fitness of mutations
Population genomics of the
sexually transmitted bacteria
Chlamydia trachomatis
Adaptation in the cavity causing
bacteria Streptococcus mutans
Evaluating hybridization of blue
whale subspecies in southern
hemisphere

Evaluating the interplay
between global climate change,
genetic diversity and species
interactions and community
structure

Chun and Fay (2009)

Joseph, Didelot et al. (2012)

Cornejo, Lefebure et al. (2013)

(Attard, Beheregaray et al.
2012)

Pauls, Nowak et al. (2013)

constraints, genome-wide
association studies

Genome-wide evolutionary analyses
of conservation by codon models
and population genetics approaches
Genome-wide evolutionary analyses
of conservation and demography
Population genetics analyses

Evaluation of intraspecific genetic
diversity by population genetics
approaches

* Highlighted in the 2013 editorial “Highlights in applied evolutionary biology” in the peer-reviewed journal “Evolutionary Applications”.
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