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A quarter century after the Benner and Gonnet groups began their collaboration in 

evolutionary bioinformatics, evolution-based functional genomics is a field with considerable 

scope. Even with the remarkable advances in computing power over this period, the 

explosion of data derived from genomic and protein sources have required more and more 

sophisticated approaches be developed and utilized. We describe here new software 

combined with data organization techniques and illustrate how we are harnessing these to 

place physiological function of protein sequence data using natural history.
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Abstract 12 

A quarter century after the Benner and Gonnet groups began their collaboration in evolutionary 13 

bioinformatics, evolution-based functional genomics is a field with considerable scope. Even with the 14 

remarkable advances in computing power over this period, the explosion of data derived from genomic 15 

and protein sources have required more and more sophisticated approaches be developed and utilized.  16 

We describe here new software combined with data organization techniques and illustrate how we are 17 

harnessing these to place physiological function of protein sequence data using natural history. 18 

 19 

Introduction 20 

It has now exactly a quarter-century since the Benner and Gonnet groups began their 21 

collaboration in evolutionary bioinformatics [Gonnet
 
and Benner 1991], a collaboration made 22 

possible when my wife (Beverly Sanders) directed me to attend a seminar that Prof. Gonnet (then 23 

from Waterloo, Canada) was giving on his work with the Oxford Unabridged English 24 

Dictionary. That collaboration had at first only a modest goal: to update the (by then) more than 25 

20 year old amino acid substitution matrix that had been introduced in the 1960s by Margaret 26 

Dayhoff and her colleagues at the National Bureau of Standards [Dayhoff et al. 1972]. However, 27 

even though the age of genomic sequence had not been begun, it was clear that it would soon get 28 

underway, and that it would deliver a large number of whole genome sequences that could 29 

service the platform for this new field. We wanted to be prepared for this revolution in biology. 30 

Fortunately, the tools that the Gonnet group developed to organize the Oxford Unabridged 31 

Dictionary were applicable to manage protein sequence databases. When applied to SwissProt 32 
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[Bairoch and Apwiler 2000] and other early databases, this yielded the first exhaustive matching 33 

of a protein genome sequence database and was published in Science in 1992 [Gonnet et al. 34 

1992]. It provided not only new Dayhoff matrices, but also a clear understanding of how patterns 35 

of amino acid substitution [Gonnet et al. 1994] and gapping [Benner et al. 1993] differed as two 36 

protein sequences diverged. In the three dozen papers that were to follow, interpretation of those 37 

patterns formed the basis for the then-emerging field of “evolutionary-based functional 38 

genomics”, including the resurrection of ancestral genes and proteins [Jermann et al. 1995], the 39 

use of evolutionary analyses to predict the folded structures of proteins [Benner et al. 1997], and 40 

the analysis of the natural history of two families to understand adept, drift, functional change, 41 

and pathway interactions [Benner et al. 1998] [Benner 2003]. Further, the exhaustive matching 42 

supported of some of the earliest efforts to infer the metabolism of very ancient organisms 43 

[Benner et al. 1989],
 
including organisms standing at the branch points of the major three 44 

kingdoms, and organisms that invented protein translation [Benner et al. 1993]. 45 

This work was well underway, of course, before complete genome sequences were available 46 

for any individual organism. As these emerged for microorganisms, the Benner group, in 47 

collaboration with EraGen Biosciences, introduced a naturally organized genome database 48 

[Benner et al. 2000].
 
Called the MasterCatalog, the database organized protein sequences by 49 

evolutionary families, much as had been done by more primitive databases dating back to 50 

Dayhoff herself, but also in earlier versions of computerized database such as Hovergen [Duret 51 

et al. 1994]. However, the MasterCatalog also included pre-computed trees, multiple sequence 52 

alignments, and probabilistic ancestral sequences at nodes of the trees. A commercial version of 53 

the MasterCatalog was bundled with several dozen complete genome sequences from various 54 

microorganisms that had been assembled in a commercial effort at the company Genome 55 

Therapeutics. This product generated approximately $3.4 million in sales during its lifetime.  56 

In a later version, secondary structure assignments determined by protein crystallography were 57 

added to these evolutionary models for individual protein families to create the Magnum 58 

database [Bradley and Benner 2006]. These supported a range of tools to extract functional 59 

information from evolutionary comparisons between different species. 60 

The Magnum database was announced just as whole genome sequences of vertebrates are 61 

becoming available. This opened an entirely new direction for the assembly of an evolution-base, 62 

naturally organized database, if the families of orthologous proteins from advanced organisms 63 
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could be reliably inferred with few errors. Complete genomic sequences were proposed to offer, 64 

as one of their outputs, the prospect of knowing what genes and proteins are not present in a 65 

biological organism. This prospect has driven, now for 20 years, the technology to determine 66 

every last nucleotide in a chromosome, close all of the chromosomes in a genome, and provide a 67 

complete list of genetic components in a complex organism. 68 

The advance of deep sequencing, of course, created a crisis in data management. These crises 69 

were associated with a series of problems briefly outlined below. 70 

 71 

Data volume 72 

Even in 1998, when MasterCatalog was conceived, sequence data resources were large and 73 

their size was growing almost exponentially.  Early development with GenBank involved a 74 

dataset with some redundancy and about 700,000 sequences, which grew to well over 2.5 million 75 

sequences in the space of 3 years. 76 

Today, the number of bacterial whole genomes in RefSeq (a service provided by the NCBI) is 77 

in the thousands, with is combined with the dozens of vertebrate organisms that have been 78 

sequenced.  It would be easy to collect 20 million sequences from whole genome sources alone.  79 

This is such a rapid growth in computational demands that even technological increases in 80 

computer power have been unable to keep up. In particular, a naïve all-against-all comparison 81 

scales with the square of the database size. While indexing and other algorithmic tools can be 82 

used to cause the scaling factor to be smaller, even Moore's law would be unable to manage the 83 

size of the database. Therefore, any practical computational approach to organizing this data by 84 

clustering needs to balance the time and space demands.  85 

Fortunately, this problem could be mitigated simply by exploiting the realities of natural 86 

history. The entire protein sequence space has not been explored during that natural history, not 87 

the least of which and certainly not by vertebrates. Accordingly, focusing on chordate, once 88 

genomes representing each of the major branches in the chordate tree are available, it is no 89 

longer necessary to do and “all-against-all” comparison of an entire database.  90 

MasterCatalog was designed to manage computational challenge of the rapidly growing 91 

volume of data as efficiently as possible.  Minimizing the number of sequence pairs for which 92 

redundancy must be computed is the first step; performed using a BLAST comparison tuned for 93 

nearly identical sequences, with pairwise comparisons only for sequences of the same species.  94 
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One sequence (the longest one) is used as a representative for subsequence comparisons.  A 95 

following BLAST “all-against-all” pairwise comparison considers only non-redundant 96 

sequences, storing all significant matches.  If more sophisticated estimates of sequence similarity 97 

are required (true for some clustering algorithms), such as optimal local or semi-global 98 

alignment, these are performed last and only for those sequence pairs that are significant non-99 

redundant matches. 100 

With this, individual families within complete chordate genomes that are deemed it to be 101 

especially reliable (in this case, we initially used 18) can be exhaustively matched, the families 102 

identified, and evolutionary models (multiple sequence alignments, trees, and inferred 103 

probabilistic ancestral sequences) constructed for use family. Further, an ancestral sequence 104 

standing at the top of each nuclear family can be inferred for each of these families. Then, as new 105 

genome sequences become available, or even as individual sequences become available separate 106 

from whole genome sequencing efforts, a new exhaustive matching is not required.  107 

Rather, the family to which the new sequence(s) belong can be identified by a search against 108 

the founder sequences for each of the previously identified families. Then, the new sequence(s) 109 

can be "tucked into" the multiple sequence alignment for the pre-computed family, and a branch 110 

within that pre-computed and rectified family can be added to indicate the point of divergence of 111 

the new sequence(s).  While the pre-computed sequence would presumably have a fixed (and 112 

evolutionarily correct) species tree topology, the new sequence(s) might cause minor adjustments 113 

of the pre-computed evolutionary model for the. Of course, as the number of members within 114 

each family increases, the impact of each addition becomes smaller. Over the long-term, one can 115 

expect those models to become more or less stationary, with little change occurring further as 116 

additional genomic sequences are added. This strategy, therefore, brings to an end the 117 

computational challenge. 118 

We report here our most recent efforts constructing evolutionarily organized databases 119 

following the strategy. We also report an outline of the use of the database to characterize the 120 

publicly available repertoire of whole genomic sequences. 121 

 122 

Data quality 123 

Even with confrontational challenge in hand, further problems emerge. Of particular 124 

importance is the quality of the data contained in existing publicly available genome sequence 125 
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databases. Data quality is a problem of broad scope caused by problems at several levels in the 126 

data collection process.   127 

First, the sequence data delivered to genomic database can be unrepresentative of the actual 128 

sequence of the providing organism.  Sometimes, this is the result of low coverage shotgun 129 

sequencing.  Parts of the assembly may have coverage only from a single clone.  Even worse, 130 

circumstances exist when the shotgun sequences have been assembled against a template from 131 

another source – often a different organism.  Where short gaps exist arising from no coverage, 132 

the template sequence is used instead of “N”, yielding a complete false impression of the quality 133 

of the data. While such problems can be easily identified when examining the primary assembly, 134 

it is impractical to do this on a genomic scale, and software working with genome-wide 135 

comparisons accepts the bulk annotation without any effort to assess its validity. 136 

A second problem with data quality is simply that the gene calling is inaccurate. Occasionally 137 

this caused by gaps in the genome assembly, where whole exons (and introns) are missing from 138 

the primary sequence data.  More commonly, the gene calling shows variations in the start or end 139 

point of genes that appear reasonably justified when the genome is examined in isolation, but are 140 

obviously wrong when orthologous genes are examined together. This is usually limited to errors 141 

in the end of one exon and/or the start of another, but can occasionally be much more 142 

pronounced, with genes that would be expected to be orthologs (as judged by an alignment made 143 

by MUMmer) being reported with wildly different transcripts that share few common exons.  144 

As a third fact that creates problems when high quality alignments are required, alternative 145 

transcripts are typically not consistently reported from one whole genome project to another.  146 

Sometimes this may be because of differences in reporting criteria by the authors, but the quality 147 

of EST data upon which gene predictions are based must also be a factor.  Although we must 148 

consider that EST data to be more reliable then raw DNA sequence data (it is, after all, 149 

experimental evidence for the expression of particular transcripts), it is rare to find transcripts in 150 

one organism that are supported by EST data to be disallowed due to mutation of alternative 151 

splice sites in closely related orthologs (say amongst mammals); one infers that absence of an 152 

alternative splice variant prediction is very weak evidence that the transcript is not present in the 153 

second organism. 154 

A less important problem is that functional annotations (the linguistic statement reporting to 155 

describe the contribution of the protein to the fitness of the host organism) of genes in current 156 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.424v1 | CC-BY 4.0 Open Access | received: 26 Jun 2014, published: 26 Jun 2014

P
re
P
rin

ts



 6 

genomic databases can be quite wrong.  While this makes functional annotation provided as 157 

linguistic statements of limited use, it also clearly illustrates how much the process of annotation 158 

(gene and functional) draws information from an arbitrary, but previously annotated homolog to 159 

make predictions.  It is sometimes possible to see which species has been used as a template for 160 

another in the annotation process, simply by looking at the functional annotations and the gene 161 

calls. 162 

 163 

Sequence clustering starting with 18 selected chordate families 164 

Clustering can be an expensive process, not merely because of the number of sequences that 165 

are typically being organized, but because some clustering methods seek to cluster sequence 166 

regions instead of whole sequences. The primary challenge in building clusters is how to use 167 

(and weight) the similarities between sequences to generate desirable clusters.  Many schemes 168 

have been explored over the last 20 years.  Two methods have been developed internally during 169 

the development of MasterCatalog, while the GUI framework is capable of allowing the 170 

examination of arbitrary clustering (called Catalogs). 171 

We illustrate here one early run that examined the Ensembl65 sequences for 18 chordate 172 

species (Table 1). The resulting catalog contained 8,199 individual families (with only clusters 173 

with four or more sequences being considered a family); on average, each family had 44 174 

members.   175 

 176 

Table 1. The 18 “Whole” Chordate Genomes Examined Here  177 

Species Common Name 178 
Bos taurus Cow 179 
Canis lupus familiaris Dog 180 
Ciona savignyi Ciona 181 

Danio rerio Zebrafish 182 
Equus caballus Horse 183 
Gallus gallus Chicken 184 
Homo sapiens Human 185 

Macaca mulatta Rhesus monkey 186 
Monodelphis domestica Opossum 187 
Mus musculus Mouse 188 
Ornithorhynchus anatinus Platypus 189 
Pan troglodytes Chimpanzee 190 

Pongo abelii Orangutan 191 
Rattus norvegicus Rat 192 

Taeniopygia guttata Finch 193 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.424v1 | CC-BY 4.0 Open Access | received: 26 Jun 2014, published: 26 Jun 2014

P
re
P
rin

ts



 7 

Takifugu rubripes Fugu 194 

Tetraodon nigroviridis Pufferfish 195 
Xenopus (Silurana) tropicalis Frog 196 
 197 

Upon use of this catalog for individual family analyses, two problems became quickly 198 

apparent.  First, protein sequences that had sufficient similarity to cluster in one family often had 199 

very different lengths. This caused problems in the creation of the MSA, which needed multiple 200 

gaps, often substantial in length, to accommodate sequences of very different lengths. This, in 201 

turn, corrupted distance metrics, which never score gaps correctly.   202 

Second, when the clustering threshold was too low, very large families were created.  In this 203 

case, 183 families contained more than 200 sequences.  To address this problem, we created a 204 

tool to recluster families, internally referred to as MasterBlaster.  This filter works by first 205 

examining the average sequence length with a family and removing any sequences that are of 206 

significantly different length from the average.  Then, families were reclustered using BlastClust 207 

with more stringent criteria to allow larger families to be broken into smaller, more “natural” 208 

units, as well as further removing sequences that are distant enough to cause issues with the 209 

MSA.  Application of MasterBlaster to the 18-genome database resulted in the creation of 14,058 210 

individual families with an average of 20 sequences per family and only 6 families containing 211 

more than 200 sequences.   212 

 213 
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Figure 1.  Application of MasterBlaster to Family 1923 (HGNC symbol LETM1) derived from 214 

the 18-genome comparison. Note that the root is placed internal to the tree. The MasterBlaster 215 

splits a cumbersome family into two separate trees, as well as removing troublesome sequences 216 

such as Ciona savignyi (colored above as black).  While the Ciona sequence is conveniently used 217 

to root the tree as the most primitive chordate outgroup, the time since its divergence from 218 

vertebrates (~1 billion years in both branches) causes sufficient sequence divergence and 219 

gapping to render distance metrics imprecise. 220 

 221 

Missing Data Analysis 222 

For an overwhelming majority of the families, one or more of the 18 "complete" genomes 223 

examined did not have a representative within the tree.  In fact, 13,146 of 14,058 families were 224 

missing a sequence for at least one of the 18 species (93.5%).  For example, Figure 2 shows 225 

Family 5041 (cysteine dioxygenase type1, CDO1). This family had an apparent ortholog in 17 of 226 

the 18 species; however, no ortholog was found in the zebrafish. This could, of course, mean that 227 

the gene was lost during the episode of natural history following the divergence of zebrafish 228 

from other fish species. Alternatively, it could mean that (i) the whole genome sequence was less 229 

"whole" than desired, with the DNA segment encoding that gene missed in the sequencing effort, 230 

or (ii) the DNA segment encoding the CDO1 gene was actually sequenced and present in the 231 

database, but the bioinformatic gene finding tool failed to find it.   232 

To assess the relative likelihood of these alternatives, we constructed a tool that would search 233 

various sequence databases, including genomic, mRNA, and protein databases, in the event that 234 

an ortholog was missing or truncated.  Both mRNA and protein sequences from species present 235 

in the tree were queried in hopes of finding missing sequences.   236 

When this search tool was applied, we discovered a few alternative transcripts/translations that 237 

were missed. For example, for Family 5041, we found that Ensembl protein 238 

ENSDARP00000124052 from zebrafish would have clustered within this family and provided 239 

the missing ortholog. However, an alternate sequence from zebrafish, ENSDARP00000085212, 240 

was marked as the canonical protein sequence by the MasterCatalog; its sequence was too 241 

divergent to have made it into the family. 242 

Only a minority of the families could be completed using this strategy. Specifically, we 243 

searched for 5292 sequences that were missing or truncated (defined as being < 50% of the 244 
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average length of sequences within the family) within 2843 families that had up to 3 of the 18 245 

species without representative sequences.  In all, we found alternate transcripts accounted for 246 

17.1% of the missing sequences.  We could further find 9.6% of the missing sequences in the 247 

genomic databases, and 7.7% within Ensembl’s protein sequence database.  However, even when 248 

missing sequences were found in the genomic or protein databases, these most often contained 249 

enough truncation or internal deletions to explain why they were not annotated by automated 250 

processes.  For the remaining 65.6% of the sequences, our tool failed to find any reasonable trace 251 

that could complete the families.  Thus an alternate approach was used to complete the families.  252 

 253 

 254 

Figure 2.  Family 5041, representing the CDO1 gene, contains sequences for 17 of the 18 255 

species within MasterCatalog.  Zebrafish (danio rerio) was not present in the initial clustering of 256 

this family. 257 

 258 
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Inclusion of Ensembl Compara Data 259 

In 2008, Ensembl began to adopt several of the MasterCatalog innovations within a public 260 

database, the Ensembl Compara database [Vilella et al. 2009].  With their extensive computing 261 

resources, the Ensembl75 release delivered clusters and phlyogenetic trees for proteins from 66 262 

“whole” genome species.  Accordingly, we exploit this data to bypass the protein clustering, by 263 

far the most compute-expensive tasks, to allow this data to be analyzed within MasterCatalog.  264 

Our use of the Ensembl75 clustering data helped reduce issues associated with gene finding, 265 

including problems arising from alternate transcript/translation, and the missing sequence 266 

problem, both by having the capability to do more exhaustive analysis of sequences and by 267 

providing enough redundancy of species within tree branches to make an occasional missing 268 

sequence acceptable. 269 

 The core databases, containing DNA and protein sequences, for each of these 66 species were 270 

downloaded from Ensembl and loaded into the MasterCatalog database using built-in import 271 

functionality. The Compara database was then downloaded and mirrored as a local database.   272 

Using custom scripts, two catalogs were created using the Ensembl data.  The first used the 273 

protein clustering provided by Ensembl, but allowed the MasterCatalog to produce the MSAs 274 

and trees.  The second used the clustering, MSAs, and reconciled trees produced by Ensembl.  275 

These two catalogs allow families to be viewed both with and without trees reconciled with the 276 

expected species tree, allowing a better overall view of the data and the error contained within.   277 

For both catalogs, MasterCatalog is able to calculate Ka/Ks values for each ancestral node 278 

within a tree (Figure 3), a MasterCatalog innovation that has not yet been copied by the Ensembl 279 

Compara database. It was, of course, implemented in the TAED database [Liberles et al. 2001], 280 

which has been maintained and updated by the Liberles group. So far, the Ensembl Compara 281 

database simply has these values indicated by leaf-leaf comparisons between contemporary 282 

sequence pairs.   283 
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 284 

Figure 3: Computed Ka/Ks values are shown on ancestral branches for a portion of Family 4000 285 

(HGNC symbol FAM206A)  286 

Using Ka/Ks values computed for ancestral nodes [Messier and Stewart 1997], we can apply 287 

many evolutionary functional genomic tools, including identifying groups of proteins that appear 288 

to have undergone active change at given times within evolutionary history.  This is a powerful 289 

tool for finding groups of proteins that emerged or significantly changed function at the time that 290 

significant evolutionary changes occurred, such as the development of the breast and prostate 291 

(see below).   292 

 293 

The Graphical User Interface 294 

Evolutionary functional genomics is greatly facilitated by graphical user interfaces that allow 295 

scientists to "surf the genome", examining the pre-computed evolutionary models for individual 296 

protein families quickly. Accordingly, a major advantage of MasterCatalog is its high-level 297 

graphical user interface. This interface has been used to generate all the figures presented so far 298 

in this paper. 299 

The interface is written in Java, which allows it to be compatible with all major operating 300 

systems.  Although a full description of this interface would be outside the scope of this writing, 301 

we briefly describe some of the features here.   302 
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First, to view the underlying data, the scientist must be able to find the genes and protein 303 

products of interest.  To this end, MasterCatalog contains the ability to search by many fields, 304 

including gene name, product name, gene description, and various external IDs, including 305 

Ensembl’s, OMIM, and GO (Figure 4).  Families can also be found via sequences comparison, 306 

with either protein or DNA/RNA sequence for the query.  Once a family is found, it is displayed 307 

to the user in tabular format with a graphical representation of the protein sequence (Figure 5).  308 

From here, the user may choose to view these sequences as a multiple sequence alignment 309 

(Figure 6) or the phylogenetic tree can be explored.  The tree viewer has many features to help 310 

the user explore the data.  The entire tree can be fit to the window to gain a sense of the structure 311 

of large families (Figure 7), while the scale can be quickly customized in both the X and Y 312 

direction to focus on a specific region of the tree (Figure 8).   313 

 314 

 315 

Figure 4.  The query window for MasterCatalog allows the user to search by multiple fields to 316 

assist in finding the correct sequence family. 317 

 318 
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 319 

Figure 5.  A tabular view of the sequences in a MasterCatalog family with graphical 320 

representation of sequences. 321 

 322 

Figure 6.  A view of MasterCatalog’s MSA display window. 323 

 324 
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 325 

Figure 7.  A top level view of a large phylogenetic tree in MasterCatalog (here displaying the 326 

sequence for alcohol dehydrogenase. 327 
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 328 

Figure 8.  A zoomed in view of alcohol dehydrogenase sequences. 329 

 330 

The user may also change tree structures (left rooted, top rooted, and unrooted), change the 331 

description attached to leaves (species name, sequence name, sequence description, etc.), and 332 

select the data displayed on the branches (PAM distance or Ka/Ks values).  One advanced feature 333 

within MasterCatalog is the ability to “clip” data, which allows for subsets of sequences within a 334 

family to be displayed in either MSA or tree form.  This clipped data can also have Ka/Ks values 335 

recalculated, which can be helpful when removing error-filled sequences that are obviously 336 

interfering with such calculations.  Another advanced feature is the ability to view sequences in 337 

multiple catalogs at the same time.  This allows comparison between different clustering criteria.  338 

Such comparisons can include sequence clustering vs. structural clustering, internal clustering vs. 339 

Ensembl clustering, and comparisons of trees reconciled against the species trees with non-340 

reconciled trees.  Such comparisons are unique to the MasterCatalog and allows the user a much 341 

greater insight into the data.  With this comes the ability to select groups of sequences in one 342 
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window and have those sequences select across all open datasets, helping the user quickly 343 

navigate through a wealth of information. 344 

 345 

Examples of use 346 

The database allows us to explore “high level” questions in biology using genome-supported 347 

evolutionary analyses. For example, breast cancers display an intriguing mixture of 348 

characteristics, each having an associated diagnostic/prognostic/therapeutic problem. For 349 

example, improvements in screening (including ductal lavage) have allowed ductal carcinoma in 350 

situ to be detected quite often. However, most ductal carcinoma do not become invasive, and it is 351 

not understood why. Understanding of the "why” could minimize unnecessary interventions, 352 

providing immediate improvements in the management of breast cancer.  353 

Each of these characteristics presumably has one or more genetic/epigenetic correlates, 354 

suggesting that if associated genes could be found, they might be sequenced in individual 355 

patients to identify markers that would help diagnose the primary cancer, prognosis its course, 356 

and choose a preferred therapy. Already this is done for estrogen-sensitive and insensitive 357 

cancers. However, to date, only about half of breast cancers are explained by the broadest set of 358 

risk factors; the most commonly used risk marker (BRCA1) covers perhaps only a fifth of total 359 

cancer incidence. Likewise, early exposure to radiation changes the spectrum of cancer risk, 360 

presumably by mutating genes, some perhaps not yet identified. Last, even if a breast cancer 361 

patient has survived for five years, a good chance remains of recurrence, again with uncertain 362 

etiology. 363 

 Thus, the ultimate overarching challenge (the elimination of mortality associated with breast 364 

cancer) is associated with a challenge: Can we identify a spectrum of genes that, if sequence-365 

analyzed, can guide the genetic counselor, diagnostician, and physician in understanding the risk 366 

of breast cancer in individual patients, identify consequential cancers at an early stage, 367 

distinguish between early-stage aggressive from indolent cancers, and choose therapies that are 368 

neither too much nor too little? Analyses of these genes in combination will, we hope, cover all 369 

breast cancers, much as genetic analyses of BRCA or estrogen receptors offer similar guidance 370 

for a fraction of those cancers. 371 

 Following an evolution-based functional genomics strategy, we begin by recognizing that the 372 

breast (as a tissue) emerged only recently in the history of Earth, approximately 300 million 373 
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years ago (Figure 9). This episode is indicated in the tree in Figure 9 by a blue line, the episode 374 

when suckling vertebrates emerged via divergence from other amniotes, most notably non-375 

suckling birds and reptiles, which diverged still earlier from amphibians and, even earlier, from 376 

fish. The assignment of this time in natural history as the time when the breast emerged is, of 377 

course, identical to the statement from biological systematics that mammals form a true 378 

vertebrate class. The episode is recent enough in history to avoid much of the ambiguity that 379 

arises when bioinformatics tools model more ancient events. 380 

 381 

Figure 9. A schematic outlining the evolution of vertebrate tissues.  Time is in million years. 382 

The red and blue lines indicate the episodes for the emergence of the prostate and breast 383 

(respectively). 384 

 385 

A second tissue new in mammals emerged in the episode immediately following (the red line): 386 

the prostate. This is indicated by the lack of a prostate in the platypus, but its presence in 387 

marsupials. The prostate is also a tissue that appears to generate cancer without obvious “insult” 388 

(although environmental factors can increase the incidence of prostate cancer, as they can breast 389 

cancer).  Again, the red episode is sufficiently recent to avoid many ambiguities that make 390 

difficult bioinformatics analysis of more ancient events. Further, it is convenient to have two 391 

tissues from opposite genders equally susceptible to cancer and equally accessible to 392 

evolutionary analysis, as they can serve as controls (of a sort) for each other. 393 

It is axiomatic in evolutionary developmental biology that the emergences of the breast and 394 

prostate in the blue and red episodes were associated with genetic changes. Further, Bayesian 395 

analyses are well known to be able to infer genetic events in the historical past through the 396 

analysis of modern gene sequences [Yang 1997]. Thus, we (and others) have long inferred the 397 
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sequences of ancestral genes and proteins from ancient genomes by analyzing the sequences of 398 

their descendants. In a field invented in the Benner laboratory [Benner 2007], paleogenetics can 399 

go still further, resurrecting inferred ancestral sequences from extinct animals by recombinant 400 

DNA technology, making ancient proteins available for study in the laboratory. Since maximum 401 

likelihood DNA and protein sequences at nodes in an evolutionary tree can be inferred using 402 

Bayesian analysis, probabilistic changes can be assigned to individual branches in a tree like that 403 

shown in Figure 9. Therefore, when applied to entire genomes, protein family by protein family, 404 

we can say what amino acids were replaced, inserted, or deleted during the episode when the 405 

breast emerged, or when the prostate emerged. While we agree that non-coding regions are also 406 

important to an "evo-devo" analysis, these are not addressed here because of the greater 407 

difficulty in inferring their histories. Further, numerous examples suggest that when a gene is 408 

recruited to perform a new role, a signature of recruitment and its associated adaptive evolution 409 

can be inferred by examining what amino acids are replaced, inserted, or deleted.  410 

More sophisticated analyses can be applied across whole families and whole pathways. Thus, 411 

we can suggest a central hypothesis: To identify genes and proteins involved in the emergence of 412 

the breast and/or prostate, we might go stepwise, family by family, through the genomic history 413 

of vertebrates to find those that carry signatures of functional adaptation at the time when the 414 

breast emerged and/or when the prostate emerged. This work will deliver this family-by-family 415 

analysis. 416 

Various hypotheses give such analyses medical relevance. First, we hypothesize that genes 417 

involved in the emergence of the breast (and, as a control, prostate) are likely candidates for 418 

genes involved in regulating the growth, development, and functioning of these tissues in 419 

modern mammals. Further, we hypothesize that mutations in these genes create susceptibility to 420 

these cancers, determine the types of cancers that result, control the likelihood that those cancers 421 

will progress and metastasize, and govern susceptibility of the resulting cancers to different 422 

therapies. In this view, our evolutionary analysis will complement "classical" approaches to the 423 

same goal, such as "deep sequencing" of multiple specimens of breast cancer tissue in search of 424 

mutations with etiological significance, in established cancer-linked proteins, or the use of large-425 

scale typing of genetic markers in a case/control study format. 426 

A naturally organized database can help, especially if provided with semi-automated tools that 427 

will address error in genome annotation, heuristic development, and expert analysis [Benner et 428 
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al. 1995]. This supports a multi-metric approach to identify individual nuclear families that have 429 

signatures of adaptive change during the episodes represented by the blue and red lines, 430 

including the obvious gene duplications/loss, gene shuffling, and Ka/Ks metrics [Liberles et al. 431 

2001], but also more subtle changes, such as homoplasy, heterotachy, and clustering of adaptive 432 

sites on 3D-structures (if known). The ultimate goal is to identify individual families whose 433 

paleogenetic history suggests underwent adaptive change during the historical episode when the 434 

breast emerged. Parallel studies in the immediately following episode when the prostate emerged 435 

provide a “control” with similar bioinformatics constraints. 436 

In developing this theme, it is useful to review one of many cases where the Benner group 437 

applied multi-metric tools to generate hypotheses of adaptive change in vertebrate protein 438 

families. Most relevant to breast cancer is our study of aromatase (Figure 10) [Gaucher et al. 439 

2004]. This protein oxidatively transforms androgens to create estrogens using heme, 440 

nicotinamide, and a coreductant. During the divergent evolution of artiodactyls (cloven hooved 441 

ungulates), the aromatase gene family suffered two duplications to generate three paralogous 442 

aromatases in the lineage that led to modern pigs (Figure 10a). 443 

 444 

 445 

Figure 10. A multi-metric analysis of the molecular evolution of the vertebrate aromatase gene 446 

family. The goal of this project is to do similar analyses for vertebrate protein families with focus 447 

on identifying those important in the historical emergence of the breast and (as a control) the 448 
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prostate. In addition the work will integrate and exploit the wealth of available new data from 449 

“modern biology” (e.g. functional genomics) 450 

 451 

These are dated using the TREx clock [Li et al. 2006] to have occurred 31 ± 5 million years 452 

ago (Figure 10b). One of the duplications is associated with a relatively high (0.93) Ka/Ks ratio 453 

(Figure 10a). While this ratio is not greater than unity, it is large compared to ratios in other 454 

branches of the tree (which are typically ~0.2) (Figure 10a). Therefore, this high relative ratio 455 

suggests that this family is undergoing functional change. The very survival of paralogs, of 456 

course, also suggests adaptation.  457 

Had we stopped here, this case might have been just one many disputed examples in a 458 

literature containing many of these. However, the next step in the multi-metric approach noted 459 

that the amino acids replaced during the episode with a high Ka/Ks ratio were not randomly 460 

distributed across the structure of the protein (Figure 10d). Rather, they were clustered near the 461 

substrate binding site and the co-reduction binding site (Figure 10d). This suggests that during 462 

this episode, details of the structure of the substrate had changed, as did the co-reductant. This 463 

led to experimental work that showed that the different paralogs had different substrate 464 

specificities (Figure 10e) [Corbin et al. 1999].  465 

But what does it mean functionally? A cladogram based on fossil records (Figure 10c) 466 

suggested that this episode of adaptive change occurs near the time in which pig litters went from 467 

one piglet (with occasional twinning) to five or more piglets. This generated the hypothesis that 468 

this gene triplication emerged to manage a new reproductive physiology in pigs (large litter size). 469 

This drove an analysis of the molecular physiology, which confirmed this inference Corbin et al. 470 

2004] [Kao et al. 2000] [Conley et al. 2001]. 471 

To date, multi-metric analyses have been generally developed case-by-case. From the Benner 472 

group, these include analyses of dehydrogenases [Benner 1989], ribonucleases [Sassi and Benner 473 

2007], leptins [Gaucher et at 2003], sulfotransferases [Bradley and Benner 2005], inflammatory 474 

proteins [Benner 2002], hypertension [Johnson et al. 2008], SARS [Benner et al. 2003], cystic 475 

fibrosis [Gaucher et al. 2006], uterin serpins [Peltier et al. 2000], ribonucleotide reductase [Tauer 476 

and Benenr 1997], and elongation factors [Gaucher et al. 2001], among others [Benner et al. 477 

2002]. In some cases, we have been interested in developing statistical heuristics that assess the 478 

number of free variables that should be used to model adaptive divergence [Sassi et al. 2007]. In 479 
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other cases, we have explored the use of heterotachy (see below) to identify episodes of 480 

functional adaptation [Gaucher et al. 2002]. In other cases, we have asked how codon models 481 

[Benner 2012], scoring tools [Gonnet et al. 2000], and gapping models [Benner et al. 1993] 482 

[Chang and Benner 2004] improve multiple sequence alignments, or the impact of homoplasy in 483 

corrupting gene trees with short branch lengths [Carrigan et al. 2012]. In other cases, we have 484 

used the approach to improve the models upon which Bayesian inference relies [Gonnet et al. 485 

1994]. In others, the analysis has been the start of paleogenetics experiments, where ancestral 486 

proteins from now-extinct organisms are resurrected in the laboratory for study [Stackhouse et al. 487 

1990] [Jermann et al. 1995] [Ciglic et al. 1998] [Opitz et al. 1998] [Gaucher et al. 2003] 488 

[Thomson et al. 2005]. 489 

Again a principal challenge doing such work by automated methods arises from annotation and 490 

gene finding errors in whole genome sequence databases. These are illustrated in Figure 11 for 491 

the primate BRCA1 gene family. Purely automated assembly of the family encounters situations 492 

where (in this case) it appears as if gene duplications created two paralogs in Macaca and Pongo 493 

(the rhesus monkey and orangutan, respectively). Of course, it is conceivable that this gene 494 

actually did suffer duplication independently in the two lineages leading to Pongo and Macaca. 495 

If so, this duplication would (like in the aromatase case) indicate functional adaptation, 496 

especially as the half-life for survival of nonfunctional duplicates that have not acquired a new 497 

function is about 11 million years [Trabesinger-Ruer et al. 1996].  In fact, this is not the case; the 498 

apparent paralogs in Pongo and Macaca are evidently the result of mistaken gene finding.  499 

 500 

 501 

Figure 11. The 18 vertebrate whole genomes within the MasterCatalog are illustrated here for 502 

the BRCA1 nuclear family for primates. This example illustrates “false paralogization”, where 503 

the Pongo and Macaca genomes have extra sequences that suggest duplicates where none exist. 504 
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These families will be rectified to remove such errors, when they corrupt the interpretation about 505 

historical events at the time where the breast and prostate emerged. 506 

 507 

We can further apply advanced metrics to detect functional change that complement the Ka/Ks 508 

ratio and duplications [Benner 2004]. For example, heterotachy recognizes that two different 509 

branches of a tree whose respective members have different functions also have different site-by-510 

site constraints on functional divergence (Figure 12). In lay language, that means that in proteins 511 

having different functions, different sites evolve more rapidly while other sites evolve more 512 

slowly. Likewise, homoplasy can indicate specific sites having specifically changing functional 513 

roles. Other tools include an analysis of compensatory changes [Fukami-Kobayashi et al. 2002] 514 

and crystallographic clustering, both of which bring crystallographic data to bear on an analysis 515 

of functional divergence [Benner et al. 1997]. For example, amino acids being replaced during 516 

an episode of relatively high non-synonymous substitution are often not distributed randomly 517 

across the three-dimensional structure, but rather are clustered, perhaps near a substrate binding 518 

or regulatory site. This crystallographic clustering is strong evidence for adaptive change and, as 519 

in the aromatase example, can guide specific experiments to confirm/deny a hypothesis of 520 

changing function. 521 

 522 

Figure 12. “Heterotachy” is a change in the rate of amino acid substitution at a site that indicates 523 

a change in function. It requires whole family analysis to detect. Shown the amino acids reside at 524 

a site in a hypothetical protein. Purifying selection retained a valine at this position in the left 525 

branch, but did not retain any amino acid in the right branch. The change in functional 526 

constraints at this site indicates that the function in the protein changed in the episode indicated 527 

by the arrow.  528 

 529 

Summary 530 
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A quarter century has passed since Gaston Gonnet began to help us use evolutionary analysis 531 

to extract function in ever-growing sequence databases. The results of this collaboration are now 532 

having impact throughout biomedical research, much no longer acknowledged by (or even 533 

known to) today’s beneficiaries of a research program that began so long ago. However, the hour 534 

spent 25 years ago in a seminar that Gaston gave on the Oxford Unabridged English Dictionary 535 

was more than well spend. Thanks again to Beverly for making me aware of, and encouraging 536 

me to attend, it. 537 

 538 

  539 
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