

A peer-reviewed version of this preprint was published in PeerJ
on 7 October 2014.

View the peer-reviewed version (peerj.com/articles/607), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Wittwer LD, Piližota I, Altenhoff AM, Dessimoz C. 2014. Speeding up all-
against-all protein comparisons while maintaining sensitivity by
considering subsequence-level homology. PeerJ 2:e607
https://doi.org/10.7717/peerj.607

https://doi.org/10.7717/peerj.607
https://doi.org/10.7717/peerj.607

Speeding up all-against-all protein comparisons while
maintaining sensitivity by considering subsequence-level
homology

Orthology inference and other sequence analyses across multiple genomes typically start by

performing exhaustive pairwise sequence comparisons, a process referred to as “all-against-

all”. As this process scales quadratically in terms of the number of sequences analysed, this

step can become a bottleneck, thus limiting the number of genomes that can be

simultaneously analysed. Here, we explored ways of speeding-up the all-against-all step

while maintaining its sensitivity. By exploiting the transitivity of homology and, crucially,

ensuring that homology is defined in terms of consistent protein subsequences, our proof-of-

concept decreased the time complexity by ~75% while recovering >99.6% of all homologs

identified by the full all-against-all procedure on empirical sequences from bacteria and fungi.

In comparison, state-of-the-art k-mer approaches are orders of magnitude faster but only

recover 3-14% of all homologous pairs. We also outline ideas to further improve the speed

and recall of the new approach. An open source implementation is provided as part of the

OMA standalone software at http://omabrowser.org/standalone .

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 1

Speeding up all-against-all protein comparisons while maintaining

sensitivity by considering subsequence-level homology

Lucas D. Wittwer1,3,#, Ivana Pili�ota1,#, Adrian M. Altenhoff1,2,3, Christophe Dessimoz1,2,*

1University College London, Gower St, London WC1E 6BT, United Kingdom
2Swiss Institute of Bioinformatics, Universitätstr. 6, 8092 Zurich, Switzerland
3ETH Zurich, Computer Science, Universitätstr. 6, 8092 Zurich, Switzerland

#These authors contributed equally to this work.

*Corresponding author. Email: c.dessimoz@ucl.ac.uk

Abstract

Orthology inference and other sequence analyses across multiple genomes typically

start by performing exhaustive pairwise sequence comparisons, a process referred to

as “all-against-all”. As this process scales quadratically in terms of the number of

sequences analysed, this step can become a bottleneck, thus limiting the number of

genomes that can be simultaneously analysed. Here, we explored ways of speeding-

up the all-against-all step while maintaining its sensitivity. By exploiting the transitivity

of homology and, crucially, ensuring that homology is defined in terms of consistent

protein subsequences, our proof-of-concept decreased the time complexity by ~75%

while recovering >99.6% of all homologs identified by the full all-against-all procedure

on empirical sequences from bacteria and fungi. In comparison, state-of-the-art k-mer

approaches are orders of magnitude faster but only recover 3-14% of all homologous

pairs. We also outline ideas to further improve the speed and recall of the new

approach. An open source implementation is provided as part of the OMA standalone

software at http://omabrowser.org/standalone.

1 Introductionठ⃚

Advances in genome sequencing have led to an immense increase in the number of available

genomes (Metzker, 2009; Pagani et al., 2012). As the experimental annotation of these sequences

would be prohibitively slow and expensive, there is a strong interest in computational methods

(reviewed in Rentzsch and Orengo, 2009). Most approaches start by identifying genes of common

ancestry within and across species—sets of “homologous” genes (Patterson, 1988). As further

refinement, homologous proteins, which can be split up into paralogs and orthologs, diverged

from a common ancestral protein (Fitch, 1970). Paralogous sequences, which start diverging

through gene duplication, are believed to drive function innovation and specialisation, whereas

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 2

orthologous sequences, which diverged through speciation, tend to have more similar biological

function (Tatusov, 1997; Lynch, 2000; Altenhoff et al., 2012; Gabaldón and Koonin, 2013).

Therefore, protein function can be assigned by identifying regions of orthology between a newly

sequenced and an already annotated genome (e.g., Gaudet et al., 2011). Orthology inference is

also of high interest to infer phylogenetic species trees and to study the evolution of gene families

(Altenhoff and Dessimoz, 2012).

Due to the high biological interest for orthology detection, many orthology inference algorithms

and associated databases have been developed (reviewed in Dessimoz et al., 2012). Some of

these can be large, with databases comparing thousands of genomes of different species:

eggNOG with currently 3686 genomes (Powell et al., 2013), Roundup with 2044 (DeLuca et al.,

2012), OMA with 1613 genomes (Altenhoff et al., 2011) and OrthoDB with 1425 genomes

(Waterhouse et al., 2013).

To detect homology, these resources rely on all-against-all protein comparison. All pairs of

sequences are aligned using BLAST (Altschul et al., 1997) or dynamic programming (Smith and

Waterman, 1981). They are then inferred as homologous if their alignment score is above a certain

threshold and alignment length constraints are satisfied (Roth et al., 2008). Even orthology

databases based on reconciled gene/species trees (Vilella et al., 2009) or hidden Markov model

profiles (Mi et al., 2013) typically start their procedure with an all-against-all step, before

proceeding to clustering.

However, the all-against-all procedure scales quadratically in the number of sequences compared

and hence rapidly becomes very costly. For instance, the all-against-all phase in OMA, the

resource developed in our lab, has already consumed over 6.1 million CPU hours to date, despite

the use of a highly optimised implementation (Szalkowski et al., 2008) of the Smith-Waterman

(1981) pairwise alignment algorithm. Furthermore, in the all-against-all phase of OMA, about half

of the time is spent on unrelated gene pairs, which are not used for further orthology inference.

Previous methods have been proposed to speed-up the all-against-all phase, but they tend to

come at a cost of lower sensitivity. CD-HIT (Li and Godzik, 2006), UCLUST (Edgar, 2010), and

kClust (Hauser et al., 2013) are methods to reduce the complexity by clustering the dataset based

on the number of common or high-scoring words (k-mers) in each sequence. This works well to

identify closely related sequences—e.g., close paralogs or “redundant” sequences—but such

approaches are less sensitive than full dynamic programming alignment and thus tend to miss

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 3

distant homologs. Another approach was proposed in the Hieranoid method (Schreiber and

Sonnhammer, 2013): by using the species tree as guide and iteratively merging terminal sister

taxa into ancestral genomes, the computational cost only grows linearly with the number of

genomes. However, reconstructing ancestral sequences or profiles can prove challenging among

distantly related species. Moreover, the guide tree must be clearly defined and known, which is a

problem for many prokaryotes and eukaryotes.

Here, we present a new strategy for speeding up the all-against-all step, by first clustering

sequences and then performing an all-against-all within each cluster. Crucially, in the clustering

phase, the new approach accounts for residue-level homology and not merely whole protein-level

homology. As a result, sequences can belong to multiple clusters. On sets of empirical bacterial

and fungal protein sequences, our new approach achieves a reduction in computational time of

~75% while maintaining the sensitivity of all-against-all procedure (>99.6% of all pairs identified

by all-against-all).

2 Materialsठ⃚andठ⃚Methodsठ⃚

We start by motivating our method under the assumption of perfect input data, then present the

modifications required to perform well on real, imperfect data. We then describe the k-mer

methods we used as points of comparison. Finally, we present the empirical datasets used to

evaluate the new method.

2.1 Buildingठ⃚homologousठ⃚clustersठ⃚fromठ⃚perfectठ⃚dataठ⃚

Typical downstream analysis of the all-against-all step requires an alignment score for every

significant pair of proteins (putative homologs). Therefore, aligning these significant pairs seems

difficult to avoid. In contrast, avoiding the alignment of unrelated pairs can potentially reduce the

overall runtime of the all-against-all. One way to avoid some pairs is by using the transitive

property of homology: typically—we discuss pathological cases in the next section—if sequence

A is homologous to sequence B, and sequence B is homologous to sequence C, then sequences

A and C are homologous. A corollary of this is that if sequence A is homologous to sequence B,

and sequence A is not homologous to sequence C, then sequences B and C are not homologous.

Proof of corollary: Let S1 denote “A is homologous to B”, S2 “B is homologous to C”

and S3 “A is homologous to C”. The transitivity of homology states that S1 â S2 ó S3.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 4

By material implication, that it is equivalent to c (S1 â S2) * S3. De Morgan’s law

yields the equivalent expression (c S1 * c S2) * S3 which is, due to the associativity

and commutativity of disjunction, equivalent to (c S1 * S3) * c S2. Using the De

Morgan’s law again, the expression transforms to the equivalent c (S1 â c S3) * c S2.

Finally, by material implication it is equivalent to the expression S1 â c S3 ó cS2. .

Therefore, in this particular scenario, if we infer that A and B are homologous and A and C are

non-homologous, there is no need to align sequences B and C. Another way to consider this

situation is that A acts as a representative for its homologous sequence B. We can generalise this

idea to more than three sequences by building clusters of homologs for which a single sequence

acts as a representative for all members (trivial proof by induction).

Accordingly, we can split the all-against-all into two steps: (i) building homologous clusters, and

(ii) performing the all-against-all within each cluster. In the clustering step, we initialise the

procedure with a single cluster containing the first sequence as its representative and sequentially

consider all the other sequences: each sequence is aligned to the representative sequence of

each homologous cluster. If an alignment score is significant, implying that the sequence is

homologous to members of that particular cluster, the sequence is added to the cluster. Else, a

new cluster is formed with that sequence as representative.

Under the assumptions that homology is transitive and that homology can be perfectly

ascertained through sequence alignment, this procedure guarantees that all homologous

sequences end up in a common cluster in O(nk), where n is the number of proteins and k is the

number of clusters. Since kfn (and possibly k<<n), this is more efficient than the O(n2) runtime of

the standard all-against-all procedure.

In practice, however, homology at the level of proteins is not always transitive and homology

cannot be perfectly ascertained. Therefore, refinements to the basic idea are required.

2.2 Buildingठ⃚ homologousठ⃚ clustersठ⃚ fromठ⃚ realठ⃚ data:ठ⃚ multipleठ⃚ representatives,ठ⃚

multipleठ⃚clusters,ठ⃚andठ⃚subsequenceૐ퀐levelठ⃚homologyठ⃚

The two assumptions underlying the algorithm for ideal data are not tenable on real data. First,

highly distant (and thus dissimilar) homologous sequences can be very difficult or impossible to

reliably identify. Thus, if the representative is very distant to a particular homologous sequence,

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 5

homology can nevertheless be missed. Second, homology does not necessarily apply uniformly

across all residues of a protein. For transitivity to hold, it is essential that homology applies to a

common set of residues. However, insertions and gene fusion can lead to situations where this is

not the case (see Fig. 1A for an illustrative example).

Thus, to deal more effectively with real sequences, we modify the basic algorithm in three ways.

First, instead of a single representative sequence, we also consider a variation of the algorithm

that uses several representative sequences for each cluster. This can be advantageous for

homologous clusters containing very dissimilar sequences, which are thus poorly represented by

any single sequence. Second, we allow for the possibility that some sequences might be

homologous to more than one cluster. This could be the case if homologous clusters are

fragmented due to high divergence among some of their members (and among their

representatives in particular). This also enables multi-domain proteins to be included in clusters

corresponding to different domains. Third, we take into account subsequence-level homology: we

ensure that the entire length of a particular protein (minus a tolerance parameter, set to 20 amino-

acid residues in this study) is covered by the cluster(s) to which the sequence belongs. If this is

not the case, a new cluster is created with the sequence as representative. Note that this is in

addition to inclusion into any cluster with significant alignment (Fig. 1B)).

Figure 1. (A) The transitivity of homology does not hold if the residues involved are inconsistent. (B)

Homologous relationships can be missed if significant sequence parts are not covered by the

representative sequence. To address this problem, our approach would create a new cluster, with the

sequence that is not fully covered as its representative.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 6

2.3ठ⃚ Computingठ⃚allૐ퀐againstૐ퀐allठ⃚withinठ⃚eachठ⃚clusterठ⃚

Once we have identified all homologous clusters, we compute an all-against-all within each

cluster using the same criteria as the global all-against-all (Figure 2). This ensures that all retained

pairs agree with the score and length requirements of the full all-against-all, and provides scores

for all homologous pairs, which are often required for downstream analyses.

Figure 2. Diagram of the current OMA all-against-all step (left) and the new approach with homologous

clustering and sequence coverage (right). In the proposed approach, the sequences are first clustered and

then the all-against-all is run only within clusters. The overall number of computations is considerably

reduced, but some homologous relationships can be missed.

2.4ठ⃚ Comparisonठ⃚withठ⃚fullठ⃚allૐ퀐againstૐ퀐allठ⃚andठ⃚otherठ⃚methodsठ⃚

The baseline of this study is given by the current all-against-all procedure in the OMA database

(Roth et al., 2008; Altenhoff et al., 2011). It runs a highly optimised Smith-Waterman (1981) local

alignment implementation (Szalkowski et al., 2008) using the 224 GCB scoring matrix (Gonnet et

al., 1992). To be inferred as homologs, sequence pairs need to reach an alignment score of at

least 181, with the additional requirement that the length of the shorter sequence aligned be at

least 61% of the longer sequence. These parameters were previously established to yield good

results on empirical data (Roth et al., 2008).

To compare the performance of the new approach to k-mer clustering, we also ran kClust (Hauser

et al., 2013) and UCLUST (Edgar, 2010). We ran kClust with default set of parameters, where the

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 7

required minimum sequence identity was 30% (-s 1.12) and the minimum alignment coverage

of the longer sequence was 80% (-c 0.8). To increase sensitivity, we also ran kClust with 30%

as minimum for sequence identity (-s 1.12) and 50% as minimum alignment coverage (-c

0.5). The jobs were run on a single core of a Dell R910 (Intel Xeon E7-8837, 2.66 GHz) with 32

cores and 1TB of memory. For UCLUST, we used the recommended option -cluster_fast.

We first ran UCLUST with default parameters, specifying 30% as sequence identity (-id 0.3).

We also ran it with the additional requirements on coverage of the target sequence being 50% (-

target_cov 0.5) and allowing sequences to be assigned to multiple clusters (-maxaccepts

0), without limiting the number of sequences rejected before quitting search (-maxrejects 0). In

both cases, only sequences longer than 50 amino acid residues were taken into account—the

same length requirement as in the all-against-all procedure. UCLUST was run on a MacBook Air

(Intel Core i7, 1.7 GHz) dual-core with 8GB of memory.

2.5ठ⃚ Datasetsठ⃚

We analysed the performance of the new approach on two distinct datasets: bacteria and fungi.

Bacteria dataset contained 14 proteomes, fungi contained 12, all sampled from the OMA

database (Altenhoff et al., 2011) (March 2014 release; see Supplementary File 1 for complete list).

The distribution of sequence lengths and evolutionary distances among significant pairs is

provided in Supplementary Figures 1-2. To assess the scaling behaviour of each variant, we ran

them on subsets which were formed as follows: all genomes in the dataset were sorted by their

size and the ones in the middle of the list were chosen to form a subset. By choosing the central

2, 4, 6, 8, 12 and finally all 14 proteomes, subsets of bacteria were constructed. We repeated the

procedure for fungi and obtained subsets of size 2, 4, 6, 8, 10 and 12 proteomes.

3 Resultsठ⃚

To assess the time and accuracy of our new approach, we compared the four clustering

variants—one or three cluster representatives, each combined with either taking into account

residue-level homology or not (see Methods)—on empirical bacterial genomes. We also repeated

the three fastest variants on empirical fungal datasets.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 8

Figure 3: The new approach is between 40% and 90% faster, depending on datasets and variants. On the

fungi dataset, only the three fastest variants were computed.

All four clustering variants decreased runtime compared to the full all-against-all algorithm, by 40-

90% depending on the variant and dataset (Fig 3). Unsurprisingly, the reduction was strongest in

variants considering a single representative sequence per cluster. Likewise, ignoring residue-level

homology lead to faster runtime, though the difference was more modest.

In terms of performance—which we measured in terms of the proportion of significant pairs from

the full all-against-all that were recovered by the new variants (referred to as “recall”) or its

complement (referred to as “missing pairs”)—we observed a clear benefit in taking into account

residue-level homology, with recall values consistently >99.6% (Fig. 4). The use of three

representative sequences per cluster also led to increase in recall, but not nearly to the same

extent. The recall values obtained for all variants were consistent across the bacteria and fungi

datasets and for different sizes, which suggests that they might hold across other datasets as

well.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 9

Figure 4: The new approach misses 0.4-6% of the pairs from the full all-against-all in its simple variant

(1 and 3 representatives), and 0.01-0.3% taking into account sub-sequence homology.

Putting runtime and accuracy together, the best results were obtained by taking into account

subsequence-level homology using a single representative sequence, which achieved ~75%

decrease in time while maintaining >99.6% recall in both datasets.

To gain insight into the nature of missing pairs, we analysed the distribution of alignment scores

of missing pairs compared to that of all significant matches (Fig. 5). For all method variants, but

especially those taking into account subsequence-level homology, the distribution is heavily

skewed toward low-scoring matches. This is favourable, because low-scoring matches are less

reliable in the first place and therefore downstream analyses are already designed to cope with

missing homologous relationships among distant pairs (e.g. Altenhoff et al., 2013). We also note

that the higher recall observed with three representatives instead of one is mainly concentrated on

low scoring matches.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 10

Figure 5: Distribution of alignments scores of missing pairs compared with all pairs (“background”)

For any given taxonomic range, adding new genomes and the corresponding new sequences can

only increase the number of clusters. However, as the number of genomes grows, we can expect

that an increasing proportion of the sequences will fall into one of the already formed clusters.

Thus, we should see a tapering in the number of clusters as a function of the number of

sequences, which is favourable in terms of runtime of the algorithm. In our datasets, we could not

observe such tapering, and instead the growth in cluster numbers was broadly linear

(Supplementary materials Fig. 3-4), which suggests that 12-14 genomes are too few to discern

the additional asymptotic benefits of our new approach.

Finally, we sought to compare our new approach to the state-of-the-art k-mer clustering

approaches UClust (Edgar, 2010) and kClust (Hauser et al., 2013). As elaborated in the

introduction, these methods have been developed to cluster closely related sequences, but given

their similar conceptual ideas (clustering, use of representative sequences), they provide an

interesting point of comparison. As expected, these approaches were orders of magnitude faster

(speed-up 99.81-99.95% for kClust, over 99.98% for UCLUST; Fig. 6), but their recall was

typically in the single percentage points (6.62-13.52% for kClust, 3.16-10.37% for UCLUST), even

with inclusive parameters (Fig. 7; Supplementary File 2).

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 11

Figure 6: K-mer approaches such as kClust and UCLUST are several orders of magnitude faster than full

all-against-all.

Fig. 7. kClust and UCLUST only recover 3-14% of the homologous pairs identified by the full all-against-all

procedure, even when they are run with sensitive parameter settings (see Materials and Methods for

details).

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 12

4 Discussionठ⃚andठ⃚outlookठ⃚

The all-against-all phase is at the basis of many orthology inference algorithms but due to its

quadratic time complexity in terms of number of sequences, the all-against-all phase can be a

bottleneck. This work suggests that the transitivity of homology can be exploited to substantially

speed-up homology inference while maintaining sensitivity—provided homology is defined in

terms of consistent subsequence stretches.

The datasets used in this study are challenging, with median distance of 146 PAM (1.46

substitution per site on average) in the bacteria dataset and 149 PAM in the fungi dataset

(Supplementary Fig. 4). This implies that half of homologous pairs have less than 30% sequence

identity. At such high levels of divergence, k-mer based methods perform poorly compared to all-

against-all dynamic programming alignment. In contrast, our transitivity clustering approach

performed well. It is likely to perform even better on evolutionarily closer sets of taxa, such as

vertebrate species or flowering plant species.

Apart from the full dynamic programming alignment comparison with cluster representatives and

the subsequence-level homology consideration, our approach distinguishes itself from most

clustering methods in that it allows sequences to matches to several clusters. If homology was

always uniform across the whole sequence length and could be perfectly inferred from present-

day sequences, each sequence would belong to one and only one homologous cluster. In

practice however, these assumptions do not hold: gene fusion can result in sequences that have

homologous relationships across multiple clusters; some homologs have diverged too far to be

inferred as such, thus resulting in cluster fragmentation. By allowing for sequences to belong to

multiple clusters, our method is robust to these complications.

These promising results notwithstanding, the new approach still has much potential for

improvement. To further improve the recall, several ideas could be explored. First, the procedure

could merge clusters that have a high proportion of members in common. This could recover

some of the missed homologous pairs. Second, the choice of cluster representatives could be

improved. Indeed, the current strategy of selecting the first sequence (or the first three

sequences) added to the cluster is likely to be suboptimal in most instances. Instead, a better

choice of representative would be to try to select a sequence with minimal average distance to all

cluster members (a “centroid” sequence). Third, as alternative to representative sequences,

clusters could be represented by Hidden Markov model profiles. Such approach, at the basis of

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 13

well-established methods such as PSI-Blast (Altschul et al., 1997), HMMER (Eddy, 2011), or

HHBlitz (Remmert et al., 2011), is likely be more sensitive than pairwise alignment with a single

representative sequence. The profiles could be periodically updated as new sequences are

assigned to the cluster.

We also see potential to further improve the speed of the new approach. First, merging

homologous clusters can lead to a speed improvement because the cost of assigning sequences

to clusters grows linearly in the number of clusters. This needs to be done carefully, because

excessive merging—the merging of clusters containing a substantial number of non-homologous

pairs—can reduce the efficiency of the within-cluster all-against-all, whose time complexity grows

quadratically in the number of sequences. Second, it may be possible to optimise the assignment

of sequences to clusters by identifying clusters that are so different to one another that they are

practically mutually exclusive and thus inclusion into one implies exclusion from the other. An

empirical way of establishing such mutual exclusivity would be to keep track of the number or

proportion of sequences belonging to both clusters. Finally, the new approach could be

parallelised. One way of parallelising the assignment of sequences to clusters would be to use a

Publisher-Subscriber model (Eugster et al., 2003): a “master” process would start the analysis of a

new sequence by distributing it to a set of “workers”, each responsible to compare the sequence

to a subset of all existing clusters. Each worker would thus align the new sequence to its

designated subset of clusters and reports back significant matches and their associate sequence

ranges (subsequence-level coverage). Once the master process has received this information

from all workers, it would ensure that the new sequence is fully covered by matches to existing

clusters, and else it would generate a new cluster with that sequence as representative. As for the

within-cluster all-against-all comparisons, they could be straightforwardly parallelised thanks to

the lack of dependency among all pairs.

Meanwhile, a serial implementation of our best variant (accounting for subsequence-level

homology using a single representative sequence) is available as part of the open source OMA

standalone package (http://omabrowser.org/standalone).

Acknowledgementsठ⃚

This article is dedicated to Gaston H. Gonnet on the occasion of his retirement. We thank Kevin

Gori, Henning Redestig, Nives akunca, and Bartlomiej Tomiczek for useful feedback on the

manuscript.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 14

Supplementaryठ⃚Materialsठ⃚

ï PDF containing supplementary figures 1-4 (appended to this preprint for convenience)

ï Supplementary File 1: list of species and version included in the analyses

ï Supplementary File 2: detailed comparisons with kClust and UCLUST

Bibliographyठ⃚

Altenhoff,A.M. et al. (2013) Inferring hierarchical orthologous groups from orthologous gene pairs. PLoS

One, 8, e53786.

Altenhoff,A.M. et al. (2011) OMA 2011: orthology inference among 1000 complete genomes. Nucleic Acids

Res., 39, D289–94.

Altenhoff,A.M. et al. (2012) Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly,

more similar in function than paralogs. PLoS Comput. Biol., 8, e1002514.

Altenhoff,A.M. and Dessimoz,C. (2012) Inferring Orthology and Paralogy. In, Anisimova,M. (ed). Humana

Press, pp. 259–279.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res., 25, 3389–3402.

DeLuca,T.F. et al. (2012) Roundup 2.0: enabling comparative genomics for over 1800 genomes.

Bioinformatics, 28, 715–716.

Dessimoz,C. et al. (2012) Toward community standards in the quest for orthologs. Bioinformatics, 28, 900–

904.

Edgar,R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–

2461.

Eugster,P.T. et al. (2003) The Many Faces of Publish/Subscribe. ACM Comput. Surv., 35, 114–131.

Fitch,W.M. (1970) Distinguishing homologous from analogous proteins. Syst. Zool., 19, 99–113.

Gabaldón,T. and Koonin,E.V. (2013) Functional and evolutionary implications of gene orthology. Nat. Rev.

Genet., 14, 360–366.

Gaudet,P. et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology

consortium. Access, 12.

Gonnet,G.H. et al. (1992) Exhaustive matching of the entire protein sequence database. Science, 256,

1443–1445.

Hauser,M. et al. (2013) kClust: fast and sensitive clustering of large protein sequence databases. BMC

Bioinformatics, 14, 248.

Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or

nucleotide sequences. Bioinformatics, 22, 1658–1659.

Lynch,M. (2000) The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290, 1151–1155.

Metzker,M.L. (2009) Sequencing technologies — the next generation. Nat. Rev. Genet., 11, 31–46.

Mi,H. et al. (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in

the context of phylogenetic trees. Nucleic Acids Res., 41, D377–86.

Pagani,I. et al. (2012) The Genomes OnLine Database (GOLD) v. 4: status of genomic and metagenomic

projects and their associated metadata. Nucleic acids.

Patterson,C. (1988) Homology in classical and molecular biology. Mol. Biol. Evol., 5, 603–625.

Powell,S. et al. (2013) eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids

Res., 42, D231–9.

Rentzsch,R. and Orengo,C. a (2009) Protein function prediction--the power of multiplicity. Trends

Biotechnol., 27, 210–219.

Roth,A.C.J. et al. (2008) Algorithm of OMA for large-scale orthology inference. BMC Bioinformatics, 9, 518.

Schreiber,F. and Sonnhammer,E.L.L. (2013) Hieranoid: hierarchical orthology inference. J. Mol. Biol., 425,

2072–2081.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular subsequences. J. Mol. Biol., 147,

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 15

195–197.

Szalkowski,A. et al. (2008) SWPS3 - fast multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and

x86/SSE2. BMC Res. Notes, 1, 107.

Tatusov,R.L. (1997) A Genomic Perspective on Protein Families. Science, 278, 631–637.

Vilella,A.J. et al. (2009) EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in

vertebrates. Genome Res., 19, 327–335.

Waterhouse,R.M. et al. (2013) OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs.

Nucleic Acids Res., 41, D358–65.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 1

Supplementaryठ⃚materialsठ⃚

Speedingठ⃚upठ⃚allૐ퀐againstૐ퀐allठ⃚proteinठ⃚comparisonsठ⃚whileठ⃚maintainingठ⃚sensitivityठ⃚byठ⃚

consideringठ⃚subsequenceૐ퀐levelठ⃚homologyठ⃚

Lucas D. Wittwer et al.

Supplementary figure 1: Distribution of sequence length in bacteria and fungi datasets

(in number of amino acids)

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 2

Supplementary figure 2: Distribution of evolutionary distances among inferred homologous pairs (based on

full all-against-all in bacteria and fungi datasets.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 3

Supplementary figure 3: Growth of number of clusters on bacteria dataset. No tapering is observed in the

growth in the number of clusters generated by the new method

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

 4

Supplementary figure 4: Growth of number of clusters on fungi dataset. No tapering is observed in the

growth in the number of clusters generated by the new method.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.421v1 | CC-BY 4.0 Open Access | received: 25 Jun 2014, published: 25 Jun 2014

P
re
P
ri
n
ts

