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Speeding up all-against-all protein comparisons while 
maintaining sensitivity by considering subsequence-level 
homology

Orthology inference and other sequence analyses across multiple genomes typically start by 

performing exhaustive pairwise sequence comparisons, a process referred to as “all-against-

all”. As this process scales quadratically in terms of the number of sequences analysed, this 

step can become a bottleneck, thus limiting the number of genomes that can be 

simultaneously analysed. Here, we explored ways of speeding-up the all-against-all step 

while maintaining its sensitivity. By exploiting the transitivity of homology and, crucially, 

ensuring that homology is defined in terms of consistent protein subsequences, our proof-of-

concept decreased the time complexity by ~75% while recovering >99.6% of all homologs 

identified by the full all-against-all procedure on empirical sequences from bacteria and fungi. 

In comparison, state-of-the-art k-mer approaches are orders of magnitude faster but only 

recover 3-14% of all homologous pairs. We also outline ideas to further improve the speed 

and recall of the new approach. An open source implementation is provided as part of the 

OMA standalone software at http://omabrowser.org/standalone .
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Abstract 

 

Orthology inference and other sequence analyses across multiple genomes typically 

start by performing exhaustive pairwise sequence comparisons, a process referred to 

as “all-against-all”. As this process scales quadratically in terms of the number of 

sequences analysed, this step can become a bottleneck, thus limiting the number of 

genomes that can be simultaneously analysed. Here, we explored ways of speeding-

up the all-against-all step while maintaining its sensitivity. By exploiting the transitivity 

of homology and, crucially, ensuring that homology is defined in terms of consistent 

protein subsequences, our proof-of-concept decreased the time complexity by ~75% 

while recovering >99.6% of all homologs identified by the full all-against-all procedure 

on empirical sequences from bacteria and fungi. In comparison, state-of-the-art k-mer 

approaches are orders of magnitude faster but only recover 3-14% of all homologous 

pairs. We also outline ideas to further improve the speed and recall of the new 

approach. An open source implementation is provided as part of the OMA standalone 

software at http://omabrowser.org/standalone. 

1 Introductionठ⃚
 

Advances in genome sequencing have led to an immense increase in the number of available 

genomes (Metzker, 2009; Pagani et al., 2012). As the experimental annotation of these sequences 

would be prohibitively slow and expensive, there is a strong interest in computational methods 

(reviewed in Rentzsch and Orengo, 2009). Most approaches start by identifying genes of common 

ancestry within and across species—sets of “homologous” genes (Patterson, 1988). As further 

refinement, homologous proteins, which can be split up into paralogs and orthologs, diverged 

from a common ancestral protein (Fitch, 1970). Paralogous sequences, which start diverging 

through gene duplication, are believed to drive function innovation and specialisation, whereas 
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orthologous sequences, which diverged through speciation, tend to have more similar biological 

function (Tatusov, 1997; Lynch, 2000; Altenhoff et al., 2012; Gabaldón and Koonin, 2013). 

Therefore, protein function can be assigned by identifying regions of orthology between a newly 

sequenced and an already annotated genome (e.g., Gaudet et al., 2011). Orthology inference is 

also of high interest to infer phylogenetic species trees and to study the evolution of gene families 

(Altenhoff and Dessimoz, 2012). 

 

Due to the high biological interest for orthology detection, many orthology inference algorithms 

and associated databases have been developed (reviewed in Dessimoz et al., 2012). Some of 

these can be large, with databases comparing thousands of genomes of different species: 

eggNOG with currently 3686 genomes (Powell et al., 2013), Roundup with 2044 (DeLuca et al., 

2012), OMA with 1613 genomes (Altenhoff et al., 2011) and OrthoDB with 1425 genomes 

(Waterhouse et al., 2013). 

 

To detect homology, these resources rely on all-against-all protein comparison. All pairs of 

sequences are aligned using BLAST (Altschul et al., 1997) or dynamic programming (Smith and 

Waterman, 1981). They are then inferred as homologous if their alignment score is above a certain 

threshold and alignment length constraints are satisfied (Roth et al., 2008). Even orthology 

databases based on reconciled gene/species trees (Vilella et al., 2009) or hidden Markov model 

profiles (Mi et al., 2013) typically start their procedure with an all-against-all step, before 

proceeding to clustering. 

 

However, the all-against-all procedure scales quadratically in the number of sequences compared 

and hence rapidly becomes very costly. For instance, the all-against-all phase in OMA, the 

resource developed in our lab, has already consumed over 6.1 million CPU hours to date, despite 

the use of a highly optimised implementation (Szalkowski et al., 2008) of the Smith-Waterman 

(1981) pairwise alignment algorithm. Furthermore, in the all-against-all phase of OMA, about half 

of the time is spent on unrelated gene pairs, which are not used for further orthology inference.  

 

Previous methods have been proposed to speed-up the all-against-all phase, but they tend to 

come at a cost of lower sensitivity. CD-HIT (Li and Godzik, 2006), UCLUST (Edgar, 2010), and 

kClust (Hauser et al., 2013) are methods to reduce the complexity by clustering the dataset based 

on the number of common or high-scoring words (k-mers) in each sequence. This works well to 

identify closely related sequences—e.g., close paralogs or “redundant” sequences—but such 

approaches are less sensitive than full dynamic programming alignment and thus tend to miss 
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distant homologs. Another approach was proposed in the Hieranoid method (Schreiber and 

Sonnhammer, 2013): by using the species tree as guide and iteratively merging terminal sister 

taxa into ancestral genomes, the computational cost only grows linearly with the number of 

genomes. However, reconstructing ancestral sequences or profiles can prove challenging among 

distantly related species. Moreover, the guide tree must be clearly defined and known, which is a 

problem for many prokaryotes and eukaryotes.  

 

Here, we present a new strategy for speeding up the all-against-all step, by first clustering 

sequences and then performing an all-against-all within each cluster. Crucially, in the clustering 

phase, the new approach accounts for residue-level homology and not merely whole protein-level 

homology. As a result, sequences can belong to multiple clusters. On sets of empirical bacterial 

and fungal protein sequences, our new approach achieves a reduction in computational time of 

~75% while maintaining the sensitivity of all-against-all procedure (>99.6% of all pairs identified 

by all-against-all). 

2 Materialsठ⃚andठ⃚Methodsठ⃚
 

We start by motivating our method under the assumption of perfect input data, then present the 

modifications required to perform well on real, imperfect data.  We then describe the k-mer 

methods we used as points of comparison. Finally, we present the empirical datasets used to 

evaluate the new method. 

2.1 Buildingठ⃚homologousठ⃚clustersठ⃚fromठ⃚perfectठ⃚dataठ⃚

 

Typical downstream analysis of the all-against-all step requires an alignment score for every 

significant pair of proteins (putative homologs). Therefore, aligning these significant pairs seems 

difficult to avoid. In contrast, avoiding the alignment of unrelated pairs can potentially reduce the 

overall runtime of the all-against-all. One way to avoid some pairs is by using the transitive 

property of homology: typically—we discuss pathological cases in the next section—if sequence 

A is homologous to sequence B, and sequence B is homologous to sequence C, then sequences 

A and C are homologous. A corollary of this is that if sequence A is homologous to sequence B, 

and sequence A is not homologous to sequence C, then sequences B and C are not homologous. 

 

Proof of corollary: Let S1 denote “A is homologous to B”, S2 “B is homologous to C” 

and S3 “A is homologous to C”. The transitivity of homology states that S1 â S2 ó S3. 
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By material implication, that it is equivalent to c (S1 â S2) * S3. De Morgan’s law 

yields the equivalent expression (c S1 * c S2) * S3 which is, due to the associativity 

and commutativity of disjunction, equivalent to (c S1 * S3) * c S2. Using the De 

Morgan’s law again, the expression transforms to the equivalent c (S1 â c S3) * c S2. 

Finally, by material implication it is equivalent to the expression S1 â c S3 ó cS2.  . 

 

Therefore, in this particular scenario, if we infer that A and B are homologous and A and C are 

non-homologous, there is no need to align sequences B and C. Another way to consider this 

situation is that A acts as a representative for its homologous sequence B. We can generalise this 

idea to more than three sequences by building clusters of homologs for which a single sequence 

acts as a representative for all members (trivial proof by induction). 

 

Accordingly, we can split the all-against-all into two steps: (i) building homologous clusters, and 

(ii) performing the all-against-all within each cluster. In the clustering step, we initialise the 

procedure with a single cluster containing the first sequence as its representative and sequentially 

consider all the other sequences: each sequence is aligned to the representative sequence of 

each homologous cluster. If an alignment score is significant, implying that the sequence is 

homologous to members of that particular cluster, the sequence is added to the cluster. Else, a 

new cluster is formed with that sequence as representative.  

 

Under the assumptions that homology is transitive and that homology can be perfectly 

ascertained through sequence alignment, this procedure guarantees that all homologous 

sequences end up in a common cluster in O(nk), where n is the number of proteins and k is the 

number of clusters. Since kfn (and possibly k<<n), this is more efficient than the O(n2) runtime of 

the standard all-against-all procedure. 

 

In practice, however, homology at the level of proteins is not always transitive and homology 

cannot be perfectly ascertained. Therefore, refinements to the basic idea are required. 

2.2 Buildingठ⃚ homologousठ⃚ clustersठ⃚ fromठ⃚ realठ⃚ data:ठ⃚ multipleठ⃚ representatives,ठ⃚

multipleठ⃚clusters,ठ⃚andठ⃚subsequenceૐ퀐levelठ⃚homologyठ⃚

 

The two assumptions underlying the algorithm for ideal data are not tenable on real data. First, 

highly distant (and thus dissimilar) homologous sequences can be very difficult or impossible to 

reliably identify. Thus, if the representative is very distant to a particular homologous sequence, 
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homology can nevertheless be missed. Second, homology does not necessarily apply uniformly 

across all residues of a protein. For transitivity to hold, it is essential that homology applies to a 

common set of residues. However, insertions and gene fusion can lead to situations where this is 

not the case (see Fig. 1A for an illustrative example). 

 

Thus, to deal more effectively with real sequences, we modify the basic algorithm in three ways. 

First, instead of a single representative sequence, we also consider a variation of the algorithm 

that uses several representative sequences for each cluster. This can be advantageous for 

homologous clusters containing very dissimilar sequences, which are thus poorly represented by 

any single sequence. Second, we allow for the possibility that some sequences might be 

homologous to more than one cluster. This could be the case if homologous clusters are 

fragmented due to high divergence among some of their members (and among their 

representatives in particular). This also enables multi-domain proteins to be included in clusters 

corresponding to different domains. Third, we take into account subsequence-level homology: we 

ensure that the entire length of a particular protein (minus a tolerance parameter, set to 20 amino-

acid residues in this study) is covered by the cluster(s) to which the sequence belongs. If this is 

not the case, a new cluster is created with the sequence as representative. Note that this is in 

addition to inclusion into any cluster with significant alignment (Fig. 1B)). 

 

 

 

 
 

Figure 1. (A) The transitivity of homology does not hold if the residues involved are inconsistent. (B) 

Homologous relationships can be missed if significant sequence parts are not covered by the 

representative sequence. To address this problem, our approach would create a new cluster, with the 

sequence that is not fully covered as its representative. 
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2.3ठ⃚ Computingठ⃚allૐ퀐againstૐ퀐allठ⃚withinठ⃚eachठ⃚clusterठ⃚

 

Once we have identified all homologous clusters, we compute an all-against-all within each 

cluster using the same criteria as the global all-against-all (Figure 2). This ensures that all retained 

pairs agree with the score and length requirements of the full all-against-all, and provides scores 

for all homologous pairs, which are often required for downstream analyses. 

 

 

 

Figure 2. Diagram of the current OMA all-against-all step (left) and the new approach with homologous 

clustering and sequence coverage (right). In the proposed approach, the sequences are first clustered and 

then the all-against-all is run only within clusters. The overall number of computations is considerably 

reduced, but some homologous relationships can be missed. 

 

2.4ठ⃚ Comparisonठ⃚withठ⃚fullठ⃚allૐ퀐againstૐ퀐allठ⃚andठ⃚otherठ⃚methodsठ⃚

 

The baseline of this study is given by the current all-against-all procedure in the OMA database 

(Roth et al., 2008; Altenhoff et al., 2011). It runs a highly optimised Smith-Waterman (1981) local 

alignment implementation (Szalkowski et al., 2008) using the 224 GCB scoring matrix (Gonnet et 

al., 1992). To be inferred as homologs, sequence pairs need to reach an alignment score of at 

least 181, with the additional requirement that the length of the shorter sequence aligned be at 

least 61% of the longer sequence. These parameters were previously established to yield good 

results on empirical data (Roth et al., 2008). 

 

To compare the performance of the new approach to k-mer clustering, we also ran kClust (Hauser 

et al., 2013) and UCLUST (Edgar, 2010). We ran kClust with default set of parameters, where the 
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required minimum sequence identity was 30% (-s 1.12) and the minimum alignment coverage 

of the longer sequence was 80% (-c 0.8). To increase sensitivity, we also ran kClust with 30% 

as minimum for sequence identity (-s 1.12) and 50% as minimum alignment coverage (-c 

0.5). The jobs were run on a single core of a Dell R910 (Intel Xeon E7-8837, 2.66 GHz) with 32 

cores and 1TB of memory. For UCLUST, we used the recommended option -cluster_fast. 

We first ran UCLUST with default parameters, specifying 30% as sequence identity (-id 0.3). 

We also ran it with the additional requirements on coverage of the target sequence being 50% (-

target_cov 0.5) and allowing sequences to be assigned to multiple clusters (-maxaccepts 

0), without limiting the number of sequences rejected before quitting search (-maxrejects 0). In 

both cases, only sequences longer than 50 amino acid residues were taken into account—the 

same length requirement as in the all-against-all procedure. UCLUST was run on a MacBook Air 

(Intel Core i7, 1.7 GHz) dual-core with 8GB of memory. 

2.5ठ⃚ Datasetsठ⃚

 

We analysed the performance of the new approach on two distinct datasets: bacteria and fungi. 

Bacteria dataset contained 14 proteomes, fungi contained 12, all sampled from the OMA 

database (Altenhoff et al., 2011) (March 2014 release; see Supplementary File 1 for complete list). 

The distribution of sequence lengths and evolutionary distances among significant pairs is 

provided in Supplementary Figures 1-2. To assess the scaling behaviour of each variant, we ran 

them on subsets which were formed as follows: all genomes in the dataset were sorted by their 

size and the ones in the middle of the list were chosen to form a subset. By choosing the central 

2, 4, 6, 8, 12 and finally all 14 proteomes, subsets of bacteria were constructed. We repeated the 

procedure for fungi and obtained subsets of size 2, 4, 6, 8, 10 and 12 proteomes. 

3 Resultsठ⃚
 

To assess the time and accuracy of our new approach, we compared the four clustering 

variants—one or three cluster representatives, each combined with either taking into account 

residue-level homology or not (see Methods)—on empirical bacterial genomes. We also repeated 

the three fastest variants on empirical fungal datasets. 
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Figure 3: The new approach is between 40% and 90% faster, depending on datasets and variants. On the 

fungi dataset, only the three fastest variants were computed. 

 

 

All four clustering variants decreased runtime compared to the full all-against-all algorithm, by 40-

90% depending on the variant and dataset (Fig 3). Unsurprisingly, the reduction was strongest in 

variants considering a single representative sequence per cluster. Likewise, ignoring residue-level 

homology lead to faster runtime, though the difference was more modest.  

 

In terms of performance—which we measured in terms of the proportion of significant pairs from 

the full all-against-all that were recovered by the new variants (referred to as “recall”) or its 

complement (referred to as “missing pairs”)—we observed a clear benefit in taking into account 

residue-level homology, with recall values consistently >99.6% (Fig. 4). The use of three 

representative sequences per cluster also led to increase in recall, but not nearly to the same 

extent. The recall values obtained for all variants were consistent across the bacteria and fungi 

datasets and for different sizes, which suggests that they might hold across other datasets as 

well. 
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Figure 4: The new approach misses 0.4-6% of the pairs from the full all-against-all in its simple variant 

(1 and 3 representatives), and 0.01-0.3% taking into account sub-sequence homology.  

 

 

Putting runtime and accuracy together, the best results were obtained by taking into account 

subsequence-level homology using a single representative sequence, which achieved ~75% 

decrease in time while maintaining >99.6% recall in both datasets. 

 

To gain insight into the nature of missing pairs, we analysed the distribution of alignment scores 

of missing pairs compared to that of all significant matches (Fig. 5). For all method variants, but 

especially those taking into account subsequence-level homology, the distribution is heavily 

skewed toward low-scoring matches. This is favourable, because low-scoring matches are less 

reliable in the first place and therefore downstream analyses are already designed to cope with 

missing homologous relationships among distant pairs (e.g. Altenhoff et al., 2013). We also note 

that the higher recall observed with three representatives instead of one is mainly concentrated on 

low scoring matches. 
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Figure 5: Distribution of alignments scores of missing pairs compared with all pairs (“background”) 

 

 

For any given taxonomic range, adding new genomes and the corresponding new sequences can 

only increase the number of clusters. However, as the number of genomes grows, we can expect 

that an increasing proportion of the sequences will fall into one of the already formed clusters. 

Thus, we should see a tapering in the number of clusters as a function of the number of 

sequences, which is favourable in terms of runtime of the algorithm. In our datasets, we could not 

observe such tapering, and instead the growth in cluster numbers was broadly linear 

(Supplementary materials Fig. 3-4), which suggests that 12-14 genomes are too few to discern 

the additional asymptotic benefits of our new approach.  

 

Finally, we sought to compare our new approach to the state-of-the-art k-mer clustering 

approaches UClust (Edgar, 2010) and kClust (Hauser et al., 2013). As elaborated in the 

introduction, these methods have been developed to cluster closely related sequences, but given 

their similar conceptual ideas (clustering, use of representative sequences), they provide an 

interesting point of comparison. As expected, these approaches were orders of magnitude faster 

(speed-up 99.81-99.95% for kClust, over 99.98% for UCLUST; Fig. 6), but their recall was 

typically in the single percentage points (6.62-13.52% for kClust, 3.16-10.37% for UCLUST), even 

with inclusive parameters (Fig. 7; Supplementary File 2). 
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Figure 6: K-mer approaches such as kClust and UCLUST are several orders of magnitude faster than full 

all-against-all. 

 

 
Fig. 7. kClust and UCLUST only recover 3-14% of the homologous pairs identified by the full all-against-all 

procedure, even when they are run with sensitive parameter settings (see Materials and Methods for 

details).  
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4 Discussionठ⃚andठ⃚outlookठ⃚
 

The all-against-all phase is at the basis of many orthology inference algorithms but due to its 

quadratic time complexity in terms of number of sequences, the all-against-all phase can be a 

bottleneck. This work suggests that the transitivity of homology can be exploited to substantially 

speed-up homology inference while maintaining sensitivity—provided homology is defined in 

terms of consistent subsequence stretches. 

 

The datasets used in this study are challenging, with median distance of 146 PAM (1.46 

substitution per site on average) in the bacteria dataset and 149 PAM in the fungi dataset 

(Supplementary Fig. 4). This implies that half of homologous pairs have less than 30% sequence 

identity. At such high levels of divergence, k-mer based methods perform poorly compared to all-

against-all dynamic programming alignment. In contrast, our transitivity clustering approach 

performed well. It is likely to perform even better on evolutionarily closer sets of taxa, such as 

vertebrate species or flowering plant species. 

 

Apart from the full dynamic programming alignment comparison with cluster representatives and 

the subsequence-level homology consideration, our approach distinguishes itself from most 

clustering methods in that it allows sequences to matches to several clusters. If homology was 

always uniform across the whole sequence length and could be perfectly inferred from present-

day sequences, each sequence would belong to one and only one homologous cluster. In 

practice however, these assumptions do not hold: gene fusion can result in sequences that have 

homologous relationships across multiple clusters; some homologs have diverged too far to be 

inferred as such, thus resulting in cluster fragmentation. By allowing for sequences to belong to 

multiple clusters, our method is robust to these complications. 

 

These promising results notwithstanding, the new approach still has much potential for 

improvement. To further improve the recall, several ideas could be explored. First, the procedure 

could merge clusters that have a high proportion of members in common. This could recover 

some of the missed homologous pairs. Second, the choice of cluster representatives could be 

improved. Indeed, the current strategy of selecting the first sequence (or the first three 

sequences) added to the cluster is likely to be suboptimal in most instances. Instead, a better 

choice of representative would be to try to select a sequence with minimal average distance to all 

cluster members (a “centroid” sequence). Third, as alternative to representative sequences, 

clusters could be represented by Hidden Markov model profiles. Such approach, at the basis of 
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well-established methods such as PSI-Blast (Altschul et al., 1997), HMMER (Eddy, 2011), or 

HHBlitz (Remmert et al., 2011), is likely be more sensitive than pairwise alignment with a single 

representative sequence. The profiles could be periodically updated as new sequences are 

assigned to the cluster.  

 

We also see potential to further improve the speed of the new approach. First, merging 

homologous clusters can lead to a speed improvement because the cost of assigning sequences 

to clusters grows linearly in the number of clusters. This needs to be done carefully, because 

excessive merging—the merging of clusters containing a substantial number of non-homologous 

pairs—can reduce the efficiency of the within-cluster all-against-all, whose time complexity grows 

quadratically in the number of sequences. Second, it may be possible to optimise the assignment 

of sequences to clusters by identifying clusters that are so different to one another that they are 

practically mutually exclusive and thus inclusion into one implies exclusion from the other. An 

empirical way of establishing such mutual exclusivity would be to keep track of the number or 

proportion of sequences belonging to both clusters. Finally, the new approach could be 

parallelised. One way of parallelising the assignment of sequences to clusters would be to use a 

Publisher-Subscriber model (Eugster et al., 2003): a “master” process would start the analysis of a 

new sequence by distributing it to a set of “workers”, each responsible to compare the sequence 

to a subset of all existing clusters. Each worker would thus align the new sequence to its 

designated subset of clusters and reports back significant matches and their associate sequence 

ranges (subsequence-level coverage). Once the master process has received this information 

from all workers, it would ensure that the new sequence is fully covered by matches to existing 

clusters, and else it would generate a new cluster with that sequence as representative. As for the 

within-cluster all-against-all comparisons, they could be straightforwardly parallelised thanks to 

the lack of dependency among all pairs. 

 

Meanwhile, a serial implementation of our best variant (accounting for subsequence-level 

homology using a single representative sequence) is available as part of the open source OMA 

standalone package (http://omabrowser.org/standalone). 
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Supplementaryठ⃚Materialsठ⃚
 

ï PDF containing supplementary figures 1-4 (appended to this preprint for convenience) 
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ï Supplementary File 2: detailed comparisons with kClust and UCLUST 
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Supplementary figure 1: Distribution of sequence length in bacteria and fungi datasets 

(in number of amino acids) 
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Supplementary figure 2: Distribution of evolutionary distances among inferred homologous pairs (based on 

full all-against-all in bacteria and fungi datasets. 
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Supplementary figure 3: Growth of number of clusters on bacteria dataset. No tapering is observed in the 

growth in the number of clusters generated by the new method 
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Supplementary figure 4: Growth of number of clusters on fungi dataset. No tapering is observed in the 

growth in the number of clusters generated by the new method. 
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