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Network based meta-analysis prediction of 

microenvironmental relays involved in stemness of human 

embryonic stem cells

Background. Human embryonic stem cells (hESCs) are pluripotent cells derived from the 

inner cell mass of in vitro fertilised blastocysts, which can either be maintained in an 

undi�erentiated state or committed into lineages under determined culture conditions. These 

cells o�er great potential for regenerative medicine, but at present, little is known about the 

mechanisms that regulate hESC stemness; in particular, the role of cell-cell and cell-

extracellular matrix interactions remain relatively unexplored. Methods and results. In this 

study we have performed an in silico analysis of cell-microenvironment interactions to identify

novel proteins that may be responsible for the maintenance of hESC stemness. A hESC 

transcriptome of 8,934 mRNAs was assembled using a meta-analysis approach combining 

the analysis of microarrays and the use of databases for annotation. The STRING database 

was utilised to construct a protein-protein interaction network focused on extracellular and 

transcription factor components contained within the assembled transcriptome. This 

interactome was structurally studied and .ltered to identify a short list of 92 candidate 

proteins, which may regulate hESC stemness. Conclusion. We hypothesise that this list of 

proteins, either connecting extracellular components with transcriptional networks, or with hub

or bottleneck properties, may contain proteins likely to be involved in determining stemness.
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Introduction

Human embryonic stem cells (hESCs) are pluripotent cells present in the inner cell mass of the 

blastocyst (Pera et al. 2000). They give rise in vivo to the three germ layers (ectoderm, endoderm 

and mesoderm), and, therefore, have the ability to generate all tissues within the body. These 

cells can also be derived in vitro (Thomson et al. 1998), maintaining an ability to either self-

renew or differentiate (Keller 2005). Human ESCs are a fundamental tool for understanding 

human embryonic development and constituent mechanisms of differentiation (Keller 2005). 

Moreover, they represent a potentially powerful tool in drug screening (Jensen et al. 2009) and 

regenerative medicine (Aznar & Gomez 2012; Keller 2005; Wobus & Boheler 2005). However, 

in order to mobilise the potential of hESCs, it is necessary to understand the molecular 

determinants of self-renewal and differentiation.

The core transcriptional network regulating pluripotency (Babaie et al. 2007; Boyer et al. 2005; 

Chavez et al. 2009; Marson et al. 2008; Rodda et al. 2005), is composed of three transcription 

factors: octamer-binding protein 4 (OCT4) (Hay et al. 2004), sex determining region Y-box 2 

(SOX2) (Fong et al. 2008) and NANOG (Hyslop et al. 2005; Zaehres et al. 2005). Interestingly, 

although these transcription factors clearly drive pluripotency (Li et al. 2009; Takahashi et al. 

2007), their expression is not restricted to hESCs (Atlasi et al. 2008; Leis et al. 2012; Liedtke et 

al. 2007; Pierantozzi et al. 2011; Zangrossi et al. 2007). Thus, stemness must in part depend on 

other hESC specific characteristics, such as the context of expression of these three transcription 

factors. Protein-protein interaction networks may provide a valuable insight into this hESC 

specific context (Boyer et al. 2005; Muller et al. 2008). Proteins of the cell microenvironment 

may also be an important part of this network (Evseenko et al. 2009; Stelling et al. 2013; Sun et 

al. 2012), since this is the niche where cell-cell and cell-extracellular matrix (ECM) interactions 
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occur, allowing selective cell communication. Indeed, it was through the addition of ECM 

proteins and growth factors that xeno-free culture conditions for hESCs were defined 

(Melkoumian et al. 2010; Rodin et al. 2010). These methods have facilitated investigation of the 

roles that extracellular molecules, such as heparan sulfate (HS) (Stelling et al. 2013), fibroblast 

growth factor (FGF)-2 (Eiselleova et al. 2009; Greber et al. 2010) and activin A (Xiao et al. 

2006) play in hESC self-renewal and differentiation. However, such factors have not always been

linked to specific transcriptional networks and many of the defined medium formulations do not 

completely sustain pluripotency (Baxter et al. 2009; Ludwig et al. 2006). Therefore, other factors 

involved in the maintenance of stemness must be missing. One key factor could be a wider link 

between ECM interactions and transcriptional networks, thereby establishing important relay 

mechanisms between endogenous and exogenous stemness regulators.

Data from large-scale transcriptomic and proteomic studies (Koh et al. 2012) facilitate the 

construction of large biological networks in which nodes and edges represent molecules and 

interactions respectively. Studying the topological properties of these networks may enable the 

elaboration of novel hypotheses. For instance, it has been shown that hubs, which are highly 

connected nodes within a network, are more likely to be important proteins in a protein-protein 

interaction network (Jeong et al. 2001), as well as bottlenecks, which are nodes with a high 

betweenness centrality, meaning many shortest paths within the network pass through them (Yu 

et al. 2007).

To gain a more global insight into the potential contribution of the cell-microenvironment to 

stemness, we employed an in silico systems-level approach where a meta-analysis of dozens of 

microarrays was performed to establish a stringent yet more representative hESC transcriptome. 

Transcripts of transcriptional and extracellular proteins were used to build a putative interactome 
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or protein-protein interaction network. The organisation of this network was then analysed to 

identify extracellular proteins with hub or bottleneck properties, which may be involved in 

determining stemness, as well as proteins connecting the extracellular factors to transcription.
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Materials and methods

Establishing hESC and hESC-derived transcriptomes

The microarray datasets used to establish a high coverage hESC transcriptome were raw data 

(.CEL image files) of single channel Human Genome U133 Plus 2.0 Affymetrix microarrays 

downloaded from the ArrayExpress public database (Parkinson et al. 2007). Probe intensity 

extraction and normalisation procedures were performed with BRB-ArrayTools 4.3.0 beta 1 

(Simon et al. 2007) using default median array values (selected by BRB-ArrayTools 4.3.0 beta 1)

as reference. The minimum required fold change was 1.5. If less than 20% of the expression 

values met this value, the gene was excluded. Each individual dataset was first analysed using the

three available algorithms: Robust Multi-array Analysis (RMA) (Irizarry et al. 2003), GC-RMA 

(Wu et al. 2004) and Micro Array Suite 5.0 (MAS5.0) (Hubbell et al. 2002). The three lists of 

expressed genes were either combined to create a total list containing all expressed genes, or 

compared to create an intersection list containing only overlapping genes. For the hESC datasets, 

when the intersection list contained at least 50% of the genes of the total list, the dataset was used

to perform a meta-analysis to establish the hESC transcriptome. Thus, all hESC datasets 

matching this criterion were grouped to be analysed together and generate the final intersection 

list used as the hESC transcriptome for further analysis (Fig. 1). For the hESC-derived cell 

datasets, if the intersection list contained at least 50% of the genes of the total list, the full 

transcriptome (fibroblasts and endothelial cells) was used for transcriptomic comparisons; 

otherwise the datasets were combined to build the final intersection list and form the hESC-

derived cell transcriptome, which was used for transcriptomic comparisons (Fig. 1). The 

identifiers were EntrezGene IDs and Official Gene Symbol identifiers. The identifier conversion 
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was done with the database for annotation, visualization and integrated discovery (DAVID) 6.7 

(Huang da et al. 2009a; Huang da et al. 2009b).

Selection of extracellular and transcription related sub-transcriptomes 

The extracellular (EC) and the transcription factor related (TF) components of the transcriptomes 

were extracted using the Gene Ontology (GO) database (Ashburner et al. 2000). The terms used 

were: GO:0005576 (extracellular region) and GO:0009986 (cell surface) for the EC component; 

GO:0005667 (transcription factor complex), GO:0008134 (transcription factor binding), 

GO:0000988 (protein binding transcription factor activity) and GO:0001071 (nucleic acid 

binding transcription factor activity) for the TF component. Genes involved in biological 

processes (e.g. cell cycle (GO:0007049), cell adhesion (GO:0007155), cell communication 

(GO:0007154), cell junction (GO:0030054) and cytoskeleton organization (GO:0007010)) were 

also highlighted. 

By using a published list of HS binding proteins (Ori et al. 2011), the EC component was divided

into two distinct groups: genes coding for HS binding proteins and those coding for non-HS 

binding proteins.

The hESC transcriptome was compared with the three different hESC-derived cell transcriptomes

to establish which mRNAs were only expressed in hESC (the specific part) and which ones were 

expressed in all analysed transcriptomes (the common part).

Construction and analysis of putative interactomes

Putative interactomes were built with the Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING) 9.0 database (Szklarczyk et al. 2011) using interaction data from 

experimental/biochemical experiments and association in curated databases only, which excludes 
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interaction predictions by neighbourhood in the genome, gene fusions, co-occurrence across 

genomes, co-expression and text-mining (co-mentioned in PubMed abstracts). A stringent 

interaction confidence of 0.7 was imposed, to ensure a higher probability that the predicted links 

exist (Szklarczyk et al. 2011). 

Analysis of network structure

Cytoscape 2.8.0 software (Shannon et al. 2003) and associated plug-ins were used to visualise 

and analyse protein-protein interaction networks. Randomised networks were created by the 

RandomNetworks v1.0 plug-in from the real protein-protein interaction networks. Therefore, 

each random network had the same number of nodes N and edges L as its corresponding real 

network. Network topological parameters, such as connected components, average degree <k>, 

degree distribution P(k), average clustering coefficient <C>, clustering coefficient distribution 

C(k) and characteristic path length <l>, were computed with the NetworkAnalyser plug-in. 

Statistical analysis was performed using IBM SPSS Statistics 21 software. 

Enrichments analysis of interactome components

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto 2000) pathway and GO 

Biological Processes term enrichments were processed using DAVID 6.7 (Huang da et al. 2009a; 

Huang da et al. 2009b) for the analysis of transcriptome subsets. Terms were recorded when the 

EASE score was ≤ 0.1 and considered significantly enriched when the false discovery rate was ≤ 

0.05. Enrichment was calculated through two different ways: the ratio of the ratio of proteins 

belonging to the term in the analysed list and the ratio of proteins belonging to the term in Homo 

sapiens, or hESCs. 
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Selection of candidate proteins

Proteins with a degree k in the top 20% were considered as hubs, while proteins with a 

betweenness in the top 20% were considered as bottlenecks (Yu et al. 2007). The EC/TF and 

specific/common interfaces were established from the hESC sub-interactome, constructed with 

STRING data (edge confidence of 0.7) and containing EC and TF components only. To be part of

the EC/TF interface network, an EC node had to be connected to a least one TF node and vice-

versa. Similarly, to be part of the specific/common interface, a specific node had to be connected 

to a least one common node and vice-versa. In this complete (ALL_EC+TF) list of candidate 

proteins composed of the two interfaces, hubs and bottlenecks, only the EC nodes from the 

specific and common parts were kept to establish the final (C+S_EC) short list of candidate 

proteins (Fig. 2). The KEGG pathway and GO Biological Processes term enrichments were 

processed as previously. Statistical analysis was performed using IBM SPSS Statistics 21 

software and presented as mean ± SEM. 
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Results

The hESC transcriptome 

To discover new regulators of hESC pluripotency, 24 hESC microarrays were analysed from four

different datasets (Table 1). A total of 8,934 genes were found to be expressed, which constitute 

the high coverage hESC transcriptome (Table S1). To establish hESC specific expression 

profiles, three different early hESC-derived cell transcriptomes were extracted from analogous 

fibroblast (5,086 mRNAs), endothelial cells (5,522 mRNAs) or mixed hESC-derived cells 

(10,730 mRNAs, Table 1 and Table S1).

The mRNAs specifically expressed by the hESCs (1,010 mRNAs) and those common to hESCs 

and hESC-derived cells (1,933 mRNAs) were identified by comparing the hESC trancriptome 

with the hESC-derived trancriptomes (Fig. 3A). Gene Ontology (GO) annotation database 

(Ashburner et al. 2000) was then used to identify the hESC transcription factor (TF) related (721 

mRNAs) and extracellular (EC) transcripts. In this last set of mRNAs, a distinction between 

transcripts coding for HS binding proteins (191 mRNAs) and non-binding proteins (576 mRNAs,

Fig. 3B and Table S1) was enabled by a published list of HS binding proteins (Ori et al. 2011).

Transcriptome analysis showed that genes known to be involved in stemness were represented in 

this hESC transcriptome, such as POU class 5 homeobox 1 (POU5F1, which encodes OCT4 

protein) (Nichols et al. 1998) and SOX2 (Avilion et al. 2003). As expected, some of these were in

the hESC specific sub-set, such as the telomerase reverse transcriptase (TERT) (Yang et al. 2008)

and growth differentiation factor 3 (GDF3) (Levine & Brivanlou 2006) (Table 2A). Interestingly, 

NANOG (Chambers et al. 2003) was not present here. Some germ layer markers were also found 
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in the hESC transcriptome, but they were never specific (Table 2B). Lastly, many common 

additions to cell culture medium, which have been observed to facilitate hESC growth in vitro, 

such as FGF2 (Eiselleova et al. 2009; Vallier et al. 2005) and activin A (Xiao et al. 2006) were 

also present (Table 2C).

Putative extracellular/transcriptional interactomes

As the aim of this study was to learn more about the potential importance of functional links 

between cell/cell-matrix interactions and transcription, putative protein-protein interaction 

networks containing only transcriptional and extracellular components (EC+TF) were established

by means of the STRING database (Szklarczyk et al. 2011) using transcriptional expression data 

as a proxy for protein expression profiles. Two interactomes were built: one (called ALL) 

containing all identified EC+TF proteins, composed of 702 nodes and 3,201 edges (Data S1A), 

and one (called C+S) containing only those transcripts/proteins that were either specific to hESCs

or common to hESCs and hESC-derived cells, comprising 209 nodes and 371 edges (Data S1B). 

The average clustering coefficient <C> (indicating the network cohesiveness) was closer to zero 

for all randomised networks compared to both ALL and C+S interactomes, implying a 

significantly higher occurrence of clusters in these selected networks (Fig. 4A).

As observed in previous protein-protein interaction network studies (Albert et al. 2000; Jeong et 

al. 2001), both selected networks (ALL and C+S) and randomised networks exhibit a scale-free 

structure, where the degree distribution P(k) follows a power-law P (k ) k
−γ

, involving the 

presence of hubs (Fig. 4B and Table S2), and the clustering coefficient distribution C(k) is 

independent of k meaning there is no inherent presence of modules unlike hierarchical networks, 
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even if there was a tendency to be hierarchical ( C (k ) k
−β

) compared to the randomised 

versions (Fig. 4C).

These results demonstrate that the EC+TF putative protein-protein interaction networks were 

suitable for further analysis.

Enrichment analysis

GO Biological Processes term and KEGG pathway enrichments were used to determine if the 

EC+TF putative interactomes contained significantly enriched sub-sets of proteins. As expected, 

terms related to EC (extracellular matrix organization), and TF (transcription, DNA templated) 

appeared. More interestingly, terms relating to development (embryonic development) and 

pathways already known to be involved in hESC stemness maintenance (transforming growth 

factor (TGF)-  (βJames et al. 2005) or wingless-type MMTV integration site family (Wnt) (Sato 

et al. 2004)) and differentiation (bone morphogenic protein (BMP) signalling (Xu et al. 2005)) 

were also identified. KEGG Pathways in cancer as well as GO terms of cell differentiation, cell 

adhesion, cell communication and cell proliferation were represented too (Fig. 5 and Table S3A). 

Fewer terms were found to be significantly enriched when only the common and specific parts 

(from ALL to C+S) were analysed. However, when they were found significant, the vast majority

was more enriched, except the terms related to TF (Table S3A). Nuclear-transcribed mRNA 

catabolic process (representing 56% of ALL and 48% of C+S) and multicellular organismal 

development (representing 47% of ALL and 54% of C+S) were the most represented non-related 

terms (Table S3A). 
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Interestingly, regulation of cellular component movement was well enriched with fold changes in 

ALL of 5.8 (Homo sapiens as background)/4.6 (hESC as background) and in C+S of 9.4 (Homo 

sapiens as background)/7.4 (hESC as background). 28%/51% of the proteins belonging to this 

term in Homo sapiens/hESC were represented in ALL and 17%/31% in C+S (Table S3A). 

These data show that the EC+TF putative interactomes, both ALL and C+S, still contained the 

sub-sets of proteins involved in development, cell differentiation, cell adhesion and cell 

communication. 

Novel proteins potentially associated with stemness

The final list of potential stemness proteins was established from ALL, the EC+TF putative 

protein-protein interaction network. This list (called ALL_EC+TF) was composed of nodes with 

hub or bottleneck features, as well as nodes within the specific/common and EC/TF interfaces 

(Fig. 2). Hubs are thought to be functionally important due to their high number of interactions, 

while bottlenecks form links between different processes. 58% of the bottlenecks in the ALL 

network were also hubs. The specific/common interface reflects the links between the more 

general cell functions and those specific to hESCs. The EC/TF interface represents points of 

communication between the genome and the cell's environment, including other cells. The 

ALL_EC+TF contained 387 candidates (49% EC and 55% TF) with 29 specific (8%) and 126 

common (33%) nodes. The key transcription factors OCT4 and SOX2 were present as hubs and 

part of the EC/TF interface (Table S4A). 

Considering GO set (TF, EC) enrichment with regards to proteins belonging to common or 

specific parts of the transcriptome, the specific sub-set was enriched in non-HS binding EC 

proteins (1.7-fold change), whereas the common sub-set was enriched in HS binding proteins 
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(1.6-fold change) (Fig. 6A). In addition the common sub-set was found to be enriched in both 

hubs (1.3-fold change) and bottlenecks (1.6-fold change) (Fig. 6B). Finally, hubs were enriched 

in TF (1.4-fold change) and bottlenecks in HS binding proteins (1.3-fold change, Fig. 6B).

To assess the validity of the candidate prediction, a random ALL_EC+TF list was established the 

same way using a randomised version of the EC+TF putative interactome (Table S4B). The hub 

sub-set was identical in both real and random versions of the candidate list due to the way the 

randomised network was generated. However, the bottleneck sub-set in the real list had proteins 

with significantly higher betweenness centrality (7,456 ± 835, paired sample test, n=134, p-

value<0.001) than the one in the random list (0.0108 ± 0.0005). Moreover, the random list with 

581 proteins retained 83% of the original EC+TF putative interactome against 55% for the real 

list. The comparison between the real list of candidates and its random version showed that the 

filtering process was meaningful.

Three shortened lists were generated from ALL_EC+TF list to decrease the number of candidates

by either keeping only EC proteins (ALL_EC, 188 proteins, Table S4C) or/and C+S proteins 

(C+S_EC+TF, 155 proteins, Table S4D and C+S_EC, 92 proteins, Table S4E) as described in 

Fig. 2. 59% of the common proteins in the longest ALL_EC+TF list and 62% of the specific ones

were conserved in the shortest C+S_EC list. Similarly, 9% of the hubs and 20% of the 

bottlenecks were kept.

To determine if each list and each sub-set (hubs, bottlenecks and interfaces, as well as specific, 

common and other proteins from the complete (ALL_EC+TF) to the shortest (C+S_EC) list) still 

contained proteins potentially involved in stemness maintenance, we undertook further GO 

Biological Processes term and KEGG pathway enrichments (Table S3B-I). Only the sub-set 
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containing the hESC-specific proteins was found without any significant enrichment regarding 

the analysed terms and pathways (Table S3C). However, the most represented term in both 

specific sub-sets from the ALL_EC+TF and ALL_EC, as well as in the four full lists and in all 

other sub-sets, was multicellular organismal development (Table S3B-I).

Again, terms and pathways related to TF appeared in ALL_EC+TF and C+S_EC+TF lists, as 

well as in all the other sub-sets of these two lists (Table S3B,D-I). These TF terms and pathways 

were logically lost in the ALL_EC and C+S_EC lists and sub-sets. 

GO terms related to cell differentiation, cell adhesion, cell communication, cell movement or cell 

proliferation, and KEGG pathways of cancer were still significantly enriched in the four lists and 

in the vast majority of the analysed sub-sets (Table S3B,D-I).

These data demonstrate that the four lists of candidates, as well as each sub-set of proteins (hubs, 

bottlenecks, specific/common and EC/TF interfaces) incorporated proteins involved in 

development and cell communication. Focusing on the EC proteins that were either specific to 

hESCs or common to hESCs and hESC-derived cells allowed us to reduce the number of 

candidates to 92 proteins (Table 3 and Table S4E), while insuring that proteins potentially 

involved in stemness maintenance were retained. Among these proteins, some are already known 

to be required for maintenance of hESC stemness, either directly, such as NODAL (James et al. 

2005; Vallier et al. 2005), FGF2 (Eiselleova et al. 2009; Vallier et al. 2005) and activin A (Xiao 

et al. 2006), or indirectly through signalling pathways such as TGF-  (βJames et al. 2005) or Wnt 

(Sato et al. 2004). Other proteins are also known to play a role in mouse ESC pluripotency, but 

not yet in hESC, such as the transcription factor 3 (TCF3) (Cole et al. 2008). However, for the 
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majority of candidates, including titin, nothing is known yet about their functions in the context 

of hESCs.
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Discussion

We provide a novel picture of the hESC transcriptome built from a meta-analysis and allowing 

the in silico analysis of a putative hESC protein-protein interaction network. This systems-level 

approach has been used to identify proteins potentially involved in the maintenance of stemness.

Transcriptomic data provide the most comprehensive insight into variations in cell type or 

condition specific gene expression profiles. Therefore, data from multiple microarray studies 

were chosen to generate putative interactomes due to the lack of corresponding comprehensive 

proteomic profiles. Even if  mRNA and protein levels have been suggested to correlate weakly, 

this correlation may be stronger than anticipated, though this depends on the techniques used to 

measure mRNA (Jingyi et al. 2014; Pascal et al. 2008; Schwanhausser et al. 2011; 

Schwanhäusser et al. 2013). Thus, the present study provides a predictive qualitative insight into 

sub-networks of proteins, which may mediate or maintain human stem cell pluripotency.

The decision to selectively include genes only found by three different algorithms allowed a 

reduction in the number of false positives in the whole transcriptome, but probably amplified the 

number of false negatives, which may explain the absence of NANOG. Regarding the 

specific/common distinction, this pipeline permitted confidence about the common mRNA sub-

set, whereas it likely increased the false positive rate in the specific mRNA sub-set, which is still 

half the common one. However, the use of transcriptomic data from different hESC lines cultured

under different conditions highlighted the core transcriptome of these cells. 

Not all mRNAs were represented in the putative protein-protein interaction network, probably 

because coverage of human protein-protein interactions in all databases, including STRING, 

remains incomplete (De Las Rivas & Fontanillo 2010). High edge stringency limits imposed in 
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this study should minimise inclusion of false positive interactions (De Las Rivas & Fontanillo 

2010), thereby increasing confidence in the relevance and utility of predicted networks.

The scale free nature of the EC+TF putative interactomes, mean that they should exhibit a high 

error tolerance thanks to redundancy and a high attack vulnerability, due to the presence of hubs 

(Albert et al. 2000). 

Even incomplete interactomes are very complex structures. In order to focus on the likely most 

important proteins within this interactome, four selection criteria were applied, the first being the 

selection of hESC hubs. These proteins constitute a small, but often essential part of the 

interactome (Awan et al. 2007). For example, deletion of just one hub in yeast is often lethal 

(Jeong et al. 2001). The second was the selection of bottlenecks, which link processes and so 

permit cross-talk. The third and the fourth criteria involved were that proteins had to be in the 

specific/common or EC/TF interfaces. These interfaces are posited to be important, as they reflect

communication links between the nucleus and the extracellular matrix, and between the specific 

and common proteins, which ultimately make hESCs different from other cell types. 

Interestingly, the GO term related to cell motility regulation was strongly represented in the 

candidate lists. Cell movement is a key component of morphogenesis. It is usually accomplished 

by three steps (protrusion, adhesion and de-adhesion) where cytoskeleton and ECM are involved 

(Ananthakrishnan & Ehrlicher 2007). This may be significant as recent data indicates that cell 

motion may be an intrinsic feature of hESCs (Li et al. 2010).

Regulation of cell proliferation also appeared in our analysis of candidate lists. This may be 

significant, as cell proliferation is a key property of hESCs, since these cells are able to 

proliferate almost indefinitely in vitro (Miura et al. 2004). This capability is sustained by the EC 

part with growth factors (Activin A (Baxter et al. 2009) and FGF2 (Xu et al. 2005)) and ECM 
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molecules (fibronectin (Baxter et al. 2009) or laminin (Rodin et al. 2010)), as well as by the TF 

part through the Smad signalling pathway (James et al. 2005; Vallier et al. 2005). Cell 

proliferation can also be linked to the significant enrichment of cancer pathways in hESCs. 

Several links arise between cancer and hESCs, for example, the formation of teratomas as a test 

to assess pluripotency. 

Conclusion

Mechanisms involved in stemness are complex, multi-level and determined by the intrinsic cell 

potential, cell/cell and cell/matrix interactions. The meta-analysis of transcriptomic data in this 

study has allowed the construction of a hESC putative protein-protein interaction network from 

which novel ECM proteins have been identified as potential stemness regulators.

Networks are a snapshot of a dynamic model (Assmus et al. 2006; Peltier & Schaffer 2010). 

Notions of attractors (or cell stable stationary states), landscapes formed with valleys (attractors) 

and hills (barriers between attractors), and cell state transitions described by dynamic systems 

theory will complete this systems biology approach and bring new hypotheses on hESC 

behaviour (MacArthur et al. 2008; Macarthur et al. 2009; Peltier & Schaffer 2010; Roeder & 

Radtke 2009).
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Figure 1

Flow chart of the microarray dataset analysis

This �ow chat describes the microarray meta-analysis process ending by the transcriptomes 

establishment of hESC, endothelial cells, �broblasts and mixed hESC-derived cells.
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Figure 2

Establishment of the list of candidates, a �ow chart

This �ow chart describes the candidate choice process, from the hESC transcriptome to the 

�nal list of 92 proteins.
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Figure 3

Overlaps of transcriptomes and sub-transcriptomes

A) Main overlaps of hESC and hESC-derived cell transcriptomes. Grey: hESC transcriptome; 

Blue: endothelial cell transcriptome; Red: &broblast transcriptome; Green: mixture of hESC-

derived cell transcriptome. B) The overlaps of hESC sub-transcriptomes. The hESC 

transcriptome is composed of 8,934 mRNAs in total with a hESC-speci&c part (1,010 mRNAs,

brown part), a common part (1,933 mRNAs, blue part) shared with the hESC-derived cells, 

and the rest of the mRNAs (grey). Sub-transcriptomes can be highlighted: the HS binding 

proteins part (191 mRNAs, speci&c in red and common in pink); the extracellular part (EC) 

without HS binding proteins (576 mRNAs, speci&c in orange and common in purple); the 

transcription factor related part (TF, 721 mRNAs, speci&c in yellow and common in light blue).
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Figure 4

Figure 4 - General network parameters of EC+TF putative interactomes

A) The average clustering coe�cient of real networks and their corresponding average 

randomised networks with SEM bars (One sample t-test, n=5, p-value<0.001). B) The node 

degree distribution P(k) and C) the clustering coe�cient distribution C(k) (C: common part; S:

speci1c part; R: random; EC: extracellular part; TF: transcription factor related part).
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Figure 5

GO/KEGG analyses of EC+TF putative interactomes

A) GO Biological Processes term enrichment (against Homo sapiens), in fold change. B) 

Percentage of the total number of proteins in Homo sapiens related to GO Biological 

Processes that are present in ALL and C+S putative interactomes (C: common part; S: 

speci+c part).
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Figure 6

Comparative enrichment trends within the candidate protein list

A) Enrichments in speci�c, common and other parts with HS, EC non-HS and TF. B) 

Enrichments in HS, EC non-HS and TF parts with EC/TF interface, C/S interface, hubs and 

bottlenecks (C: common part; S: speci�c part; EC: extracellular part; HS: heparan sulfate 

binding proteins; TF: transcription factor related part).
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Table 1(on next page)

Microarray datasets analysis

The access number (second column) gives access to the dataset in ArrayExpress database. 

Cell types and cell lines (�rst column), main cell culture conditions (third column), publications

linked to the dataset (when available, fourth column) and the number of microarrays used per

analysis (�fth column) are speci�ed. Expressed gene lists for each algorithm (RMA, GC-RMA

and MAS5.0) as the total and intersection lists are presented. Four hESC datasets (E-GEOD-

6561, -15148, -18265 and -26672) have been used to build mix1. Six hESC-derived cell 

datasets (E-GEOD-9196, -9832, -9940, -14897, -19735 and -21668) have been used to build 

mix2. Datasets in bold represent the �nal transcriptomes used for further analysis: mix1 for 

hESCs, E-GEOD-9832 for the �broblasts, E-GEOD-19735 for the endothelial cells and mix2 

for the mixture of hESC-derived cells (MEFs mouse embryonic �broblasts; HFFs human 

foreskin �broblasts; SR serum replacer).
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Cell type 
(Cell line)

Access
Numb

er

Linked
publicati

on

Main cell
culture
feature

Number
of

microarra
ys

RMA
GC-
RMA

MAS5.
0

TOTA
L

INTERSECTI
ON

hESCs 
(H14)

E-
GEOD-
6561

(Baker et
al. 2007)

On feeder cells 
(irradiated

MEFs) 
FGF2 (4 ng/mL) 
20% KnockOut

SR

4 9672 8680 9822
1193

0
7088

hESCs 
(H1, H7, H9,
H13, H14)

E-
GEOD-
15148

(Yu et al.
2009) 

On feeder cells 
(irradiated

MEFs) 
FGF2 (100

ng/mL) 
20% KnockOut

SR
OR 

On feeder-free
matrigel 

Conditioned
medium

10 8798 10554 10293
1246

7
7395

hESCs
E-

GEOD-
18265

/

On feeder cells 
(inactivated

HFFs) 
FGF2 (10 ng/mL)
20% KnockOut

SR

5 9602 11325 10966
1349

9
7791

hESCs 
(H1)

E-
GEOD-
26672

(Hu et al.
2011)

On feeder cells 
(irradiated

MEFs) 
FGF2 (4 ng/mL) 
20% KnockOut

SR

5 9656 11285 10843
1279

0
8235

hESCs Mix1 / 24
1100

1
1217

3
11546

1404
3

8934

Embryoid
bodies

E-
GEOD-
9196

(Lu et al.
2007) 

9 5142 6308 6667 8935 3576

Blast cells 9 4142 5866 6731 8617 3175

Fibroblasts
E-

GEOD-
9832

(Park et
al. 2008)

3 6471 7510 8072 9795 5086

Neural
progenitors

E-
GEOD-
9940

/
12 6939 8432 7309

1151
7

3944

Embryoid
bodies

3 1356 2485 5009 5812 942

Hepatic cells
E-

GEOD-
14897

(Si-Tayeb
et al.
2010)

3 1669 2659 4017 4864 1299

Endothelial
cells

E-
GEOD-
19735

/
4 7166 9237 8448

1108
5

5522

Embryoid
bodies

2 704 1832 1156 2079 583

Mesenchema
l progenitors

E-
GEOD-
21668

(Evseenko
et al.
2010)

3 861 1482 2543 3087 638

Di昀昀erentiat
ed cells

Mix2 / 48
1617

4
1417

2
12134

1745
8

10730
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Table 2(on next page)

Transcriptomes and literature comparisons, a selection of markers

'Transcriptome' column: transcriptome(s) or sub-transcriptome containing the mRNAs (Endo: 

endothelial cell; F: "broblast; Mix: mixture of hESC-derived cells). GO term column: GO terms

found during the GO extraction (CA: cell adhesion; CC: cell cycle; CCo: cell communication; 

CS: cytoskeleton organisation; J: cell junction; EC: extracellular part; HS: heparan sulfate 

binding proteins; TF: transcription factor related part). A) Signalling molecules required for 

pluripotency/self-renewal; B) Germ layer markers and C) Molecules related to culture medium

of hESCs.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.415v2 | CC-BY 4.0 Open Access | rec: 18 Sep 2014, publ: 19 Sep 2014

P
re
P
ri
n
ts



 
Marker/Fa

mily
Acrony

m
Name

Transcriptom
e

GO term

A
Embryonic
stem cell

PTEN phosphatase and tensin homolog
hESC

(COMMON)
CS/CA/CC/Cco

TERT telomerase reverse transcriptase
hESC

(SPECIFIC)
 

GDF3 growth di昀昀erentiation factor 3
hESC

(SPECIFIC)
EC non-HS

NODAL nodal homolog (mouse)
hESC

(SPECIFIC)
CCo/EC non-HS

ZIC3 Zic family member 3 hESC, Mix TF

SOX2 SRY (sex determining region Y)-box 2 hESC, Mix CC/CCo/TF

POU5F1 POU class 5 homeobox 1 hESC, Mix CCo/TF

B

Ectoderm
NEFH neuro昀椀lament, heavy polypeptide

hESC
(COMMON)

CS

TUBB3 tubulin, beta 3 class III hESC, Mix CCo 

Endoderm

KRT19 keratin 19
hESC

(COMMON)
CS

SOX7 SRY (sex determining region Y)-box 7
hESC, Endo,

Mix
CCo/TF

Mesoderm

KDR
kinase insert domain receptor (a type III 
receptor tyrosine kinase) (VEGFR)

hESC, Mix CA/CCo/HS

PDGFRA
platelet-derived growth factor receptor, alpha
polypeptide

hESC
(COMMON)

CS/CA/CCo 

VIM Vimentin
hESC

(COMMON)
CS

C

Fibronecti
n

FN1 昀椀bronectin 1
hESC

(COMMON)
CA/HS

ITGA5
integrin, alpha 5 (昀椀bronectin receptor, alpha 
polypeptide)

hESC, Mix CA/CCo/J/HS

ITGB1
integrin, beta 1 (昀椀bronectin receptor, beta 
polypeptide, antigen CD29 includes MDF2, 
MSK12)

hESC, Endo,
Mix

CS/CA/CC/CCo/J/
HS

Fibroblast
Growth
Factor

FGF2 Fibroblast growth factor 2
hESC

(COMMON)
CC/CCo/HS/TF

FGFR1 Fibroblast growth factor receptor 1
hESC

(COMMON)
CC/CCo/HS

FGFR2 Fibroblast growth factor receptor 2
hESC, Endo,

Mix
CC/CCo/HS

FGFR3 昀椀broblast growth factor receptor 3
hESC, Endo,

Mix
CCo/J/HS

FGFR4 Fibroblast growth factor receptor 4
hESC

(SPECIFIC)
CCo/J/HS

Activin A

ACVR1B activin A receptor, type IB (ALK4)
hESC

(COMMON)
CC/CCo/EC non-

HS

ACVR1C activin A receptor, type IC
hESC

(SPECIFIC)
CCo 

ACVR2A activin A receptor, type IIA hESC, F, Mix CCo 

ACVR2B activin A receptor, type IIB
hESC, Endo,

Mix
CCo/EC non-HS

INHBA inhibin, beta A / Activin A
hESC

(COMMON)
CC/CCo/HS
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Table 3(on next page)

The list of candidates, an overview

The 'hubs' column gives the degree; the 'bottlenecks' column gives the betweenness; the 

'S/C' column indicates if the protein is in the speci�c/common interface; the 'EC/TF' column 

indicates if the protein is in the EC/TF interface; the 'KEGG pathway' column indicates the 

number of pathway involving each protein (GO: Gene Onlotogy; KEGG: Kyoto Encyclopedia 

of Genes and Genomes; C: common part; S: speci�c part; EC: extracellular part; TF: 

transcription factor related part; J: cell junction). (see Table S4 for a complete list).
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Acron
ym

Name GO term
Hu
bs

Bottlene
cks

S/
C

EC/
TF

KEGG
pathw

ay

C

ACTN4 actinin, alpha 4 EC non-HS/CS 17    4

ACVR1
B

activin A receptor, type IB (ALK4)
EC non-

HS/CC/CCo
 X X 1

ADM adrenomedullin EC non-HS/CCo 4050.8 X X 0

BMP2 bone morphogenetic protein 2 HS/CC/CCo 2693.9 X X 3

DMD dystrophin
EC non-

HS/CS/CCo
 X  0

FGFR1 Fibroblast growth factor receptor 1 HS/CC/CCo 2634.2 X X 5

FN1 昀椀bronectin 1 HS/CA 26 6988.8  X 5

IL6 Interleukin 6 HS/CCo   X 4

INHBA inhibin, beta A / Activin A HS/CC/CCo  X  2

ITGA6 integrin, alpha 6 (CD49f)
EC non-

HS/CA/CCo/J
40 15218.1  X 6

ITGAV
integrin, alpha V (vitronectin 
receptor)

HS/CA/CCo 40 12409.4  X 6

JAM3 junctional adhesion molecule 3
EC non-

HS/CA/CCo/J
 X X 2

LAMA1 laminin, alpha 1 HS/CA/CCo 15   X 4

MET (hepatocyte growth factor receptor HS/CS/CC/CCo 24 10501.7 X X 6

PLAT plasminogen activator, tissue HS/CCo 2552.8  X 0

PLAU plasminogen activator, urokinase HS/CA/CCo   X 1

SERPIN
E1

serpin peptidase inhibitor, clade E, 
member 1

HS/CA/CCo 24 10022.8  X 1

SERPIN
I1

serpin peptidase inhibitor, clade I, 
member 1

EC non-HS/CA   X 0

TGFB2 transforming growth factor, beta 2 HS/CA/CC/CCo 25 10580.8 X X 6

THBS1 thrombospondin 1 HS/CA/CC/CCo 2066.0  X 5

VEGFA vascular endothelial growth factor A HS/CA/CCo 16 6817.1  X 6

S

CDH8 cadherin 8, type 2 HS/CA   X X 0

FGF4 昀椀broblast growth factor 4 HS/CA/CCo  X X 3

FGFR4 Fibroblast growth factor receptor 4 HS/CCo  X X 4

IDE insulin-degrading enzyme EC non-HS/CCo  X  0

INHBE inhibin, beta E EC non-HS  X  2

NODAL nodal homolog (mouse) EC non-HS/CCo  X  1

PLXNB
1

plexin B1 EC non-HS/CCo  X  0

TTN titin EC non-HS/CS/CC  X X 0

WIF1 WNT inhibitory factor 1 EC non-HS/CCo   X X 1
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