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Consistent, comprehensive and computationally e�cient 

OTU de�nitions.

We present a performance-optimized algorithm, subsampled open-reference OTU 

picking, for assigning marker gene (e.g., 16S rRNA) sequences generated on next-

generation sequencing platforms to operational taxonomic units (OTUs) for microbial 

community analysis. This algorithm provides bene�ts over de novo OTU picking 

(clustering can be performed largely in parallel, reducing runtime) and closed-

reference OTU picking (all reads are clustered, not only those that match a reference 

database sequence with high similarity). Because more of our algorithm can be run in 

parallel relative to “classic” open-reference OTU picking, it makes open-reference OTU

picking tractable on massive amplicon sequence data sets (though on smaller data 

sets, “classic” open-reference OTU clustering is often faster). We illustrate that here 

by applying it to the �rst 15,000 samples sequenced for the Earth Microbiome Project 

(1.3 billion V4 16S rRNA amplicons). To the best of our knowledge, this is the largest 

OTU picking run ever performed, and we estimate that our new algorithm runs in less 

than 1/5 the time than would be required of “classic” open reference OTU picking. We 

show that subsampled open-reference OTU picking yields results that are highly 

correlated with those generated by “classic” open-reference OTU picking through 

comparisons on three well-studied datasets. An implementation of this algorithm is 

provided in the popular QIIME software package, which uses uclust for read 

clustering. All analyses were performed using QIIME’s uclust wrappers, though we 

provide details (aided by the open-source code in our GitHub repository) that will allow

implementation of subsampled open-reference OTU picking independently of QIIME 

(e.g., in a compiled programming language, where runtimes should be further 
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reduced). Our analyses should generalize to other implementations of these OTU 

picking algorithms. Finally, we present a comparison of parameter settings in QIIME’s 

OTU picking work@ows and make recommendations on settings for these free 

parameters to optimize runtime without reducing the quality of the results. These 

optimized parameters can vastly decrease the runtime of uclust-based OTU picking in 

QIIME.
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Introduction
Three high-level strategies for defining Operational Taxonomic Unit (OTU) cluster centroids 

have been widely applied for centroid-based greedy clustering (Li and Godzik 2006; Edgar 2010)

of marker gene (e.g., 16S rRNA) sequences generated on next-generation sequencing platforms 

to facilitate microbial community analysis. These are canonically described as de novo, closed-

reference, and open-reference OTU picking (Navas-Molina et al. 2013). In each of these 

approaches, respectively, centroids are defined internally based only on the sequences being 

clustered, based only on an external, predefined database of cluster centroids, or based on a 

combination of the two. Each of these methods has benefits and drawbacks.

In de novo OTU picking, input sequences are aligned against one another, and sequences that 

align with greater than a user-specified percent identity are defined as belonging to the same 

OTU. There are many variations and free parameters in this process, such as how many 

alignments are performed before a sequence is assigned to an OTU or used to define a new OTU, 

but the common feature of these methods is that no external reference database is required. This 

is also the primary advantage of this method: it is not necessary to have accumulated a collection 
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of reference sequences before working with a new marker gene. However, de novo OTU picking 

is difficult to parallelize because all processes must be able to use new OTUs that are defined by 

other processes. Consequently, this approach cannot scale to modern-sized data sets.

In closed-reference OTU picking, input sequences are aligned to pre-defined cluster centroids in 

a reference database. If the input sequence does not match any reference sequence at a user-

defined percent identity threshold, that sequence is excluded. The primary advantage of closed-

reference OTU picking is that it is easily parallelizable. Because the cluster centroids are 

predefined, the input sequence collection can be partitioned into n subsets, the assignment 

process can be split across n processors, and the clustering results can be collated when all 

processes have completed. This dramatically reduces the “wall time” (i.e., the total time to 

completion as you would see it on a clock on the wall, not in terms of CPU × hours) of this 

method, and makes closed-reference OTU picking a convenient strategy for extremely large 

datasets (e.g, as in (Yatsunenko et al. 2012)). Additionally, it has the convenient feature that, 

because OTUs are defined by a pre-existing reference, there are typically high-quality taxonomic 

assignments for each OTU, and a high-quality phylogenetic tree, often based on full-length 

sequences rather than fragments, exists and describes the relationships among those OTUs. 

Furthermore, because input sequences are not compared directly to one another, but rather to an 

external reference, the input sequences need not overlap. This is essential, for example, if 

performing a meta-analysis including sequences derived from different amplification products of 

the same marker gene, such as the V2 and V4 regions of the 16S rRNA (e.g., as in the meta-

analysis performed in (Caporaso et al. 2010)). The major drawback to closed-reference OTU 

picking, however, is that it cannot identify novel diversity: if a sequence has no match in the 

reference database, it cannot be included in the analysis, restricting analyses to already-known 

taxa. (Of course, the importance of this limitation decreases as the reference database increases in

coverage.)

Finally, open-reference OTU picking combines the previous protocols. First, input sequences are 

clustered against a reference database in parallel in a closed-reference OTU picking process. 

However, rather than discarding sequences that fail to match the reference, these “failures” are 

clustered de novo in a serial process. Open-reference OTU picking offers benefits over both the 

de novo and closed-reference protocols. Because it includes the parallel closed-reference step, it 

will typically run faster than de novo OTU picking. And, since it includes de novo OTU picking 

of the sequences that fail to hit the reference database, all sequences are clustered, so analyses are

not restricted to already-known OTUs. However, because the de novo clustering process is run 

serially, it can still be prohibitively slow for very large datasets or datasets with a substantial 

number of sequences that fail to hit the reference database. Because of these long runtimes, it has 

not yet been widely applied despite the benefits it offers.

We present a novel strategy for open-reference OTU picking that allows a larger portion of the 

computation to be run in parallel, which we call subsampled open-reference OTU picking, 

allowing open-reference OTU picking on very large datasets. We compare this method to 
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“classic” open-reference OTU picking (as described in the previous paragraph) to confirm that, 

despite potentially slightly different OTU definitions, the summary statistics that are often used 

derive biological conclusions from application of these different methods to the same data set 

would remain the same. To achieve this, we show that alpha diversity, beta diversity, and 

taxonomic profiles are highly correlated between the “classic” open-reference OTU picking and 

subsampled open-reference OTU picking. We also compare these methods to de novo and closed-

reference OTU picking, and explore the effect of dataset and algorithm parameters on runtime 

and analysis results. We note that we specifically focus on centroid-based greedy clustering 

approaches in this study (e.g., as in uclust and cd-hit (Li and Godzik 2006; Edgar 2010)), not 

approaches that require alignment of all pairs of unique sequences (i.e., the hierarchical methods 

described in (Schloss and Westcott 2011)), as the former scale better to larger data sets. However,

because our full evaluation framework (metrics and data sets) and the EMP raw sequence data are

all freely accessible, it is straight-forward for other groups to reproduce these evaluations on 

alternative methods.

All analyses presented here are performed using the QIIME and pandas python packages. As far 

as we know, QIIME contains the only existing implementation of the subsampled open-reference 

OTU picking algorithm, but the algorithm is not QIIME-specific. Thus while our comparison is 

based on specific QIIME/uclust-based implementations of de novo, closed reference, classic 

open reference, and subsampled open reference OTU picking, our findings should be general to 

other implementations of these algorithms. 

Materials and Methods

Subsampled open-reference OTU picking algorithm

Open-reference OTU picking is preferable to the other methods presented here because it 

combines the advantages of closed-reference and de novo clustering. However, the de novo step 

of open-reference OTU picking can only be run serially, and therefore can be time-consuming for

large datasets if many sequences fail to hit the reference database. To improve the runtime of 

open-reference OTU picking, we developed subsampled open-reference OTU picking, which 

incrementally increases the size of the reference database by de novo clustering a subset of the 

sequences that fail to match the reference database. The remainder of the sequences that fail to hit

the reference database can then be clustered against these new cluster centroids in a parallel 

closed-reference OTU picking process. This allows for partial parallelization of the de novo 

clustering step and can significantly decrease runtime on large datasets, allowing open-reference 

OTU picking to scale to billions of input sequences (e.g., as generated in multiple Illumina HiSeq

2000 runs). It can additionally be run iteratively, so that representative sequences for the new 

(i.e., non-reference) OTUs can be combined with the reference database for future OTU picking 

runs. It is important to note that runtime is not always reduced with subsampled open-reference 

OTU picking. Data set and algorithm parameters have a large effect on runtime (discussed further

in Runtime differences). This approach is similar to the Buckshot algorithm (Cutting et al. 1992; 

Jensen et al. 2002), initially described for semantic clustering of documents in a corpus, though 
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we do not use the parallel hierarchical clustering approach described by (Jensen et al. 2002) for 

initial clustering definition. 

A detailed description of this workflow is illustrated in Figure 1. It is implemented using uclust 

v1.2.22q (Edgar 2010) for clustering in QIIME 1.6.0 (Caporaso et al. 2010) and later, though any 

sequence clustering software that provides support for de novo and closed-reference clustering 

could be substituted for uclust in an alternate implementation. The inputs provided to this method

are demultiplexed, quality-filtered sequences, and a reference sequence collection (for example, 

the Greengenes 13_8 97% OTU representative sequences (DeSantis et al. 2006; McDonald, 

Price, et al. 2012)). First, sequences are clustered in parallel using a closed-reference OTU 

picking workflow, where sequences are queried against the reference database at percent identity 

s (default 97%). If a read matches a reference sequence at greater than or equal to s% identity, it 

is assigned to the OTU defined by that reference sequence. These are referred to as the reference 

OTUs. Next, a random subsample of n% (n should be small, the default value in QIIME 1.8.0-

dev and earlier is 0.1%) of the sequences that failed to match the reference sequence collection 

are clustered de novo, and the cluster centroids for all resulting OTUs are used to define a new 

reference sequence collection. Those OTUs are referred to as the new reference OTUs. The 

sequences that were not included in the random subsample that was clustered de novo then go 

through an additional round of parallel closed-reference OTU picking, this time where they are 

clustered against the new reference OTUs based on matching a sequence in the new reference 

sequence collection at greater than or equal to s% identity. This creation of a “new reference 

database” allows us to harness the parallelization of our closed-reference OTU picking pipeline, 

greatly decreasing the time it takes for sequences that fail to hit the initial reference database to 

be clustered into OTUs. In the final clustering step, sequences that fail to hit a reference sequence

during this final closed-reference OTU picking step are clustered de novo. These are referred to 

as the clean-up OTUs. Finally, the reference OTUs, new reference OTUs, and clean-up OTUs are

combined into a single OTU table (i.e., table of counts of OTUs on a per-sample basis, as 

described in (McDonald, Clemente, et al. 2012)), and this table, as well as a filtered table 

excluding OTUs with counts less than or equal to a user-defined threshold c, are provided to the 

user. By default, c=2, so each OTU is observed at least twice (i.e., singleton OTUs are excluded).

Because many more of the sequences can be clustered using closed-reference OTU picking in 

this workflow, it can run in far less time than classic open-reference OTU picking (see Runtime 

Differences section below).

Evaluation of subsampled open-reference OTU picking

We validated the subsampled open-reference OTU picking workflow by comparing it to de novo, 

closed-reference, and classic (i.e., non subsampled) open-reference clustering methods on three 

different datasets: the Lauber “88 Soils” study (Lauber et al. 2009) (referred to as 88-soils here), 

the Caporaso “Moving Pictures” study (Caporaso et al. 2011) (referred to as moving-pictures 

here), and the Costello “Whole Body” study (Costello et al. 2009) (referred to as whole-body 

here) using three metrics. Table 1 provides a description of the OTU picking methods being 

compared. First, we tested the correlation between sample alpha diversities (OTU counts, i.e. 

QIIME’s observed species metric, and Phylogenetic Diversity (PD) (Faith 1992)) based on 
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subsampled open-reference OTU picking and the other OTU picking protocols. Next, we tested 

whether beta diversity patterns (as determined by weighted and unweighted UniFrac (Lozupone 

and Knight 2005) distances between samples) were consistent across OTU picking protocols, 

based on Mantel tests (Mantel 1967) with 1000 Monte Carlo iterations. Finally, we tested 

whether the same taxonomic profiles were obtained on a per-sample basis using each of the OTU 

picking methods. It is important to note that we are not trying to assess whether one method is 

better than another using these metrics. Instead, we are testing whether the methods give highly 

correlated results.

Data availability

The raw sequence data analyzed in this study is available in the QIIME Database under accession

numbers 103 (88-soils), 449 (whole-body), and 550 (moving-pictures). All analyses were run 

with QIIME 1.8.0-dev. All commands, as well as all processed data and IPython Notebooks that 

illustrate how to work with that data are available in this project’s GitHub repository at 

https://github.com/gregcaporaso/cloaked-octo-ninja.

Results and Discussion

Subsampled versus “classic” open-reference OTU picking 

Alpha diversity (Table 2; whole-body PD Pearson r=0.989; 88-soils PD Pearson r=0.930; 

moving-pictures PD Pearson r=0.996), beta diversity (Table 3; whole-body unweighted UniFrac 

Mantel r=0.948; 88-soils unweighted UniFrac Mantel r=0.939; moving-pictures unweighted 

UniFrac Mantel r=0.991) and taxonomic summaries (Table 4; whole-body: r=0.999 at phylum 

level, 0.999 at species level; 88-soils r=0.999 at phylum level, r=0.999 at species level; moving-

pictures r=0.999 at phylum level, r=0.999 at species level) were highly correlated between classic

and subsampled open-reference OTU picking. Minor differences likely arise from the non-

deterministic step of rarefying all samples to even sampling depth before comparing samples. 

These results suggest that subsampled open-reference picking yields the same results as classic 

open-reference OTU picking, including identical numbers of sequences failing to hit the 

reference database, and therefore is a suitable replacement.

Application to the Earth Microbiome Project dataset

In order to evaluate the effectiveness of the subsampled open-reference OTU picking method on 

an extremely large data set, the first 15,000 samples (1.3 billion V4 16S rRNA amplicons) from 

the Earth Microbiome Project (EMP, (Gilbert et al. 2010)) were processed on the Amazon Web 

Services (AWS) EC2 platform. These samples were split across more than 60 studies, which were

clustered iteratively. To the best of our knowledge, this is the largest OTU picking run ever 

completed. We created a StarCluster-based (http://star.mit.edu/cluster/) virtual cluster on AWS 

using between 8 and 18 M2.4xlarge spot instances (the number of instances was varied at 

different stages of the run). Each instance (or virtual cluster node) had 69 GB RAM and 8 cores. 

A total of 11,242 CPU hours were consumed to complete subsampled open-reference OTU 

picking (at 97% nucleotide identity), and the combined input and output files consumed 1.2 TB 

of disk space. (This runtime includes the pre-filtering step. The process would have completed 

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.411v2 | CC-BY 4.0 Open Access | received: 24 Jul 2014, published: 24 Jul 

P
re
P
ri
n
ts

https://github.com/gregcaporaso/cloaked-octo-ninja
http://star.mit.edu/cluster/


much faster if this were disabled.) The resulting OTU table contained 5.6 million non-singleton 

OTUs. This is the largest number of OTUs identified, and the most comprehensive survey of 

microbial diversity across environment types to date, so it likely suggests the magnitude of the 

lower-bound on the microbial diversity of the Earth (although the accuracy is limited because 

some of these OTUs may be artifacts of PCR or sequencing: such artifacts, e.g. chimeras, need to 

be identified after the OTU picking step).

We were next interested in how long the de novo clustering step of classic open-reference OTU 

picking would take on the EMP data set, but as we’ll illustrate this is an intractable problem in 

practice with current computer hardware. We began by applying de novo clustering using the 

“fast” uclust parameter settings to the representative sequences from the 5.6 million non-

singleton OTUs from the run described above. These representative sequences represent the full 

alpha diversity of the EMP data set (a property known to be important to runtime of de novo and 

open reference OTU clustering) but the data set contains only 5.6m sequences, so is feasible to 

cluster de novo. We then subsampled this to contain between 10% and 80% of those sequences, 

in steps of 10% with 10 iterations at each step, and compiled the runtime for each clustering run. 

Figure 2 illustrates the relationship between runtime and input sequence count, along with the 

results of a regression analysis presenting median runtime as a function of sequence count 

(r2=0.98, p=8e-6). 

In the subsampled open-reference OTU picking run on the EMP dataset, 660 million sequences 

failed to hit the reference database, and therefore need to be clustered de novo clustering in open-

reference OTU picking. While it is obviously problematic to use a regression model trained on 

5.6 million sequences to extrapolate the runtime on 660 million sequences, we feel that this can 

give us an idea of the magnitude of the runtime for the serial de novo clustering of the full 

dataset.  Our regression model projects that the serial de novo clustering of sequences that fail to 

hit the reference data set would require approximately 150 days to run (in wall time). In contrast, 

the subsampled open-reference OTU picking run presented here (which included the pre-filtering 

step) ran in just under 30 days of wall time. This illustrates that while on relatively small data sets

the performance enhancement of subsampled relative to classic open-reference OTU picking is 

either non-existence or modest (discussed in Run-time differences), on datasets at the current 

upper limit of size, the increased parallelizability of subsampled open-reference OTU picking 

makes open-reference OTU picking far more tractable.

Run-time differences

The speed improvements of subsampled open-reference OTU picking arise from the fact that a 

larger portion of the clustering process can be parallelized. When not run in parallel, or run in 

parallel over only a few (e.g., 3) CPUs, classic open-reference OTU picking is likely to be faster. 

Similarly, for smaller data sets (e.g., less than a few million sequences), especially if most 

sequences have a match in the reference database (e.g., with human gut microbiome data), classic

open-reference OTU picking will achieve similar runtimes to subsampled open-reference 

clustering (Table 5). However, in these cases, the results are still highly correlated, so if in doubt 

of which method will be faster, subsampled open-reference OTU picking is a reasonable choice 
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as the summary statistics of interest (often alpha diversity, beta diversity and taxonomic profiles) 

are very unlikely to be different between the two methods. 

When more sequences fail to hit the reference database, subsampled open-reference OTU picking

becomes faster than classic open-reference OTU picking (Table 6). To illustrate this, we clustered

the moving-pictures sequences against the 82% and 97% Greengenes reference OTUs at 97% 

identity using subsampled and classic open-reference OTU picking on 29 processors. When 

clustering against the 82% OTUs, 52.1 million failed to hit the reference, while when clustering 

against the 97% OTUs 3.4 million sequences failed to hit the reference. Subsampled open-

reference OTU picking ran in 4000s less wall time than classic open-reference clustering (in a 

single run of each on a system dedicated for this run time comparison) against the 82% OTUs, 

and in 72s less time against the 97% OTUs, illustrating that as more sequences fail to hit the 

reference, subsampled open-reference OTU picking offers more of an advantage. This runtime 

difference would be even larger if the job were split over more processors. 

Another parameter that can affect runtime of subsampled open-reference OTU picking is the size 

of the random subsample that is selected. The optimal setting for this parameter is affected by the 

size of the dataset being clustered and the diversity of the sequences that fail to match the 

reference database. On small datasets, or datasets with a lot of novel diversity, a large fraction 

(e.g., 1%) is better than a small fraction (e.g., 0.001%), but as the data set increases in size a large

fraction can result in far more time spent performing de novo clustering of the sequences that 

initially fail to hit the reference database. We recommend using the default (0.1% in QIIME 

1.8.0-dev and earlier), which was chosen to reduce runtime on larger datasets where optimized 

runtime is more important. As this parameter setting approaches zero, subsampled open-reference

OTU picking becomes more like classic open-reference OTU picking, in that more of the reads 

that fail to hit the reference database are clustered de novo serially, and at the limit of 0% of 

sequences subsampled, subsampled open reference OTU picking becomes classic open-reference 

OTU picking. The summary statistics investigated here are highly correlated between classic and 

subsampled open-reference OTU picking, suggesting that this parameter setting will not affect 

those statistics, but can affect runtime. 

Pre-filtering

QIIME’s open-reference OTU picking workflow optionally includes a pre-filtering step, where 

sequences are searched against the reference database with low percent identity (the default in 

QIIME 1.8.0 and earlier is 60%), and sequences that fail to match are discarded from the 

analysis. The goal of this process is to discard sequences that are likely not representatives of the 

marker gene, such as host genomic sequences or products of non-specific amplification. This 

process is functionally similar to closed-reference OTU picking (sequence reads are searched 

against a pre-defined reference database), and therefore is easily run in parallel.

We show that alpha diversity (Table 2; whole-body PD Pearson r=0.991; 88-soils PD Pearson 

r=0.930; moving-pictures PD Pearson r=0.996), beta diversity (Table 3; whole-body unweighted 

UniFrac Mantel r=0.953; 88-soils unweighted UniFrac Mantel r=0.940; moving-pictures 
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unweighted UniFrac Mantel r=0.990) and taxonomic summaries (Table 4; whole-body: r=1.000 

at phylum level, r=1.000 at species level; 88-soils r=1.000 at phylum level, r=1.000 at species 

level; moving-pictures r=1.000 at phylum level, r=0.999 at species level) are highly correlated 

between the pre-filtered and non-pre-filtered results, when pre-filtering is performed at percent 

identity of 60%. Despite nearly identical results, the pre-filtering process results in vastly 

increased runtimes. Consequently, we no longer recommend pre-filtering of sequences prior to 

open-reference OTU picking. Rather, contaminant sequences should be discarded after OTU 

picking. This feature is now disabled by default starting with QIIME 1.8.0-dev. 

One case where pre-filtering may prove useful is in the preparation of sequence data where there 

is a large amount of contamination of non-marker-gene sequence, for example host genomic 

contamination. In this case, pre-filtering can be useful to remove those sequences prior to 

clustering. Note that if you suspect that your sample may contain human genomic contaminant 

sequences, it is important to filter them out before analysis or data deposition due to Institutional 

Review Board or other ethical concerns related to release of human DNA sequences.

Clustering parameters

We also investigated the effect of clustering parameters on the same summary statistics, as these 

can have a considerable effect on runtime. We compared uclust’s default settings (referred to in 

QIIME as “fast mode”) with the default settings in QIIME 1.8.0 and earlier (“slow mode”). We 

again compared the methods based on the degree to which they resulted in correlated alpha 

diversity (Table 2), beta diversity (Table 3), and taxonomic results (Table 4), and found that all 

results were highly correlated between fast and slow modes. This suggests that while fast mode 

will occasionally make suboptimal OTU assignments, the effects are subtle enough to be 

unnoticeable in downstream ecological analyses. We therefore recommend using the “fast” 

settings for decreased runtime, and these are now the default in QIIME 1.8.0-dev. 

We do recommend using the “slow” settings if clustering sequences to build reference OTUs (for 

example, as is performed when building the Greengenes reference OTU collection (McDonald, 

Price, et al. 2012)) because suboptimal OTU assignments can have further reaching 

consequences. For example, “splitting” an OTU (i.e., defining two sequences that are within s% 

identity of each other as the centroids of two different s% OTUs), which is always a possibility in

greedy clustering algorithms, is more common with the “fast” settings than with the “slow” 

settings. If this occurs in a single study, the downstream effects are limited to that study and are 

likely only to be problematic if the split OTU is of key significance to the system being 

investigated. However, a split OTU when defining reference OTUs is more problematic, because 

those definitions will be used in many studies, increasing the chance that the split OTU will be 

problematic for someone. For this application, the processing step is typically only run once per 

database release (which is relatively infrequent). Therefore, the longer runtime is preferable to 

less accurate OTU definitions in this particular application. If splitting and lumping of OTUs is of

concern on your dataset, you may want to experiment with the “slow” parameter settings, which 

are still accessible in QIIME and we also recommend exploring the use of Oligotyping (Eren et 

al. 2013). 
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Consistent OTU definitions across runs: iterative open-reference OTU picking

Subsampled open-reference clustering, as implemented in QIIME, provides new identifiers for 

sequences that fail to match the reference database, allowing OTUs to be directly compared 

across clustering runs (although sequences clustered against this expanded reference sequence 

collection do need to be from the same gene fragment as the sequences used to expand the 

reference sequence collection). These OTUs can also be used in iterative OTU picking, which is 

useful in studies where sequence data is continuously accumulating, for example in routine 

monitoring of microbial communities in human subjects (e.g. patients monitored over time), the 

built-environment, or during environmental clean-up. 

Conclusions

Taken together, the reduced runtime of subsampled open-reference OTU picking relative to 

classic open-reference OTU picking on large datasets, and the benefits that open-reference OTU 

picking offers over full de novo OTU picking (vastly decreased runtime) and closed-reference 

OTU picking (all sequences are clustered, not only those that match the reference collection), we 

recommend subsampled open-reference OTU picking when a reference collection is available.

Because the metrics provided here show that the same summary statistics are derived from the 

four OTU picking protocols, an interesting question is whether de novo or open-reference OTU 

picking offers any benefit over closed-reference OTU picking. The primary motivation for using 

methods that incorporate previously unknown OTUs (i.e., those that are not represented in the 

reference database) such as de novo and open-reference OTU picking is that OTUs not 

represented in the reference database might best illustrate a biological pattern of interest. For 

example, in the 88-soils data analyzed here, 1 of the top 10 OTUs identified as significantly 

different across sample pH is an OTU that is not represented in the reference database (Table 8) 

(this OTU was classified as in the Actinomycetales order by QIIME’s uclust-based taxonomy 

classifier). Similarly, for the whole-body data set, 2 of the top 10 OTUs identified as significantly

different across body sites were not represented in the reference database (these were classified as

Prevotella melaninogenica and Veillonella parvula by QIIME’s uclust-based taxonomy 

classifier). On the other hand, in the moving-pictures data analyzed here, all of the top 10 OTUs 

identified as significantly different across body site were OTUs represented in the reference 

database. Table 7 illustrates the fraction of OTUs not represented in the reference database by 

environment based on the Earth Microbiome Project dataset. We expect that using OTU picking 

methods that incorporate new OTUs is more important in samples where this fraction is higher.

In conclusion, this paper presents the performance-optimized subsampled open-reference OTU 

picking algorithm, now available in QIIME. This method can be applied iteratively to define 

stable OTUs across sequencing runs, and achieves nearly identical results to “classic” open-

reference OTU picking (i.e., not including the subsampling step). It enables massive sequencing 

projects such as the Earth Microbiome Project to use open-reference OTU picking in far less time

than is possible with classic open-reference OTU picking, which will facilitate our exploration of 

microbial diversity. Further, the iterative nature of the process (which is also possible with classic
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open-reference OTU picking) enables progressively expanding datasets, as might be generated in 

clinical laboratories as microbiome-based medical treatment becomes a reality, to cluster OTUs 

using OTU definitions from previous clustering runs as reference sequences. This avoids re-

clustering all sequences every time new sequences are generated, thereby vastly decreasing 

computational costs.
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Figure 1

Schematic of the subsampled open-reference OTU picking algorithm.
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Figure 2

Runtime comparison.

Runtime of de novo clustering using “fast” uclust parameters versus number of 

sequences to be clustered, where sequences are obtained from the EMP subsampled 

open-reference OTU picking run. 
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Table 1(on next page)

Method de�nitions.

De�nitions of the OTU picking methods being compared here, based on the abbreviations 

used throughout the paper. From here, we refer to each method by its abbreviation for 

simplicity. We note that the both de novo (uc) and classic open-reference OTU picking (ucr) 

are accessed through QIIME’s pick_de_novo_otus.py command. ucr is applied when 

pick_otus:otu_picking_method uclust_ref is speci�ed in the parameters �le, and uc is applied 

when that option is absent. The exact command/parameter combinations used for each OTU 

picking run are provided in the study’s GitHub repository (see Data Availability). 
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title command max_accepts max_rejects stepwords wordlength prefilter_percent_id min_otu_size speed_mode processors reference_percent_id subsample_fraction

abbreviation

uc Deठ⃚novo pick_de_novo_otus.py 20 500 20 12 NA NA slow 1 0.97 NA

ucr Legacyठ⃚openठ⃚reference pick_de_novo_otus.py 20 500 20 12 NA NA slow 10 0.97 NA

ucrC Closedठ⃚reference pick_closed_reference_otus.py 20 500 20 12 NA NA slow 10 0.97 NA

ucrss Subsampledठ⃚openठ⃚reference pick_open_reference_otus.py 20 500 20 12 0 1 slow 10 0.97 0.001

ucrss_wfilter Subsampledठ⃚openठ⃚reference,ठ⃚filtered pick_open_reference_otus.py 20 500 20 12 0.6 1 slow 10 0.97 0.001

uc_fast Deठ⃚novo,ठ⃚fastठ⃚settings pick_de_novo_otus.py 1 8 8 8 NA NA fast 1 0.97 NA

ucr_fast Legacyठ⃚openठ⃚reference,ठ⃚fastठ⃚settings pick_de_novo_otus.py 1 8 8 8 NA NA fast 10 0.97 NA

ucrC_fast Closedठ⃚reference,ठ⃚fastठ⃚settings pick_closed_reference_otus.py 1 8 8 8 NA NA fast 10 0.97 NA

ucrss_fast
Subsampledठ⃚openठ⃚reference,ठ⃚fastठ⃚

settings pick_open_reference_otus.py 1 8 8 8 0 1 fast 10 0.97 0.001

ucrss_wfilter_fast
Subsampledठ⃚openठ⃚reference,ठ⃚filtered,ठ⃚

fastठ⃚settings pick_open_reference_otus.py 1 8 8 8 0.6 1 fast 10 0.97 0.001

ucr_fast_O29_r82
Legacyठ⃚openठ⃚reference,ठ⃚fastठ⃚settings,ठ⃚

82%ठ⃚referenceठ⃚OTUs,ठ⃚29ठ⃚processors
pick_de_novo_otus.py 1 8 8 8 0 1 fast 29 0.82 0.001

ucr_fast_O29_r97
Legacyठ⃚openठ⃚reference,ठ⃚fastठ⃚settings,ठ⃚

29ठ⃚processors
pick_de_novo_otus.py 1 8 8 8 0 1 fast 29 0.97 0.001

ucrss_fast_O29_r82

Subsampledठ⃚openठ⃚reference,ठ⃚fastठ⃚

settings,ठ⃚82%ठ⃚referenceठ⃚OTUs,ठ⃚29ठ⃚

processors pick_open_reference_otus.py 1 8 8 8 0 1 fast 29 0.82 0.001

ucrss_fast_O29_r97
Subsampledठ⃚openठ⃚reference,ठ⃚fastठ⃚

settings,ठ⃚29ठ⃚processors
pick_open_reference_otus.py 1 8 8 8 0 1 fast 29 0.97 0.001

ucrss_fast_O29_s1
Subsampledठ⃚openठ⃚reference,ठ⃚fastठ⃚

settings,ठ⃚29ठ⃚processors,ठ⃚1%ठ⃚subsample
pick_open_reference_otus.py 1 8 8 8 0 1 fast 29 0.97 0.1
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Table 2(on next page)

Alpha diversity correlation by method and dataset.

Pearson correlation coe�cients (r) of alpha diversity for (a) 88-soils PD, (b) moving-

pictures PD, (c) whole-body PD, (d) 88-soils observed species, (e) moving-pictures 

observed species, and (f) moving-pictures observed species.
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(a) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc 1 0.951 0.933 0.934 0.953 0.956 0.936 0.927 0.948 0.947

ucr 0.951 1 0.902 0.931 0.93 0.946 0.94 0.903 0.952 0.944

ucrC 0.933 0.902 1 0.894 0.909 0.905 0.914 0.978 0.902 0.911

ucrss 0.934 0.931 0.894 1 0.929 0.944 0.935 0.894 0.948 0.949

ucrss_wfilter 0.953 0.93 0.909 0.929 1 0.952 0.933 0.903 0.931 0.943

uc_fast 0.956 0.946 0.905 0.944 0.952 1 0.953 0.898 0.956 0.96

ucr_fast 0.936 0.94 0.914 0.935 0.933 0.953 1 0.914 0.95 0.952

ucrC_fast 0.927 0.903 0.978 0.894 0.903 0.898 0.914 1 0.902 0.903

ucrss_fast 0.948 0.952 0.902 0.948 0.931 0.956 0.95 0.902 1 0.962

ucrss_fast_wfilter 0.947 0.944 0.911 0.949 0.943 0.96 0.952 0.903 0.962 1

(b) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc 1 0.996 0.993 0.996 0.996 0.995 0.996 0.992 0.996 0.996

ucr 0.996 1 0.993 0.997 0.997 0.995 0.996 0.992 0.996 0.997

ucrC 0.993 0.993 1 0.994 0.991 0.994 0.994 0.998 0.995 0.994

ucrss 0.996 0.997 0.994 1 0.996 0.996 0.997 0.994 0.997 0.997

ucrss_wfilter 0.996 0.997 0.991 0.996 1 0.994 0.995 0.991 0.996 0.996

uc_fast 0.995 0.995 0.994 0.996 0.994 1 0.997 0.994 0.997 0.996

ucr_fast 0.996 0.996 0.994 0.997 0.995 0.997 1 0.994 0.997 0.997

ucrC_fast 0.992 0.992 0.998 0.994 0.991 0.994 0.994 1 0.994 0.994

ucrss_fast 0.996 0.996 0.995 0.997 0.996 0.997 0.997 0.994 1 0.997

ucrss_fast_wfilter 0.996 0.997 0.994 0.997 0.996 0.996 0.997 0.994 0.997 1

(c)ठ⃚ uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc 1 0.985 0.957 0.985 0.985 0.984 0.986 0.961 0.983 0.984

ucr 0.985 1 0.956 0.99 0.989 0.988 0.987 0.96 0.987 0.986

ucrC 0.957 0.956 1 0.961 0.958 0.959 0.961 0.99 0.953 0.961

ucrss 0.985 0.99 0.961 1 0.991 0.988 0.99 0.964 0.989 0.987

ucrss_wfilter 0.985 0.989 0.958 0.991 1 0.985 0.989 0.963 0.987 0.985

uc_fast 0.984 0.988 0.959 0.988 0.985 1 0.986 0.961 0.986 0.985

ucr_fast 0.986 0.987 0.961 0.99 0.989 0.986 1 0.965 0.988 0.989

ucrC_fast 0.961 0.96 0.99 0.964 0.963 0.961 0.965 1 0.957 0.965

ucrss_fast 0.983 0.987 0.953 0.989 0.987 0.986 0.988 0.957 1 0.986

ucrss_fast_wfilter 0.984 0.986 0.961 0.987 0.985 0.985 0.989 0.965 0.986 1
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(d) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc 1 0.948 0.88 0.909 0.924 0.935 0.934 0.877 0.925 0.913

ucr 0.948 1 0.905 0.946 0.947 0.947 0.953 0.903 0.938 0.932

ucrC 0.88 0.905 1 0.926 0.888 0.882 0.908 0.973 0.91 0.896

ucrss 0.909 0.946 0.926 1 0.932 0.923 0.935 0.915 0.931 0.929

ucrss_wfilter 0.924 0.947 0.888 0.932 1 0.943 0.946 0.884 0.932 0.927

uc_fast 0.935 0.947 0.882 0.923 0.943 1 0.942 0.883 0.941 0.94

ucr_fast 0.934 0.953 0.908 0.935 0.946 0.942 1 0.908 0.943 0.932

ucrC_fast 0.877 0.903 0.973 0.915 0.884 0.883 0.908 1 0.904 0.906

ucrss_fast 0.925 0.938 0.91 0.931 0.932 0.941 0.943 0.904 1 0.953

ucrss_fast_wfilter 0.913 0.932 0.896 0.929 0.927 0.94 0.932 0.906 0.953 1

(e) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc 1 0.992 0.984 0.992 0.992 0.989 0.99 0.978 0.989 0.99

ucr 0.992 1 0.994 0.998 0.998 0.992 0.997 0.991 0.997 0.997

ucrC 0.984 0.994 1 0.995 0.995 0.984 0.993 0.997 0.994 0.994

ucrss 0.992 0.998 0.995 1 0.998 0.992 0.997 0.991 0.997 0.997

ucrss_wfilter 0.992 0.998 0.995 0.998 1 0.992 0.997 0.991 0.997 0.997

uc_fast 0.989 0.992 0.984 0.992 0.992 1 0.993 0.981 0.992 0.992

ucr_fast 0.99 0.997 0.993 0.997 0.997 0.993 1 0.992 0.998 0.998

ucrC_fast 0.978 0.991 0.997 0.991 0.991 0.981 0.992 1 0.993 0.992

ucrss_fast 0.989 0.997 0.994 0.997 0.997 0.992 0.998 0.993 1 0.998

ucrss_fast_wfilter 0.99 0.997 0.994 0.997 0.997 0.992 0.998 0.992 0.998 1

(f) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc 1 0.986 0.971 0.986 0.986 0.993 0.988 0.972 0.988 0.987

ucr 0.986 1 0.984 0.995 0.995 0.987 0.993 0.98 0.993 0.993

ucrC 0.971 0.984 1 0.985 0.984 0.97 0.981 0.992 0.98 0.979

ucrss 0.986 0.995 0.985 1 0.995 0.987 0.993 0.981 0.993 0.992

ucrss_wfilter 0.986 0.995 0.984 0.995 1 0.986 0.993 0.979 0.992 0.992

uc_fast 0.993 0.987 0.97 0.987 0.986 1 0.989 0.972 0.99 0.988

ucr_fast 0.988 0.993 0.981 0.993 0.993 0.989 1 0.981 0.994 0.994

ucrC_fast 0.972 0.98 0.992 0.981 0.979 0.972 0.981 1 0.982 0.979

ucrss_fast 0.988 0.993 0.98 0.993 0.992 0.99 0.994 0.982 1 0.995

ucrss_fast_wfilter 0.987 0.993 0.979 0.992 0.992 0.988 0.994 0.979 0.995 1
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Table 3(on next page)

Beta diversity correlation by method and dataset.

Mantel correlation coe�cients (r) of beta diversity for (a) 88-soils unweighted UniFrac, 

(b) moving-pictures unweighted UniFrac, (c) whole-body unweighted UniFrac, (d) 88-

soils weighted UniFrac, (e) moving-pictures weighted UniFrac, and (f) moving-pictures 

weighted UniFrac.
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(a) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 0.935 0.908 0.944 0.942 0.939 0.945 0.909 0.943 0.941

ucr NA NA 0.915 0.94 0.945 0.934 0.942 0.918 0.944 0.949

ucrC NA NA NA 0.917 0.91 0.926 0.913 0.95 0.917 0.92

ucrss NA NA NA NA 0.94 0.938 0.945 0.914 0.938 0.942

ucrss_wfilter NA NA NA NA NA 0.934 0.943 0.907 0.942 0.941

uc_fast NA NA NA NA NA NA 0.938 0.92 0.939 0.941

ucr_fast NA NA NA NA NA NA NA 0.909 0.946 0.947

ucrC_fast NA NA NA NA NA NA NA NA 0.917 0.924

ucrss_fast NA NA NA NA NA NA NA NA NA 0.945

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA

(b) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 0.992 0.974 0.988 0.988 0.992 0.991 0.977 0.991 0.992

ucr NA NA 0.982 0.992 0.991 0.991 0.992 0.984 0.993 0.993

ucrC NA NA NA 0.986 0.985 0.973 0.982 0.994 0.981 0.981

ucrss NA NA NA NA 0.99 0.988 0.992 0.987 0.992 0.991

ucrss_wfilter NA NA NA NA NA 0.986 0.99 0.986 0.99 0.991

uc_fast NA NA NA NA NA NA 0.991 0.976 0.992 0.991

ucr_fast NA NA NA NA NA NA NA 0.983 0.993 0.992

ucrC_fast NA NA NA NA NA NA NA NA 0.982 0.983

ucrss_fast NA NA NA NA NA NA NA NA NA 0.993

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA

(c)ठ⃚ uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 0.935 0.891 0.938 0.936 0.93 0.926 0.889 0.933 0.925

ucr NA NA 0.899 0.948 0.95 0.934 0.931 0.895 0.941 0.927

ucrC NA NA NA 0.908 0.899 0.878 0.885 0.952 0.897 0.878

ucrss NA NA NA NA 0.953 0.938 0.936 0.905 0.945 0.928

ucrss_wfilter NA NA NA NA NA 0.937 0.94 0.894 0.941 0.932

uc_fast NA NA NA NA NA NA 0.942 0.872 0.939 0.938

ucr_fast NA NA NA NA NA NA NA 0.888 0.939 0.948

ucrC_fast NA NA NA NA NA NA NA NA 0.891 0.879

ucrss_fast NA NA NA NA NA NA NA NA NA 0.933

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA
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(d) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 0.896 0.936 0.951 0.901 0.925 0.937 0.924 0.956 0.902

ucr NA NA 0.896 0.889 0.966 0.891 0.939 0.895 0.901 0.947

ucrC NA NA NA 0.919 0.914 0.906 0.928 0.984 0.931 0.896

ucrss NA NA NA NA 0.9 0.917 0.947 0.903 0.949 0.899

ucrss_wfilter NA NA NA NA NA 0.885 0.938 0.911 0.899 0.94

uc_fast NA NA NA NA NA NA 0.909 0.898 0.919 0.874

ucr_fast NA NA NA NA NA NA NA 0.92 0.952 0.96

ucrC_fast NA NA NA NA NA NA NA NA 0.918 0.89

ucrss_fast NA NA NA NA NA NA NA NA NA 0.918

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA

(e) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 0.971 0.949 0.97 0.973 0.972 0.977 0.949 0.974 0.966

ucr NA NA 0.928 0.952 0.952 0.957 0.958 0.928 0.96 0.954

ucrC NA NA NA 0.96 0.94 0.948 0.934 0.999 0.965 0.932

ucrss NA NA NA NA 0.938 0.965 0.955 0.96 0.98 0.932

ucrss_wfilter NA NA NA NA NA 0.946 0.966 0.941 0.951 0.967

uc_fast NA NA NA NA NA NA 0.97 0.948 0.971 0.949

ucr_fast NA NA NA NA NA NA NA 0.934 0.967 0.967

ucrC_fast NA NA NA NA NA NA NA NA 0.965 0.932

ucrss_fast NA NA NA NA NA NA NA NA NA 0.951

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA

(f) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 0.947 0.896 0.934 0.943 0.96 0.939 0.898 0.904 0.936

ucr NA NA 0.9 0.924 0.95 0.951 0.92 0.904 0.871 0.944

ucrC NA NA NA 0.886 0.924 0.907 0.911 0.994 0.831 0.939

ucrss NA NA NA NA 0.944 0.92 0.917 0.882 0.918 0.911

ucrss_wfilter NA NA NA NA NA 0.933 0.918 0.926 0.897 0.932

uc_fast NA NA NA NA NA NA 0.955 0.909 0.889 0.966

ucr_fast NA NA NA NA NA NA NA 0.91 0.936 0.951

ucrC_fast NA NA NA NA NA NA NA NA 0.83 0.94

ucrss_fast NA NA NA NA NA NA NA NA NA 0.866

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA
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Table 4(on next page)

Taxonomic composition correlation by method and dataset.

Pearson correlation coe�cients (r) of taxonomic summaries for (a) 88-soils at phylum 

level, (b) 88-soils at genus level, (c) moving-pictures at phylum level, (d) moving-

pictures at genus level, (e) whole-body at phylum level, and (f) whole-body at genus 

level.
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(a) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 1 0.983 1 1 1 1 0.981 1 1

ucr NA NA 0.983 1 1 1 1 0.981 1 1

ucrC NA NA NA 0.983 0.983 0.983 0.983 0.999 0.983 0.983

ucrss NA NA NA NA 1 1 1 0.981 1 1

ucrss_wfilter NA NA NA NA NA 1 1 0.981 1 1

uc_fast NA NA NA NA NA NA 1 0.981 1 1

ucr_fast NA NA NA NA NA NA NA 0.981 1 1

ucrC_fast NA NA NA NA NA NA NA NA 0.981 0.981

ucrss_fast NA NA NA NA NA NA NA NA NA 1

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA

(b) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 0.939 0.85 0.939 0.939 1 0.94 0.84 0.94 0.94

ucr NA NA 0.821 1 1 0.94 0.998 0.923 0.998 0.998

ucrC NA NA NA 0.821 0.821 0.85 0.82 0.818 0.82 0.82

ucrss NA NA NA NA 1 0.94 0.998 0.923 0.998 0.998

ucrss_wfilter NA NA NA NA NA 0.94 0.998 0.923 0.998 0.998

uc_fast NA NA NA NA NA NA 0.94 0.84 0.94 0.94

ucr_fast NA NA NA NA NA NA NA 0.921 1 1

ucrC_fast NA NA NA NA NA NA NA NA 0.921 0.921

ucrss_fast NA NA NA NA NA NA NA NA NA 1

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA

(c)ठ⃚ uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 1 0.997 1 1 1 1 0.997 1 0.998

ucr NA NA 0.997 1 1 1 1 0.997 1 0.998

ucrC NA NA NA 0.997 0.997 0.997 0.997 1 0.997 0.998

ucrss NA NA NA NA 1 1 1 0.997 1 0.998

ucrss_wfilter NA NA NA NA NA 1 1 0.997 1 0.999

uc_fast NA NA NA NA NA NA 1 0.997 1 0.998

ucr_fast NA NA NA NA NA NA NA 0.997 1 0.998

ucrC_fast NA NA NA NA NA NA NA NA 0.997 0.997

ucrss_fast NA NA NA NA NA NA NA NA NA 0.998

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA
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(d) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 0.964 0.929 0.964 0.963 0.999 0.923 0.882 0.923 0.92

ucr NA NA 0.963 1 0.999 0.967 0.954 0.923 0.954 0.951

ucrC NA NA NA 0.963 0.963 0.934 0.925 0.917 0.925 0.925

ucrss NA NA NA NA 0.999 0.967 0.954 0.923 0.954 0.951

ucrss_wfilter NA NA NA NA NA 0.966 0.953 0.923 0.953 0.952

uc_fast NA NA NA NA NA NA 0.927 0.887 0.927 0.924

ucr_fast NA NA NA NA NA NA NA 0.885 1 0.997

ucrC_fast NA NA NA NA NA NA NA NA 0.885 0.884

ucrss_fast NA NA NA NA NA NA NA NA NA 0.997

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA

(e) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 1 0.999 1 1 1 1 0.998 1 1

ucr NA NA 0.999 1 1 1 1 0.998 1 1

ucrC NA NA NA 0.999 0.999 0.999 0.999 0.999 0.999 0.999

ucrss NA NA NA NA 1 1 1 0.998 1 1

ucrss_wfilter NA NA NA NA NA 1 1 0.998 1 1

uc_fast NA NA NA NA NA NA 1 0.998 1 1

ucr_fast NA NA NA NA NA NA NA 0.998 1 1

ucrC_fast NA NA NA NA NA NA NA NA 0.998 0.998

ucrss_fast NA NA NA NA NA NA NA NA NA 1

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA

(f) uc ucr ucrC ucrss ucrss_wfilter uc_fast ucr_fast ucrC_fast ucrss_fast ucrss_fast_wfilter

uc NA 0.959 0.9 0.959 0.959 1 0.913 0.879 0.913 0.913

ucr NA NA 0.918 1 1 0.957 0.967 0.871 0.967 0.967

ucrC NA NA NA 0.918 0.918 0.896 0.893 0.935 0.892 0.893

ucrss NA NA NA NA 1 0.957 0.967 0.871 0.967 0.967

ucrss_wfilter NA NA NA NA NA 0.957 0.967 0.871 0.967 0.967

uc_fast NA NA NA NA NA NA 0.912 0.876 0.912 0.912

ucr_fast NA NA NA NA NA NA NA 0.855 1 1

ucrC_fast NA NA NA NA NA NA NA NA 0.854 0.855

ucrss_fast NA NA NA NA NA NA NA NA NA 1

ucrss_fast_wfilter NA NA NA NA NA NA NA NA NA NA
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Table 5(on next page)

Runtime comparisons by method and dataset.

Comparison of runtimes (as seconds of wall time) for each method on each data set.
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88ૐ퀐soil movingૐ퀐picture wholeૐ퀐body

uc 1220 27748 1095

ucr 1358 46576 1082

ucrC 226 28572 388

ucrss 1493 47207 1212

ucrss_wfilter 1885 76061 2088

uc_fast 914 23510 489

ucr_fast 1052 19371 621

ucrC_fast 44 2428 68

ucrss_fast 1021 23710 707

ucrss_fast_wfilter 1525 52811 1661
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Table 6(on next page)

Runtime comparisons (parameter variations).

Comparison of runtimes (as seconds of wall time) for subsampled and “legacy” open-

reference OTU picking methods with variations on the default parameters.
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movingૐ퀐picture

abbreviation

ucr_fast_O29_r82 21737

ucr_fast_O29_r97 16241

ucrss_fast_O29_r82 17812

ucrss_fast_O29_r97 16169

ucrss_fast_O29_s1 14911
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Table 7(on next page)

Novel OTUs by biome.

Comparison of OTUs with closed-reference and open-reference OTU picking by biome 

in the Earth Microbiome Project dataset.
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Averageठ⃚

deठ⃚novoठ⃚

OTUsठ⃚(10Kठ⃚

sequencesठ⃚

perठ⃚

sample)

SDठ⃚deठ⃚

novoठ⃚OTUsठ⃚

(10Kठ⃚

sequencesठ⃚

perठ⃚

sample)

Averageठ⃚

Referenceठ⃚

OTUsठ⃚(10kठ⃚

sequencesठ⃚

perठ⃚

sample)

SDठ⃚

Referenceठ⃚

OTUsठ⃚(10kठ⃚

sequencesठ⃚

perठ⃚

sample)

%ठ⃚novelठ⃚

diversityठ⃚

(10kठ⃚seqsठ⃚

perठ⃚

sample)

%ठ⃚errorठ⃚

novelठ⃚

diversityठ⃚

(10Kठ⃚seqsठ⃚

perठ⃚

sample)

numberठ⃚ofठ⃚

samples

EnvironmentalBiome

mangroveठ⃚biome 2169 1159 354 73 0.86 0.46 7

tropicalठ⃚humidठ⃚forests 2398 260 397 35 0.858 0.094 26

tundraठ⃚biome 1771 403 312 117 0.85 0.201 110

desertsठ⃚andठ⃚xericठ⃚shrublandठ⃚

biome 3917 127 707 15 0.847 0.028 7

taiga 2598 102 505 35 0.837 0.035 4

marineठ⃚biome 2040 1048 484 410 0.808 0.446 890

aquaticठ⃚biome 714 299 177 199 0.801 0.403 762

freshwaterठ⃚biome 768 541 194 120 0.798 0.576 375

warmठ⃚desertsठ⃚andठ⃚semideserts
2386 473 607 147 0.797 0.166 97

tropicalठ⃚andठ⃚subtropicalठ⃚moistठ⃚

broadleafठ⃚forestठ⃚biome 3072 125 846 18 0.784 0.032 2

temperateठ⃚needleૐ퀐leafठ⃚forestsठ⃚

orठ⃚woodlands 2836 159 785 132 0.783 0.057 21

polarठ⃚biome 1721 886 483 218 0.781 0.414 277

tropicalठ⃚andठ⃚subtropicalठ⃚

coniferousठ⃚forestठ⃚biome 1993 256 579 94 0.775 0.106 3

mixedठ⃚islandठ⃚systems 1552 618 511 203 0.752 0.315 124

marginalठ⃚sea 1795 325 611 225 0.746 0.164 7

temperateठ⃚coniferousठ⃚forestठ⃚

biome 2504 1206 885 201 0.739 0.361 19

mediterraneanठ⃚forests,ठ⃚

woodlands,ठ⃚andठ⃚shrubठ⃚biome 695 361 275 195 0.717 0.424 371

largeठ⃚riverठ⃚biome 1844 629 743 369 0.713 0.282 5

terrestrialठ⃚biome 2714 222 1138 163 0.705 0.072 627

nestठ⃚ofठ⃚bird 821 276 355 138 0.698 0.262 313

Temperateठ⃚broadleafठ⃚andठ⃚

mixedठ⃚forestठ⃚biome 1910 491 879 235 0.685 0.195 14

temperateठ⃚grasslands 2745 290 1315 164 0.676 0.082 696

animalૐ퀐associatedठ⃚habitat 758 329 376 240 0.668 0.359 1036

mammaliaૐ퀐associatedठ⃚habitat 973 357 583 222 0.625 0.27 1918

Coldૐ퀐winterठ⃚(continental)ठ⃚

desertsठ⃚andठ⃚semideserts 847 210 551 215 0.606 0.215 102

Temperateठ⃚grasslands,ठ⃚

savannas,ठ⃚andठ⃚shrublandठ⃚

biome 1688 272 1497 275 0.53 0.121 85

humanૐ퀐associatedठ⃚habitat 292 242 590 366 0.331 0.498 1597
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Table 8(on next page)

Di�erentially represented OTUs by dataset.

Top 10 OTUs identi�ed as signi�cantly di�erent across (a) binned pH in 88-soils, (b) 

body site in moving-pictures, and (c) body site in whole-body.
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(a) taxonomy Testૐ퀐Statistic

OTU

113212 k__Bacteria;p__Acidobacteria;c__DA052;o__Ellin6513;f__;g__;s__ 55.859

1123837 k__Bacteria;p__Actinobacteria;c__Rubrobacteria;o__Rubrobacterales;f__Rubrobacteraceae;g__Rubrobacter;s__ 50.433

New.ReferenceOTU22 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__;g__;s__ 49.172

252012 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Sinobacteraceae;g__;s__ 48.65

843189 k__Bacteria;p__Acidobacteria;c__Solibacteres;o__Solibacterales;f__Solibacteraceae;g__Candidatusठ⃚Solibacter;s__ 47.006

1127423 k__Bacteria;p__Acidobacteria;c__Acidobacteriia;o__Acidobacteriales;f__Koribacteraceae;g__;s__ 43.87

1129210 k__Bacteria;p__Acidobacteria;c__Acidobacteriia;o__Acidobacteriales;f__Koribacteraceae;g__;s__ 43.804

831520 k__Bacteria;p__Actinobacteria;c__Rubrobacteria;o__Rubrobacterales;f__Rubrobacteraceae;g__Rubrobacter;s__ 43.625

1139779 k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria 41.863

804187 k__Bacteria;p__Acidobacteria;c__[Chloracidobacteria];o__RB41;f__;g__;s__ 41.151

(b) taxonomy Testૐ퀐Statistic

OTU

368134 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus;s__epidermidis 1599.696

3154070 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides;s__uniformis 1625.703

1000986 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium;s__ 1630.009

1992 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides;s__ 1728.164

4304475 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides;s__ 1545.445

191238 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Coprococcus;s__ 1546.436

187665 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__;s__ 1474.529

4396297 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__;s__ 1585.015

3903651 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Oscillospira;s__ 1670.188

3472078 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides;s__ 1783.488

(c)ठ⃚ taxonomy Testૐ퀐Statistic

OTU

4326219 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Campylobacteraceae;g__Campylobacte 363.881

ew.CleanUp.ReferenceOTU2k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Prevotellaceae;g__Prevotella;s__melaninogenica 358.02

4325533 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae;g__;s__ 349.852

w.CleanUp.ReferenceOTU17k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Veillonella;s__parvula 337.656

316732 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Lachnospira;s__ 337.309

4346374 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides;s__uniformis 331.433

4458959 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Veillonella 329.772

3866487 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Oribacterium;s__ 323.488

4391641 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus;s__parain 312

175751 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__;s__ 305.531
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