A peer-reviewed version of this preprint was published in PeerJ on 13 April 2018.

View the peer-reviewed version (peerj.com/articles/4593), which is the preferred citable publication unless you specifically need to cite this preprint.

https://doi.org/10.7717/peerj.4593
Phylogenetic evidence suggests a later origin of the DRD$_{2l}$ and DRD$_{4rs}$ dopamine receptor gene lineages

Juan C Opazo Correspond., 1 Kattina Zavala 1, Soledad Miranda-Rottmann 2, Roberto Araya 2

1 Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
2 Faculty of Medicine, University of Montreal, Montreal, Canada

Corresponding Author: Juan C Opazo
Email address: jopazo@gmail.com

Dopamine receptors are integral membrane proteins whose endogenous ligand is dopamine. They play a fundamental role in the central nervous system and dysfunction of dopaminergic neurotransmission is responsible for the generation of a variety of neuropsychiatric disorders. From an evolutionary standpoint, phylogenetic relationships among the DRD$_1$ class of dopamine receptors are still a matter of debate as in the literature different tree topologies have been proposed. In contrast, phylogenetic relationships among the DRD$_2$ group of receptors are well understood. Understanding the time of origin of the different dopamine receptors is also an issue that needs further study, especially for the genes that have restricted phyletic distributions (e.g. DRD$_{2l}$ and DRD$_{4rs}$).

Thus, the goal of this study was to investigate the evolution of dopamine receptors, with emphasis on shedding light on the phylogenetic relationships among the D$_1$ class of dopamine receptors and the time of origin of the DRD$_{2l}$ and DRD$_{4rs}$ gene lineages. Our results recovered the monophyly of the two groups of dopamine receptors. Within the DRD$_1$ group the monophyly of each paralog was recovered with strong support, and phylogenetic relationships among them were well resolved. Within the DRD$_1$ class of dopamine receptors we recovered the sister group relationship between the DRD$_{1C}$ and DRD$_{1E}$, and this clade was recovered sister to a cyclostome sequence. The DRD$_1$ clade was recovered sister to the aforementioned clade, and the group containing DRD$_5$ receptors was sister to all other DRD$_1$ paralogs. In agreement with the literature, among the DRD$_2$ class of receptors, DRD$_2$ was recovered sister to DRD$_3$, whereas DRD$_4$ was sister to the DRD$_2$/DRD$_3$ clade. According to our phylogenetic tree, the DRD$_{2l}$ and DRD$_{4rs}$ gene lineages would have originated in the ancestor of gnathostomes between 615 and 473 mya. Conservation of sequences required for dopaminergic neurotransmission and small changes in regulatory regions suggest a functional refinement of the dopaminergic pathways along evolution.
Phylogenetic evidence suggests a later origin of the DRD$_2$ and DRD$_{4rs}$ dopamine receptor gene lineages

Juan C. Opazo1, Kattina Zavala1, Soledad Miranda-Rottmann2, Roberto Araya2

1Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. 2Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada

Corresponding author
Juan C. Opazo
Instituto de Ciencias Ambientales y Evolutivas
Facultad de Ciencias
Universidad Austral de Chile
Valdivia, Chile
Phone: +56632221674
Email: jopazo@gmail.com

Keywords: Dopamine Receptors, Gene Family Evolution, whole genome duplications.
Abstract

Dopamine receptors are integral membrane proteins whose endogenous ligand is dopamine. They play a fundamental role in the central nervous system and dysfunction of dopaminergic neurotransmission is responsible for the generation of a variety of neuropsychiatric disorders.

From an evolutionary standpoint, phylogenetic relationships among the DRD1 class of dopamine receptors are still a matter of debate as in the literature different tree topologies have been proposed. In contrast, phylogenetic relationships among the DRD2 group of receptors are well understood. Understanding the time of origin of the different dopamine receptors is also an issue that needs further study, especially for the genes that have restricted phyletic distributions (e.g. DRD2l and DRD4rs). Thus, the goal of this study was to investigate the evolution of dopamine receptors, with emphasis on shedding light on the phylogenetic relationships among the D1 class of dopamine receptors and the time of origin of the DRD2l and DRD4rs gene lineages. Our results recovered the monophyly of the two groups of dopamine receptors. Within the DRD1 group the monophyly of each paralog was recovered with strong support, and phylogenetic relationships among them were well resolved. Within the DRD1 class of dopamine receptors we recovered the sister group relationship between the DRD1C and DRD1E, and this clade was recovered sister to a cyclostome sequence. The DRD1 clade was recovered sister to the aforementioned clade, and the group containing DRD2 receptors was sister to all other DRD1 paralogs. In agreement with the literature, among the DRD2 class of receptors, DRD2 was recovered sister to DRD3, whereas DRD4 was sister to the DRD2/DRD3 clade. According to our phylogenetic tree, the DRD2l and DRD4rs gene lineages would have originated in the ancestor of gnathostomes between 615 and 473 mya. Conservation of sequences required for dopaminergic neurotransmission and small changes in regulatory regions suggest a functional refinement of the dopaminergic pathways along evolution.
Introduction

The availability of whole genome sequences offers a great opportunity to study the evolution of genes involved in physiological processes in a variety of living organisms. The diversity of gene content and its evolutionary history are fundamental pieces of information that should be taken into account when comparing the physiology of different species. To understand the evolution of genes it is necessary to reconcile their evolutionary history by comparing relationships among genes –i.e. gene trees– and among species involved in the study –i.e. species trees. Thus, comparing both trees represents a powerful approach to infer homology, time of origin, birth-and-death processes, gene conversion events among others.

Dopamine receptors are integral membrane proteins that mediate the action of dopamine (Beaulieu & Gainetdinov, 2011). They play fundamental roles in functions associated with the central nervous system including learning, cognition, memory, feeding, sleep, and motor control among others (Beaulieu & Gainetdinov, 2011). Peripherally, these receptors are also involved in hormonal regulation, cardiovascular function, renal function, and olfaction among others (Beaulieu & Gainetdinov, 2011). Several human disorders are associated with dopamine receptors including parkinson’s disease, schizophrenia, Tourette’s syndrome, huntington’s disease, drug abuse and addiction, bipolar disorder, depression, and hypertension among others (Hussain & Lokhandwala, 1998; Hisahara & Shimohama, 2011; Chu et al., 2012; Chen et al., 2013; Denys et al., 2013; Brisch, 2014; Ashok et al., 2017). Based on their pharmacological properties, dopamine receptors are classified into two major groups: the DRD₁ group, which includes DRD₁, DRD₅, DRD₁c, and DRD₁E; and the DRD₂ group that includes DRD₂, DRD₂l, DRD₃, DRD₄, and DRD₄es (Yamamoto et al., 2015). Today it is well known that these groups originated independently such that the ability to bind dopamine was acquired twice during the
evolution of biogenic amine receptors (Callier et al., 2003; Yamamoto et al., 2013, 2015; Spielman, Kumar & Wilke, 2015). Although both groups share the ability to bind dopamine, they also show the signature of their independent histories as they differ in several other characteristics (Sibley, 1999; Beaulieu & Gainetdinov, 2011).

From an evolutionary standpoint, evolutionary relationships among the members of the DRD₁ class of dopamine receptors are still a matter of debate; different phylogenetic hypotheses have been proposed in the literature. For example, DRD₁ has been recovered sister to DRD₅, a clade that in turn is recovered sister to DRD₁C; in these studies DRD₁E is recovered sister to all other DRD₁ members (Callier et al., 2003; Yamamoto et al., 2013). In other cases, the clade containing DRD₁ sequences has been recovered sister to DRD₁C, and this group is sister to DRD₅ (Le Crom et al., 2004). A case in which the monophyly of DRD₁E has not been recovered has also been reported (Haug-Baltzell et al., 2015). There is also a case in which the members of the DRD₁ class of dopamine receptors have been recovered as two distinct clades, one that includes DRD₁ and DRD₃ and another grouping DRD₁C and DRD₁E (Yamamoto et al., 2015). In contrast to the lack of phylogenetic agreement among the DRD₁ class of dopamine receptors, phylogenetic relationships among the members of the DRD₂ class of dopamine receptors are well resolved as in most studies DRD₂ is recovered sister to DRD₃, whereas DRD₄ is recovered sister to the DRD₂/DRD₃ clade (Callier et al., 2003; Haug-Baltzell et al., 2015; Spielman, Kumar & Wilke, 2015; Yamamoto et al., 2015). Understanding the time of origin of the different dopamine receptors is also an issue that needs further study, especially for the genes that possess restricted phyletic distributions (e.g. DRD₂₁ and DRD₁₉). Regarding the time of origin, different hypotheses are associated with different phylogenetic predictions. Therefore, a phylogenetic tree that is built on adequate taxonomic sampling and an adequate number of genes should provide valuable information to understand the time of origin of dopamine receptors and also about their sister group relationships.
The goal of this study was to investigate the evolution of dopamine receptors, with emphasis on shedding light on the phylogenetic relationships among the DRD₁ class of dopamine receptors and the time of origin of the DRD₂₁ and DRD₄₁ gene lineages. Our results recovered the monophyly of the two groups of dopamine receptors. Within the DRD₁ class of receptors, the monophyly of each paralog was recovered with strong support, and phylogenetic relationships among them were well resolved. We recovered the sister group relationship between the DRD₁₂ and DRD₁₄ receptors, and this clade was recovered sister to a cyclostome sequence. The DRD₁ clade was recovered sister to the aforementioned clade, and the group containing the DRD₅ receptors was sister to all other DRD₁ paralogs. This topology represents a new phylogenetic hypothesis for the evolution of this group of dopamine receptors. In agreement with the literature, among the D₂ class of dopamine receptors, DRD₂ was recovered sister to DRD₃ whereas DRD₄ was sister to the DRD₂/DRD₃ clade. Finally, our phylogenetic evidence suggests a later origin of the DRD₂₁ and DRD₄₁ gene lineages.

Materials and methods

DNA data and phylogenetic analyses

We used bioinformatic procedures to annotate dopamine receptors in species of all major groups of vertebrates. Our sampling included mammals, birds, reptiles, amphibians, coelacanths, teleost fish, holostean fish, cartilaginous fish and cyclostomes (Supplementary Table S1). We also included sequences of the α₂-adrenoreceptors (ADRA2A, ADRA2B, ADRA2C, ADRA2D), and β-adrenoreceptors (ADRB1, ADRB2 and ADRB3)(Supplementary Table S1). Our final dataset contained 396 dopamine receptor sequences. Amino acid sequences were aligned using the FFT-NS-i strategy from MAFFT v.7 (Katoh & Standley, 2013). We used the proposed model tool of IQ-Tree(Trifinopoulos et al., 2016) to select the best-fitting model of amino acid substitution (JTT + R9). We performed a maximum likelihood analysis to obtain the best tree using the
program IQ-Tree (Trifinopoulos et al., 2016); support for the nodes was assessed with 1,000 bootstrap pseudoreplicates using the ultrafast routine. Human ADRA1A, ADRA1B, and ADRA1D sequences were used as outgroups.

Assessments of Conserved Synteny

We examined genes found upstream and downstream of the dopamine receptor genes of representative vertebrate species. We used the estimates of orthology and paralogy derived from the EnsemblCompara database (Herrero et al., 2016); these estimates are obtained from an automated pipeline that considers both synteny and phylogeny to generate orthology mappings. These predictions were visualized using the program Genomicus v90.01 (Louis et al., 2015). Our analyses were performed in humans (Homo sapiens), chicken (Gallus gallus), spotted gar (Lepisosteus oculatus) and elephant shark (Callorhinchus milii). In the case of the elephant shark (http://esharkgenome.imcb.a-star.edu.sg/), the genomic pieces containing the dopamine receptor genes were annotated, and predicted genes were then compared with the non-redundant protein database using Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990).

Molecular structure and graphics

Molecular graphics and analyses of the human DRD4 protein structure were performed with the UCSF Chimera package (Pettersen et al., 2004) using the 1.96Å resolution structural file PDB ID: 5WIV (Wang et al., 2017). Sequences were aligned using Vector NTI Express (Thermo Fisher). Human protein sequences DRD2: NP_000786.1 and DRD4: NP_000788 were used as reference for the numbering and alignment.

Results and Discussion

Overview of the evolution of dopamine receptors
In this work we performed an evolutionary study of dopamine receptors in representative species of all major groups of vertebrates. We combined gene phylogenies and syntenic analyses with the main goal of understanding the duplicative history of the DRD\textsubscript{1} class of dopamine receptors and the time of origin of the DRD\textsubscript{2\,1} and DRD\textsubscript{4\,rs} gene lineages.

Our phylogenetic tree recovered the monophyly of the two groups of dopamine receptors (Fig. 1). In the first clade we recovered the sister group relationship between the DRD\textsubscript{1} class of receptors and a clade containing β-adrenoreceptors (Fig. 1); in the second clade, the DRD\textsubscript{2} receptors were recovered sister to the α\textsubscript{2}-adrenoreceptors (Fig. 1). This phylogenetic arrangement is in agreement with previous results (Yamamoto et al., 2013; Spielman, Kumar & Wilke, 2015; Céspedes et al., 2017; Zavala et al., 2017) and reflects the fact that the ability to bind dopamine was acquired twice during the evolutionary history of biogenic amine receptors (Callier et al., 2003; Yamamoto et al., 2015). Although the DRD\textsubscript{1} and DRD\textsubscript{2} receptor families share the ability to bind dopamine, they also show the signature of their independent histories as they differ in several other characteristics. From a structural standpoint, the DRD\textsubscript{1} class of receptors is characterized by the lack of introns, a short third cytoplasmatic loop and a long C-terminal tail. Conversely, DRD\textsubscript{2} possess up to six introns, encoding a long third cytoplasmatic loop and a short C-terminal tail (Gingrich & Caron, 1993). From a biochemical perspective, the DRD\textsubscript{1} group of receptors activates the Gα\textsubscript{S\,olf} family of G proteins stimulating adenilate cyclase activity and production of cAMP, whereas DRD\textsubscript{2} group of receptors activate the Gα\textsubscript{s\,io} family of G proteins inhibiting adenilate cyclase activity and reducing levels of cAMP (Sibley, 1999; Beaulieu & Gainetdinov, 2011). From a synaptic anatomy standpoint, the DRD\textsubscript{1} class of receptors is located exclusively at the postsynaptic site whereas the DRD\textsubscript{2} class is found both in pre- and postsynaptic terminals (Sibley, 1999; Beaulieu & Gainetdinov, 2011).

Phylogenetic relationships among the D\textsubscript{1} class of dopamine receptors
According to our phylogenetic analyses, the monophyly of the DRD1 class of dopamine receptors, as well as the monophyly of each paralog (DRD1, DRD5, DRD1C and DRD1E), were recovered with strong support (Fig. 1). In all cases synteny analyses provided further support for the identity of the four DRD1 clades recovered in our phylogenetic tree (Fig. 2). Phylogenetic relationships among the different DRD1 lineages were well resolved (Fig. 1). We recovered the sister group relationship between the DRD1C and DRD1E dopamine receptors (Fig. 1), and this clade was recovered sister to a cyclostome sequence (Fig. 1). The DRD1 clade was recovered sister to the aforementioned clade, and the group containing DRD5 sequences was recovered sister to all other DRD1 paralogs (Fig. 1). Although in the literature there are studies reporting dopamine receptor phylogenies (Callier et al., 2003; Le Crom et al., 2004; Yamamoto et al., 2013, 2015; Haug-Baltzell et al., 2015), they are not directly comparable as the taxonomic and/or family membership sampling differ. Beyond this point, phylogenetic relationships among the DRD1 class of dopamine receptors seem to still be a matter of debate. In some cases DRD1 has been recovered sister to DRD5, a clade that in turn is recovered sister to DRD1C; in these studies DRD1E is recovered sister to all other DRD1 (Callier et al., 2003; Le Crom et al., 2003; Yamamoto et al., 2013). In other studies the clade containing DRD1 sequences has been recovered sister to DRD1C, and this group is sister to DRD5 (Le Crom et al., 2004). A case in which the monophyly of DRD1E is not recovered has also been reported (Haug-Baltzell et al., 2015). Finally, there is also a case in which the DRD1 class of receptors has been recovered as two different clades, one that includes DRD1 and DRD5 and another grouping DRD1C and DRD1E (Yamamoto et al., 2015).

Thus, our results propose a new phylogenetic hypothesis regarding the evolution of the DRD1 class of dopamine receptors (Fig. 1). Overall, we believe that our hypothesis is well supported based on a taxonomic sampling that covered all main groups of vertebrates, as well as, the phylogenetic context of the monoamine receptors (Spielman, Kumar & Wilke, 2015).
Phylogenetic relationships among the D_2 class of dopamine receptors

We recovered the monophyly of the DRD_2 class of dopamine receptors with strong support (Fig. 1). The monophyly of all paralogs of this class of receptors are also well supported, defining clear orthology and paralogy (Fig. 1). Synteny analyses provide further support for the evolutionary identity of all D_2 dopamine receptors (Fig. 3). In our phylogenetic tree DRD_2 was recovered sister to DRD_3 with strong support (Fig. 1), whereas DRD_4 was sister to the DRD_2/DRD_3 clade (Fig. 1).

In contrast to the lack of phylogenetic resolution among the DRD_1 class of dopamine receptors, phylogenetic relationships among the DRD_2 class of receptors seem to be well resolved as all studies, including ours, show the same topology ($((DRD_2,DRD_3),DRD_4)$(Callier et al., 2003; Le Crom et al., 2003; Haug-Baltzell et al., 2015; Spielman, Kumar & Wilke, 2015; Yamamoto et al., 2015).

Phylogenetic evidence for the origin of the DRD_{2l} gene lineage in the ancestor of gnathostomes

In agreement with Yamamoto et al. (2015) (Yamamoto et al., 2015), our phylogenetic analyses also suggest the presence of an extra dopamine receptor gene lineage that is related to DRD_2 gene (Boehmier et al., 2004; Boehmler et al., 2007) (Fig. 4). Although our results agree with Yamamoto et al. (2015) (Yamamoto et al., 2015) regarding the presence of a new dopamine receptor gene lineage, our results suggest a different time of origin.

According to our results, we recovered a strongly supported clade containing the DRD_{2l} sequences of teleost fish, holostean fish, and coelacanths (Fig. 4) sister to the clade containing DRD_2 sequences of gnathostomes (Fig. 4). This tree topology suggests that in the ancestor of gnathostomes, between 615 and 473 mya, the DRD_2 gene underwent a duplication event that gave rise to an extra DRD_2 gene copy – the DRD_{2l} – that was independently lost in the ancestor of tetrapods and cartilaginous fish (Fig. 5). In support of this scenario, our phylogenetic tree recovered a cyclostome sequence sister to the DRD_2/DRD_{2l} clade (Fig. 4). The pattern of gene
conservation found up, and downstream of DRD₂ and DRD₄ genes, provides further support for
the presence of two DRD₂ dopamine receptor gene lineages (Fig. 3). For example, in the spotted
gar (*Lepisosteus oculatus*), a species that possesses both DRD₂ gene copies, DRD₂ and DRD₂₁ are
found in different chromosomal locations. The identity of their genomic locations is defined by
the presence of upstream and downstream flanking genes all across gnathostome vertebrates.
Thus, the upstream genes ANKK1 and TTC12 and the downstream genes TMPRSS, ZW10,
USP28 and HTR3B define the genomic location of the DRD₂ gene lineage, whereas the upstream
gene XRCC1 and downstream genes ETHE1, PHLDB3 and IRQ1 define the genomic location
of the DRD₂₁ gene lineage (Fig. 3). Importantly, this pattern of conservation is also found in
species that lost the DRD₂₁ gene from their genomes (Fig. 3).

The evolutionary hypothesis proposed here is different from that proposed by Yamamoto
et al. (2015) in which the clade containing DRD₂₁ sequences was
recovered sister to a clade containing DRD₂ sequences of vertebrates. Thus, according to their
phylogeny the duplication event that gave rise to the DRD₂₁ gene would have occurred in the
ancestor of vertebrates, between 676 and 615 mya, even though they claim that the origin of this
gene occurred after the Osteichthyes-Chondrichthyes divergence, between 473 and 435 mya
(Yamamoto et al., 2015). Beyond this discrepancy, both evolutionary scenarios proposed in the
study of Yamamoto et al. (2015) are different from ours.

An amino acid alignment of both DRD₂ gene lineages revealed that in the case of the
spotted gar (*Lepisosteus oculatus*) and the coelacanth (*Latimeria chalumnae*) the divergence
between DRD₂ and DRD₂₁ receptors is approximately 30% whereas it is approximately 45% in
zebrafish (*Danio rerio*). These estimates are in agreement with previous reports (Boehmier et al.,
2004). Additionally, the human DRD₂ amino acid sequence was aligned to the zebrafish,
coelacanth and spotted gar DRD₂₁ sequence to infer functionally significant changes (Fig. 6). The
binding sites for dopamine and DRD₂ agonists and antagonists are conserved among these
species. However, the adjacent hydrophobic pocket, which confers ligand specificity to DRD₂ is not conserved (Fig. 6). While in humans, coelacanths and spotted gar the second amino acid of the third transmembrane domain (TM3) is phenylalanine (F), it is leucine (L) in zebrafish. This change from an aromatic to an aliphatic amino acid could change the zebrafish DRD_{2l} ligand specificity and therefore its function. The site that confers specificity to the human G protein subunit G_{ai} (Senoogle et al., 2004)(Fig. 6; orange asterisks) is not conserved among species. The side chain size, shape and polarity changes observed could potentially influence the receptor/G protein coupling specificity, suggesting important evolutionary differences.

Phylogenetic evidence for the origin of DRD_{4r} gene lineage in the ancestor of gnathostomes

Also in agreement with Yamamoto et al. (2015)(Yamamoto et al., 2015) our phylogenetic reconstruction identified an extra dopamine receptor gene lineage that is related to the DRD₄ gene (Fig. 1 and 7). According to our phylogenetic tree, a strongly supported clade that contains dopamine receptors of bony fish and coelacanths was recovered sister to the DRD₄ clade of gnathostomes (Fig. 7). Similarly to the DRD_{2l} gene lineage, this topology suggests that the DRD₄ gene underwent a duplication event in the ancestor of gnathostomes, between 615 and 473 mya, giving rise to an extra copy of the DRD₄ gene. During the radiation of the group, one of the copies (DRD₄) was retained in all main groups of gnathostomes, whereas the other was only retained in bony fish and coelacanths (Fig. 5). In agreement with this hypothesis, our phylogenetic reconstruction recovered a lamprey sequence sister to the DRD_{4r}/DRD₄ clade (Fig. 7). Synteny analyses provide further support to our phylogenetic tree, as the genomic locations that harbor both DRD₄ gene lineages are different (Fig. 3). Thus, there are four upstream genes (SCT, CDHR5, IRF7 and PHRF1) and four genes downstream (DEAF1, TMEM80, EPS8L2 and TALDO1) that define the identity of the DRD₁ genomic location (Fig. 3). Similarly, there are upstream genes (KCP, CDHR5, IRF5 and TNOP3) and downstream genes (ATP6V1F) of the
DRD_{4rs} gene that define the identity of its genomic location (Fig. 3). Similar to that found for the
DRD₂ genes, our evolutionary hypothesis regarding the origin of the DRD_{4rs} gene lineage is
different from the scenario proposed by Yamamoto et al. (2015)(Yamamoto et al., 2015).
According to their results, the clade containing DRD_{4rs} sequences was recovered sister to a clade
containing DRD₄ sequences of vertebrates. Therefore, their phylogenetic tree suggests that the
evolutionary origin of the DRD_{4rs} gene lineage would be in the ancestor of vertebrates, between
676 and 615 mya, as a product of two rounds of whole genome duplication (Yamamoto et al.,
2015). Thus, both studies suggest different evolutionary scenarios regarding the time of origin of
the DRD_{4rs} gene lineage.

The divergence between the DRD₄ and DRD_{4rs} gene lineages was found to be higher
compared to that estimated for the DRD₂ gene lineages. In the case of the spotted gar
(<i>Lepisosteus oculatus</i>) and the coelacanth (<i>Latimeria chalumnae</i>) divergence was approximately
45% whereas in zebrafish (<i>Danio rerio</i>) it was approximately 49%. The human DRD₄ amino acid
sequence was aligned to the zebrafish, coelacanth and spotted gar DRD_{4rs} sequence (Fig. 8). The
binding sites for dopamine and DRD₂ agonists and antagonists are conserved among species.
Interestingly, two sites in the hydrophobic pocket of the dopamine receptor differ. The first site is
located in the selectivity region of DRD₄, where a change from tyrosine (Y) to phenylalanine (F)
occurs at position 91 (F91) of the human receptor sequence (Fig. 8; green asterisk). At the second
site (Fig. 8; green asterisk) in position 193 of the human DRD₄, the isoleucine (I) in the
corresponding spotted gar sequence is changed to valine (V) in the other species (V193). To
understand the potential effects that these changes might have on DRD₄ function we used the
recently uncovered crystal structure of the human DRD₄ sequence coupled to the antipsychotic
drug nemonapride (Wang et al., 2017). All amino acids within 4Å of the active site are conserved
(Fig. 9A and 9A’, red amino acids; 9B, red dots) except two. First, F91, which is, located in the
recently discovered extended binding pocket, a region poorly conserved among dopamine
receptors that is key for receptor class specificity (Wang et al., 2017). Second, V193 that is located in the orthosteric-binding pocket that modulates agonist response (Lane et al., 2013) (Fig. 9A green amino acids, 9B, green dots). Simulated mutagenesis to the amino acids present in the spotted gar sequence (Fig. 9B’, green amino acids) shows how F91 changes the shape of the extended binding pocket compared to the human sequence, suggesting an important evolutionary change in ligand specificity and receptor function.

Duplicative history and ancestral gene repertoires

To understand the duplicative history of dopamine receptors, including the definition of ancestral repertoires, it is necessary to reconcile the evolutionary history of the gene lineages with the sister group relationships among the species involved. According to our results, the presence of differentiated dopamine receptors in vertebrates (Fig. 5) allowed us to infer that at some point of time the vertebrate ancestor possessed two dopamine receptors, one of each class (Fig. 10). After the two rounds of whole genome duplications (WGD) that occurred in the ancestor of the group (Garcia-Fernàndez & Holland, 1994; Dehal & Boore, 2005) each ancestral gene (DRD$_{1anc}$ and DRD$_{2anc}$) gave rise to four genes in each class of dopamine receptors (Fig. 10). In support of this hypothesis, the DRD$_1$ and DRD$_2$ classes of dopamine receptors appear in the repository of genes that originated and were retained after the WGDs occurred in the ancestor of vertebrates (Singh, Arora & Isambert, 2015). The fact that non-vertebrate chordates possess just one DRD$_1$ (Kamesh, Aradhyam & Manoj, 2008; Burman et al., 2009) and that the four chromosomal locations where the DRD$_1$ class of receptors are located in humans derive from a single linkage group in the chordate ancestor(Putnam et al., 2008) provide support to our hypothesis. Overall, three out of the four DRD$_1$ originated as a product of the WGDs were retained in the genome of the vertebrate ancestor (DRD$_1$, DRD$_5$ and DRD$_{1C/E}$; Fig. 10). After that, in the gnathostome ancestor the DRD$_{1C/E}$ gene underwent a duplication event that gave rise to the actual DRD$_{1C}$ and DRD$_{1E}$ genes (Fig.
In support of this, we recovered a cyclostome sequence sister to the clade containing the
DRD_{1C} and DRD_{1E} genes. Thus, the gnathostome ancestor that existed between 615 and 473 mya
had a repertoire of four DRD_{1} genes: DRD_{1}, DRD_{5}, DRD_{1C} and DRD_{1E} (Fig. 10). In teleost fish, a
group that experienced an extra round of whole genome duplication (Meyer & Van de Peer, 2005;
Kasahara et al., 2007; Sato & Nishida, 2010; Glasauer & Neuhauss, 2014), all DRD_{1} doubled in
number, however, three out of the four gene lineages retained duplicated copies (Fig. 5)
(Yamamoto et al., 2013, 2015).

Similarly to the DRD_{1} class of receptor, the vertebrate specific WGDs originated four
DRD_{2} genes, three of which were maintained in the genome of extant species (DRD_{2}, DRD_{3} and
DRD_{4}; Fig. 5 and 10). In the ancestor of gnathostomes the DRD_{2} gene underwent a duplication
event that gave rise to an extra copy of the DRD_{2} gene (DRD_{2r}; Fig. 4 and 10). In this case both
genes followed different evolutionary trajectories. On one hand DRD_{2} was retained in the
genome of all of the main groups of vertebrates (Fig. 5) whereas DRD_{2r} was only retained in
coeelacanths and bony fish (Fig. 5)(Yamamoto et al., 2015). Similarly, the DRD_{4} gene also
underwent a duplication event that gave rise to an extra copy of the gene (DRD_{4r}; Fig. 7 and 10).
This case is similar to that found for the DRD_{2} gene, as one of the copies (DRD_{4}) was retained in
the genome of all of the main groups of vertebrates, while the other was independently lost in
tetrapods and cartilaginous fish (Fig. 6). Consequently, the ancestor of gnathostome vertebrates
possessed a repertoire of five DRD_{2} class of dopamine receptors: DRD_{2}, DRD_{2r}, DRD_{3}, DRD_{4}
and DRD_{4r} (Fig. 10). As a consequence of the teleost-specific genome duplication (Meyer & Van
de Peer, 2005; Kasahara et al., 2007; Sato & Nishida, 2010; Glasauer & Neuhauss, 2014), teleost
fish doubled their number of DRD_{2} receptors, however extant species retained duplicated copies
in just two gene lineages (Fig. 5)(Yamamoto et al., 2015).

Concluding remarks
We present an evolutionary study of the dopamine receptors with special emphasis on unraveling the phylogenetic relationships of the D₁ class of receptors and the time of origin of the DRD₂₁ and DRD₄₅ gene lineages. Our study comprised taxonomic sampling that included representative species of all main groups of vertebrates in addition to other vertebrate biogenic amine receptors. Thus, we were able to reconstruct in a single phylogenetic tree the evolutionary history of both classes of dopamine receptors. In the case of the DRD₁ class, our results propose a new phylogenetic hypothesis in which DRD₁C was recovered sister to DRD₁E and this clade was recovered sister to a cyclostome sequence. DRD₁ was recovered sister to the aforementioned clade, and the group containing the DRD₅ sequences was sister to all other DRD₁ paralogs. According to our phylogenetic tree, the evolutionary origin of the DRD₂₁ and DRD₄₅ gene lineages would have happened in the ancestor of gnathostomes between 615 and 473 mya, which differs from current proposed scenarios. Of special interest is the analysis of sequences required for dopaminergic neurotransmission. We found high conservation of agonist and antagonist sites suggesting evolutionary conserved dopaminergic pathways. We also found small variation in the dopamine-binding regulatory regions showing a refinement of ligand specificity and big variations in G protein-coupling sequences suggesting differences in downstream signaling cascades through evolution. These new data on evolutionary divergence may help with the rational design of new agonist and antagonist to modulate the dopaminergic pathway.

Funding

This work was supported by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 1160627) to JCO, from the Canadian Institutes of Health Research (CIHR) grant RNI00109 and Canadian Foundation for Innovation (CFI) equipment grant *Fonds des leaders* 29970 to RA.
Figure legends

Figure 1. Maximum likelihood tree depicting evolutionary relationships among dopamine receptors in vertebrates. Numbers on the nodes correspond to maximum likelihood ultrafast bootstrap support values. Human ADRA\textsubscript{1A}, ADRA\textsubscript{1B}, and ADRA\textsubscript{1D} sequences were used as outgroups.

Figure 2. Patterns of conserved synteny in the chromosomal regions that harbor the DRD\textsubscript{1} class of dopamine receptors.

Figure 3. Patterns of conserved synteny in the chromosomal regions that harbor the DRD\textsubscript{2} class of dopamine receptors.

Figure 4. Maximum likelihood trees depicting evolutionary relationships among DRD\textsubscript{2} and DRD\textsubscript{2i} dopamine receptors in vertebrates. Numbers on the nodes correspond to maximum likelihood ultrafast bootstrap support values. This tree topology does not represent novel phylogenetic analyses; they are the DRD\textsubscript{2}/DRD\textsubscript{2i} clade that was recovered from Fig. 1.

Figure 5. Maximum likelihood trees depicting evolutionary relationships among DRD\textsubscript{4} and DRD\textsubscript{4rs} dopamine receptors in vertebrates. Numbers on the nodes correspond to maximum likelihood ultrafast bootstrap support values. This tree topology does not represent novel phylogenetic analyses; they are the DRD\textsubscript{4}/DRD\textsubscript{4rs} clade that was recovered from Fig. 1.

Figure 6. Phyletic distribution of dopamine receptor genes in vertebrates.
Figure 7. Alignment of the human dopamine receptor 2 (DRD$_2$) with zebrafish (Danio rerio), coelacanth (Latimeria chalumnae) and spotted gar (Lepisosteus oculatus) dopamine receptor 2 (DRD$_2$). Shaded regions denote transmembrane domains according to UniProt. Dopamine binding sites, agonist and antagonist binding sites were predicted with theoretical and computational techniques (Yashar et al., 2004) and experimental evidence (Shi & Javitch, 2002). Amino acids in the third intracellular loop conferring G protein subunit Gai specificity (Senogles et al., 2004) are indicated by orange asterisks.

Figure 8. Alignment of the human dopamine receptor 4 (DRD$_4$) with zebrafish (Danio rerio), coelacanth (Latimeria chalumnae) and spotted gar (Lepisosteus oculatus) dopamine receptor 4 (DRD$_4$). Shaded regions denote transmembrane domains according to UniProt. Dopamine binding sites (red dots) were determined by site directed mutagenesis (Cummings et al., 2010) and homology to DRD$_2$. Antagonist binding sites and hydrophobic pocket-including selectivity region were obtained from mutagenesis studies (Cummings et al., 2010) and from the crystal structure of the receptor coupled to the antagonist nemonapride (Wang et al., 2017). Non-conserved amino acids in the nemonapride binding pocket are labeled with green asterisks. Binding sites for the selective agonist UCSF924 are also shown (light blue dot).

Figure 9. Structural details of the human DRD$_4$ binding site to the antipsychotic drug nemonapride (in blue). (A) Conserved amino acids within 4Å of the drug molecule are shown with functional groups (in red). Non-conserved amino acids (in green) were changed (inset A`) to the residue present in the fish species: F91Y and V193I. Mutagenesis was simulated choosing the rotamer with the highest probability (B). Partial alignment of the human dopamine receptor 4 (DRD$_4$) with zebrafish (Danio rerio), coelacanth (Latimeria chalumnae) and spotted gar (Lepisosteus oculatus) dopamine receptor 4 (DRD$_{4s}$) showing the numbers corresponding to the
human DRD$_4$ sequence (NP_000788). Conserved and non-conserved aminoacids shown in (A) are indicated with red and green dots respectively. Non-conserved aminoacids within the region are also shown in green fonts.

Figure 10. An evolutionary hypothesis regarding the origin of dopamine receptor genes in vertebrates. According to this model, the vertebrate ancestor possessed two dopamine receptors, one of each class. However, after the two rounds of whole genome duplications (WGD) that occurred in the ancestor of the group each ancestral gene (DRD$_{1anc}$ and DRD$_{2anc}$) gave rise to four genes in each class of receptors. In the case of the DRD$_1$ class of dopamine receptors three out of the four genes originated as a product of the WGDs were retained in the genome of the vertebrate ancestor. In the gnathostome ancestor, the DRD$_{1C/E}$ gene underwent a duplication event that gave rise to the actual DRD$_{1C}$ and DRD$_{1E}$ genes. Thus, the gnathostome ancestor that existed between 615 and 473 mya had a repertoire of four DRD$_1$ genes: DRD$_1$, DRD$_5$, DRD$_{1C}$ and DRD$_{1E}$. In the case of the DRD$_2$ group of receptors, the vertebrate WGDs originated four genes, three of which were maintained in the genome of extant species (DRD$_2$, DRD$_3$ and DRD$_4$). In the ancestor of gnathostomes, the DRD$_2$ gene underwent a duplication event that gave rise to an extra copy of the DRD$_2$ gene (DRD$_{2l}$). Similarly, the DRD$_4$ gene also underwent a duplication event that gave rise to an extra copy of the gene (DRD$_{4rs}$). Thus, the ancestor of gnathostome vertebrates possessed a repertoire of five DRD$_2$ genes: DRD$_2$, DRD$_{2l}$, DRD$_3$, DRD$_4$ and DRD$_{4rs}$.
References

Sato Y., Nishida M. 2010. Teleost fish with specific genome duplication as unique models of vertebrate evolution. *Environmental Biology of Fishes* 88:169–188. DOI: 10.1007/s10641-

Yamamoto K., Mirabeau O., Bureau C., Blin M., Michon-Coudouel S., Demarque M., Vernier P.

Maximum likelihood tree depicting evolutionary relationships among dopamine receptors in vertebrates.

Maximum likelihood tree depicting evolutionary relationships among dopamine receptors in vertebrates. Numbers on the nodes correspond to maximum likelihood ultrafast bootstrap support values. Human ADRA$_{1A}$, ADRA$_{1B}$, and ADRA$_{1D}$ sequences were used as outgroups.
D1-like family

DRD1

D1C

D1E

DRD5

D2-like family

DRD2

DRD3

DRD4

ADRA2A, B, C, D

ADRA1A, B, D

ADRB1, 2, 3
Patterns of conserved synteny in the chromosomal regions that harbor the DRD1 class of dopamine receptors.

Patterns of conserved synteny in the chromosomal regions that harbor the DRD1 class of dopamine receptors.
Figure 3 (on next page)

Patterns of conserved synteny in the chromosomal regions that harbor the DRD$_2$ class of dopamine receptors.

Patterns of conserved synteny in the chromosomal regions that harbor the DRD$_2$ class of dopamine receptors.
Maximum likelihood trees depicting evolutionary relationships among DRD$_2$ and DRD$_{2l}$ dopamine receptors in vertebrates. Numbers on the nodes correspond to maximum likelihood ultrafast bootstrap support values. This tree topology does not represent novel phylogenetic analyses; they are the DRD$_2$/DRD$_{2l}$ clade that was recovered from Fig. 1.
Figure 5 (on next page)

Phyletic distribution of dopamine receptor genes in vertebrates.

Phyletic distribution of dopamine receptor genes in vertebrates.
<table>
<thead>
<tr>
<th></th>
<th>D₁-like family</th>
<th></th>
<th>D₂-like family</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DRD1</td>
<td>DRD5</td>
<td>DRD1C</td>
</tr>
<tr>
<td>Mammals</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Birds</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Crocodiles</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Turtles</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Squamates</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Amphibians</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Coelacanths</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Holostean fish</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Teleost fish</td>
<td>✔²</td>
<td>✔²</td>
<td>✔²</td>
</tr>
<tr>
<td>Cartilaginous fish</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Cyclostomes</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
</tbody>
</table>
Alignment of the human dopamine receptor 2 (DRD₂) with zebrafish (Danio rerio),
coelacanth (Latimeria chalumnae) and spotted gar (Lepisosteus oculatus) dopamine
receptor 2l (DRD₂l).

Shaded regions denote transmembrane domains according to UniProt. Dopamine binding
sites, agonist and antagonist binding sites were predicted with theoretical and computational
techniques (Yashar et al., 2004) and experimental evidence (Shi & Javitch, 2002). Amino
acids in the third intracellular loop conferring G protein subunit Gαi specificity (Senogles et
al., 2004) are indicated by orange asterisks.
Maximum likelihood trees depicting evolutionary relationships among DRD\textsubscript{4} and DRD\textsubscript{4rs} dopamine receptors in vertebrates. Numbers on the nodes correspond to maximum likelihood ultrafast bootstrap support values. This tree topology does not represent novel phylogenetic analyses; they are the DRD\textsubscript{4}/DRD\textsubscript{4rs} clade that was recovered from Fig. 1.
Alignment of the human dopamine receptor 4 (DRD₄) with zebrafish (*Danio rerio*), coelacanth (*Latimeria chalumnae*) and spotted gar (*Lepisosteus oculatus*) dopamine receptor 4rs (DRD₄rs).

Alignment of the human dopamine receptor 4 (DRD₄) with zebrafish (*Danio rerio*), coelacanth (*Latimeria chalumnae*) and spotted gar (*Lepisosteus oculatus*) dopamine receptor 4rs (DRD₄rs). Shaded regions denote transmembrane domains according to UniProt. Dopamine binding sites (red dots) were determined by site directed mutagenesis (Cummings et al., 2010) and homology to DRD₂. Antagonist binding sites and hydrophobic pocket-including selectivity region-were obtained from mutagenesis studies (Cummings et al., 2010) and from the crystal structure of the receptor coupled to the antagonist nemonapride (Wang et al., 2017). Non-conserved amino acids in the nemonapride binding pocket are labeled with green asterisks. Binding sites for the selective agonist UCSF924 are also shown (light blue dot).
Structural details of the human DRD₄ binding site to the antipsychotic drug nemonapride (in blue). (A) Conserved amino acids within 4Å of the drug molecule are shown with functional groups (in red). Non-conserved amino acids (in green) were changed (inset A´) to the residue present in the fish species: F91Y and V193I. Mutagenesis was simulated choosing the rotamer with the highest probability (B). Partial alignment of the human dopamine receptor 4 (DRD₄) with zebrafish (Danio rerio), coelacanth (Latimeria chalumnae) and spotted gar (Lepisosteus oculatus) dopamine receptor 4rs (DRD₄rs) showing the numbers corresponding to the human DRD₄ sequence (NP_000788). Conserved and non-conserved aminoacids shown in (A) are indicated with red and green dots respectively. Non-conserved aminoacids within the region are also shown in green fonts.
A

hDRD4

C185
L111
L90
Asp115
V87
M112
V193
F91

B

Human DRD4
Zebrash DRD4rs
Coelacanth DRD4rs
Spotted gar DRD4rs

VLPLF...ALMAMDVMLCT....CRLED...YVVSSVC...WTPFFVHITQLCPACSVPPRLVSAVTWLGY
VLPLY...ALMTMDVMLCT....CRLED...QFVVYSSVC...WTPFFVHVTKALCECDIGTLISVTWLGY
VLPLY...ALMTMDVMLCT....CRLED...NFVVYSSAC...WTPFFVHVTKLCEACNIGTLISVTWLGY
VLPLY...ALMTMDVMLCT....CRLED...DFIVYSSVC...WTPFFVHVTVLCVSCDIGTLISVTWLGY

87 90 111 115 119 120 185 187 193 197 200 359 362 366 386 390
An evolutionary hypothesis regarding the origin of dopamine receptor genes in vertebrates.

According to this model, the vertebrate ancestor possessed two dopamine receptors, one of each class. However, after the two rounds of whole genome duplications (WGD) that occurred in the ancestor of the group each ancestral gene (\textit{DRD}^{1 anc} and \textit{DRD}^{2 anc}) gave rise to four genes in each class of receptors. In the case of the \textit{DRD}_1 class of dopamine receptors three out of the four genes originated as a product of the WGDs were retained in the genome of the vertebrate ancestor. In the gnathostome ancestor, the \textit{DRD}^{1 C/E} gene underwent a duplication event that gave rise to the actual \textit{DRD}^{1 C} and \textit{DRD}^{1 E} genes. Thus, the gnathostome ancestor that existed between 615 and 473 mya had a repertoire of four \textit{DRD}_1 genes: \textit{DRD}_1, \textit{DRD}_5, \textit{DRD}_1C and \textit{DRD}_1E. In the case of the \textit{DRD}_2 group of receptors, the vertebrate WGDs originated four genes, three of which were maintained in the genome of extant species (\textit{DRD}_2, \textit{DRD}_3 and \textit{DRD}_4). In the ancestor of gnathostomes, the \textit{DRD}_2 gene underwent a duplication event that gave rise to an extra copy of the \textit{DRD}_2 gene (\textit{DRD}_{2l}). Similarly, the \textit{DRD}_4 gene also underwent a duplication event that gave rise to an extra copy of the gene (\textit{DRD}_{4rs}). Thus, the ancestor of gnathostome vertebrates possessed a repertoire of five \textit{DRD}_2 genes: \textit{DRD}_2, \textit{DRD}_{2l}, \textit{DRD}_3, \textit{DRD}_4 and \textit{DRD}_{4rs}.
Common ancestor of gnathostomes

DRD1
DRD5
DRD1C
DRD1E

DRD2
DRD02L
DRD3
DRD4
DRD4's

Common ancestor of vertebrates

DRD1
DRD5
DRDC/E

DRD2
DRD2L
DRD4
DRD4rs

2 Whole Genome Duplications

D1anc

D2anc