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ABSTRACT 

 The Genome Analysis Toolkit (GATK) is commonly used for variant calling of single nucleotide 

polymorphisms (SNPs) and small insertions and deletions (indels) from short-read sequencing data aligned 

against a reference genome.  There have been a number of variant calling comparisons against GATK, but an 

equally comprehensive comparison for VarScan not yet been performed.  More specifically, we compared four 

lists of variants called by GATK (using the UnifiedGenotyper and the HaplotypeCaller algorithms, with and 

without filtering low quality variants) and three lists of variants called using VarScan (with varying sets of 

parameters).  Variant calling was performed on three datasets (1 targeted exon dataset and 2 exome datasets), 

each with approximately a dozen subjects.  We found that running VarScan with a conservative set of parameters 

(referred to as “VarScan-Cons”) resulted in a high quality gene list, with high concordance (>97%) when 

compared to high quality variants called by the GATK UnifiedGenotyper and HaplotypeCaller.  These 

conservative parameters result in decreased sensitivity, but the VarScan-Cons variant list could still recover 84-

88% of the high-quality GATK SNPs in the exome datasets.  We also assessed the impact of pre-processing 

(e.g., indel realignment and quality score base recalibration using GATK).  In most cases, these pre-processing 

steps had only a modest impact on the variant calls, but the importance of the pre-processing steps varied 

between datasets and variant callers.  More broadly, we believe the metrics used for comparison in this study can 

be useful in assessing the quality of variant calls in the context of a specific experimental design.  As an example, 

a limited number of variant calling comparisons are also performed on two additional variant callers. 
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INTRODUCTION 

 Multiple studies have previously compared variant callers for short-read sequencing data 

(Bauer 2011; Cheng et al. 2014; Liu et al. 2013; O'Rawe et al. 2013; Pabinger et al. 2014; Yi et al. 

2014; Yu & Sun 2013), which have often indicated that the variant callers available in the Genome 

Analysis ToolKit (GATK, DePristo et al. 2011; McKenna et al. 2010) show the best performance 

(Bauer 2011; Liu et al. 2013; Yi et al. 2014).  This is in accordance with the popular use of GATK for 

variant calling, especially for Illumina sequencing data (Boland et al. 2013; Li et al. 2014; Linderman 

et al. 2014; Worthey 2013).  The use of multiple-variant callers has also been proposed (Lam et al. 

2012; O'Rawe et al. 2013; Pabinger et al. 2014; Yu & Sun 2013), but this will increase the run-time (or 

at least computational resources) necessary for analysis (which can be especially important for large 

patient cohorts). 

Most comparisons did not directly compare GATK variant callers against VarScan (Koboldt et 

al. 2009; Koboldt et al. 2012).  One study indicated that VarScan was less accurate than the other 

variant callers (Cheng et al. 2014).  Another study showed VarScan as being more similar to the other 

variant callers but still ranked GATK as the best option (Yi et al. 2014).  However, VarScan has been 

used for variant calling in a large number of studies (Worthey 2013), and we hypothesize that the 

simple, intuitive parameters can be helpful in establishing an optimal set of variants for a given 

dataset.  Also, as emphasized in this study, the run-time for VarScan should typically be shorter than 

GATK.  Therefore, we wished to determine if 1) the previous VarScan benchmarks can be reproduced 

in our own analysis and 2) if use of non-standard parameters can improve the quality of the VarScan 

predictions. 

 Additionally, this study examines the relative impact of pre-processing steps in GATK 

(specifically, the indel realignment and quality score base recalibration steps).  Therefore, we 

compared variant calls with GATK and VarScan for each step separately, with both pre-processing 

steps, as well as without either pre-processing step.  There has been at least one previous study to 

showing that filtering can improve the quality of variant calls (Carson et al. 2014), beyond the GATK 

quality score base recalibration.  We assessed whether running VarScan with different sets of 

parameters (using three different parameters settings: see Methods) can also increase the accuracy 
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of the resulting variant calls.  Additionally, we have used a simple filtering strategy for GATK variants 

(looking at all variants called versus filtering out variants with a low quality flag), so there are two sets 

of variant lists for both GATK UnifiedGenotyper and GATK HaplotypeCaller. 

 In order to avoid any bias that could come from studying only a limited number of samples, 

variant calls were performed on 14 targeted exon (for 1000 genes) samples from the 1000 Genomes 

project (The 1000 Genomes Project Consortium 2012), 12 exome samples from the 1000 Genomes 

project (The 1000 Genomes Project Consortium 2012), and 15 Illumina exome samples from 

SRP019719 (O'Rawe et al. 2013).  We believe this helps yield robust results both in terms of the 

number of samples studied per cohort as well as variations in study design (i.e. the method of 

targeted sequencing).  The 1000 Genomes study was specifically chosen in order to test recovery of 

validated variants as well as to compare concordance between samples subject to both targeted exon 

and exome sequencing. 

 In short, this study presents a detailed characterization between GATK and VarScan on 41 

samples (with varying target designs), where each sample has 28 variant lists for comparison.  

Variant lists are compared based upon the number of variants called, the proportion of unknown 

frequency variants in the variant list, and the reproducibility of variant calls using different 

technologies.  A limited number of additional comparisons are also performed in order to help 

illustrate how these metrics can be used to select the optimal variant caller for a given dataset.  This 

analysis demonstrates that a conservative set of parameters can be used to produce a robust, high-

quality list of variants from VarScan, and this study also presents evidence that the GATK 

HaplotypeCaller may have a higher false positive rate in calling indels compared to the GATK 

UnifiedGenotyper. 

MATERIAL AND METHODS 

Sample Selection 

 All datasets were downloaded as .fastq files from the European Nucleotide Archive (Leinonen 

et al. 2011). Illumina exome samples were downloaded from SRP019719 (O'Rawe et al. 2013). 1000 

Genomes Project (The 1000 Genomes Project Consortium 2012) data, abbreviated as 1KG in this 

manuscript, was selected on the basis of having 1) exome data, 2) targeted exome data, 3) Omni 
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SNP chip data, and 4) validated SNPs.  Among samples meeting those criteria, 12 samples were 

selected based upon 1) their presence in disparate populations (CEU: Northern and Western 

European Ancestry, CHB: Han Chinese, JPT: Japanese, and YRI: Yoruba/African) and 2) maximum 

number of validated SNPs within each of the four selected populations. 

 1000 Genomes validated SNPs and Omni SNP chip .idat files were downloaded from the 

1000 Genomes FTP site (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/).  Likewise, target design files (for 

targeted exon and exome samples) were downloaded from this site.  More specifically, the phase 3 

design files were used to calculate coverage statistics for the exome samples, and validated variants 

come from ALL.chr20.exome_consensus_validation_454.20120118.snp.exome.sites.vcf.gz.  At the 

time this dataset was downloaded, the hg19 reference location for validated SNPs was off-set by one 

(similar to indels in .vcf files), and this was taken into consideration during analysis.  Targeted gene 

co-ordinates (for hg18) from P3_consensus_exonic_targets.bed were converted to hg19 coordinates 

using the LiftOver function in Galaxy (Blankenberg et al. 2001; Giardine et al. 2005; Goecks et al. 

2010). 

Data Processing 

 Reads were aligned to a karotype-sorted hg19 reference (necessary for running GATK 

(McKenna et al. 2010)) using BWA (Li & Durbin 2009).  Prior to variant calling, singletons were filtered 

out via samtools (Li et al. 2009), .bam files were coordinate sorted via Picard 

(http://picard.sourceforge.net/), and duplicates were removed via Picard.  Prior to running GATK, read 

groups were added via Picard, and .bam file was re-ordered according to chromosome karyotype.  

Prior to running VarScan (Koboldt et al. 2012), a pileup file was created via mpileup in samtools (Li et 

al. 2009) and positions without any aligned reads were filtered out.  These represent the minimum 

pre-processing sets and are labelled as “No Preprocessing”.  Alignment statistics for these samples 

are shown in supplementary tables (Table S1 for 1KG Targeted Exon, Table S2 for 1KG Exome, and 

Table S3 for SRP019719). 

 There are three additional possible pre-processing pipelines that were considered for 

VarScan and GATK comparisons.  “Realign Only” runs an indel realignment using GATK (using the 

RealignerTargetCreater and IndelRealigner functions).  “Recalibrate Only” uses GATK to recalibrate 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.403v3 | CC-BY 4.0 Open Access | received: 12 Jun 2014, published: 12 Jun 2014

P
re
P
ri
n
ts

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
http://picard.sourceforge.net/


5Ȁ 

Ȁ 

quality scores (using the BaseRecalibrator and PrintReads functions).  “Full Pipeline” runs the indel 

realignment functions and then performs base recalibration. 

 Human610 SNP chip data for individual K8101-49685s (paired with SRP019719 Illumina 

exome sample SRX265476) was reported in the Illumina “TOP” format, so the reverse complement of 

the allele was used when the IlmnStrand and RefStrand did not match (as defined in the human610-

quadv1_h.csv manifest file).  Allele sequences were provided without respect to a reference 

sequence, so SeattleSeq Variant Annotation (http://snp.gs.washington.edu/SeattleSeqAnnotation138/) 

was used to determine the reference sequence to focus on variants that differ from the reference 

sequence (to make results comparable to the Illumina sequencing variant calls).  This is the latest 

version of the manifest file, but it was designed using dbSNP 131 and, some discordant SNPs were 

due to annotations where the forward strand may vary from the hg19 reference sequence.  However, 

this only affected a relatively small minority of SNPs (<5% of variants; see Results).  

 Raw .idat files for 1000 Genomes Omni SNP chip samples were processed in Illumina® 

Genome Studio
TM

 (V2011.1).  A pre-defined clustering file (HumanOmni2.5-4v1-Multi_H.egt) was 

used to call genotypes.  Variants were exported in the “Plus” format (so, no genotype conversion as 

necessary).  Samples were annotated using the HumanOmni2.5-4v1-Multi_B.bpm manifest file, 

including the genomic position in hg18 coordinates.  Coordinates were converted to hg19 via liftOver 

in Galaxy (Blankenberg et al. 2001; Giardine et al. 2005; Goecks et al. 2010) and reference 

sequences were determined for all on-target probes (n=2257) via SeattleSeq Variant Annotation 

(http://snp.gs.washington.edu/SeattleSeqAnnotation138/).  Each sample had 2179-2188 genotyped 

SNPs recognized by SeattleSeq, with 477-616 non-reference alleles per sample. 

Concordance Definitions 

Concordance was defined as recovery of a set of lower-throughput variants (validated, SNP 

chip, targeted exon), except for the targeted exon technical replicates where concordance was 

defined as (2 * Number of Overlapping Variants) / (Sum of Variants from both samples).  When 

defining variant concordance between the SNP chip data and exome data, recovery of the known 

variant is counted as a concordant variant (even if multiple variants are called at a given position). 
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Unlike most comparisons in this study, the SNP chip comparisons do not specifically focus on 

the coding variants.  As such, extraction of SNP chip variants within the target regions currently 

includes some non-coding variants (such as intronic variants) that would falsely be called discordant if 

focusing only on coding variants.  SNP chip variants have been filtered to only include variants that 

vary from the reference sequence. 

Calling Variants 

 Variants were called using GATK (v.2.8.1) based upon established best practices (DePristo et 

al. 2011; Van der Auwera et al. 2002).  Variants were called using both the UnifiedGenotyper (UG) 

and the HaplotypeCaller (HC).  For variant characterization, the set of all variants was considered 

(labelled as UG-all in figures for the UnifiedGenotyper and HC-all for the HaplotypeCaller) as well as 

only the high-quality variants that didn’t contain the “LowQual” flag in the .vcf file (labelled as UG-HQ 

in figures for the UnifiedGenotyper and HC-HQ for figures for the HaplotypeCaller).  In addition to the 

parameters described in the GATK best practices, variant calling for SRP019719 also required some 

additional parameters due to the quality scores for the ENA reads (these extra parameters were not 

necessary for calling variants from 1000 Genomes Project data).  More specifically, SRP019719 

variants were called with the parameters “--fix_misencoded_quality_scores -fixMisencodedQuals” for 

HaplotypeCaller (but only for “No Preprocessing” variants), UnifiedGenotyper (but only for “No 

Preprocessing” variants), RealignerTargetCreator, IndelRealigner, and BaseRecalibrator (except for 

the “Full Pipeline” variants where IndelRealigner has been run already).  SRP019719 variants were 

called with the parameter “-allowPotentiallyMisencodedQuals” for PrintReads (following 

BaseRecalibrator, except for the “Full Pipeline” variants where IndelRealigner has been run already) 

 VarScan (v.2.2.8) variants were called using pileup2snp and pileup2indel.  Three different 

sets of parameters were used for calling variants.  “VarScan: Default” specifies no additional 

parameters beyond the minimal requirements.  “VarScan: P-value” sets a minimum p-value threshold 

of 0.05, but specifies no additional parameters.  “VarScan: Conservative” uses the following 

parameters to stringently call variants: minimum 10 total reads at the position of interest, minimum of 

4 supporting reads to call variant, minimum average quality of 20, and minimum variant allele 
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frequency of 0.3.  Please see Table 1 for a summary of parameters used for the VarScan 

comparisons. 

 Additional variant callers were also applied to the “No Preprocessing” alignments and the “Full 

Pipeline” alignments.  Freebayes (v0.9.14, Garrison & Marth 2012) was applied to the 1000 Genomes 

Exon Targeted samples, using default parameters.  The Bayesian variant caller in the bcftools 

function (in the samtools package (v0.1.19, Li et al. 2009) was applied to all three datasets, using 

default parameters (followed by applying vcfutils.pl with a maximum read depth of 200).  Unlike GATK 

and VarScan, samtools has a unique indel format to represent ambiguous indels.  Although the 

ANNOVAR file conversion program can remove all nucleotides that are not part of the indel, the 

genomic position used to represent this indel is not necessarily the same as GATK and VarScan.  For 

this reason, we only present the samtools SNP results in this manuscript.  All analysis was performed 

on a shared Linux server with concurrent usage (x64, CentOS Red Hat 4.1, 264 GB RAM, 6 x 2.27 

GHz processors). 

Because a publication on the 1000 Genomes exome and targeted exon datasets has not yet 

been published, we are only reporting variant frequencies for a single chromosome (chr20) in order to 

comply with 1KG publication requirements.  Thus, only 1,140,996 base pairs of targeted sequence is 

considered for variant call benchmarks in the 1000 Genomes exome datsets, and only 35,309 base 

pairs are considered for variant call benchmarks in the 1000 Genomes exon targeted samples.  In 

contrast, the SRP019719 comparisons are genome-wide (with a targeted design covering 46,401,093 

base pairs). 

Annotating Variants 

After variants were called, ANNOVAR (Wang et al. 2010) was used to determine the 

population frequency for each variant.  Variants were defined as “low frequency” if the 1000 Genomes 

Project (The 1000 Genomes Project Consortium 2012) frequency and NHLBI Exome Sequencing 

Project (Fu et al. 2013) frequencies were both less than 0.01.  Variants were defined as “unknown 

frequency” if they were not present in any 1KG or ESP samples as well as undefined in dbSNP 

(Sherry et al. 2001).  Variants were predicted as damaging if the SIFT (Ng & Henikoff 2003) score 

greater than or equal to 0.95 or the PolyPhen (Adzhubei et al. 2010) score was greater than or equal 
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to 0.85 (which are the thresholds used by ANNOVAR to flag a variant as damaging, for those two 

programs).  Although population frequency and damaging frequencies can be provided for both SNPs 

and indels, there were very few indels within on-target regions for the targeted exon samples (so, 

ANNOVAR characterization is only present for SNPs).  ANNOVAR also provides a common format 

that can compare all variant callers (and it allows easy determination of variants included within the 

targeted exon panel), so all between-sample comparisons were performed using the ANNOVAR 

exome summary table (except for the SNP chip comparison, which uses the genome summary table). 

RESULTS 

Run-Times Scale Differently for GATK versus VarScan 

Figure 1 shows run-times for the entire variant calling pipeline.  The run-time for each step is 

reported in Table S4-S6, with the average run-times for the variant calling step itself shown in Table 2 

(for the “Full Pipeline” samples).  Among the 1000 genome (1KG) targeted exon samples (n=14), the 

GATK UnifiedGenotyper had the longest run-time (Figure 1A).  However, the run-time for all samples 

was less than 5 hours, so run-time is not a severe limiting factor for either VarScan or GATK (for 

targeted exon samples).  Adding a p-value filter did not significantly affect the run-time for VarScan; in 

fact, the run-time for VarScan is essentially the same regardless of what parameters are used for 

analysis.  In contrast, the 1KG exome samples showed a wide range of run-times (Figure 2A), with 

the HaplotypeCaller having a very noticeably longer run-time compared to the other pipelines.  The 

newest version of GATK was designed to decrease the run-time for HaplotypeCaller (GATK 3.0 

Features Overview), but we saw no such improvement for the samples tested on our servers (Table 

2).  Quality score recalibration also caused a noticeable increase in run-time. 

In addition to the 1000 Genomes Exome and Targeted Exon samples, the same analysis was 

performed on an independent dataset of 14 exomes (SRP019719).  The most obvious trend is that 

the run-time for the GATK HaplotypeCaller was considerably longer when running base recalibration 

without prior indel realignment (Figure S1).  Two factors mostly likely caused this increased-run time 

are 1) quality scores were on a different scale than the 1000 Genomes samples (see Methods) and 2) 

the servers running the variant callers had considerable concurrent usage (which may have 

exacerbated a sensitivity to running the function in a way that deviates from the GATK “best practices” 
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and uses non-standard parameters).  Therefore, we do not expect this trend to apply to most samples.  

However, it is worth noting that the pipeline described by the GATK “best practices” (in this case, the 

“Full Pipeline” pre-processing strategy) is subject to the most troubleshooting: therefore, a practical 

advantage to using the “Full Pipeline” pre-processing over indel realignment and/or base recalibration 

in isolation is that there is a decreased chance of getting less accurate results due to technical 

problems with the software.  Likewise, total variant counts and population frequencies among variants 

(Figure S2 and S3) indicate that the variants called using base recalibration alone were probably not 

reliable (for these particular samples), but the variants called using the full pipeline (indel realignment 

+ base recalibration) were more likely to have a lower false positive rate.  Please see the following 

section for a more detailed description of the rationale for using these metrics. 

Estimation of Accuracy for GATK and VarScan Variant Calls 

Although 1KG samples were selected on the basis of having some validated positive controls, 

it is useful to have quality control metrics that will be correlated with the true sensitivity and specificity 

for a given variant caller.  Each strategy has notable caveats for interpretation, but we think it is useful 

to have quality control metrics that can be used to select an optimal variant caller for a given dataset. 

First, we assume that the total number of variants is correlated with sensitivity.  Of course, the 

accuracy of this assumption would depend upon the false positive rate for the variant caller.  

Nevertheless, we believe that the total number of called variants is a useful benchmark to compare 

variant callers.  SNP and indel frequencies are shown for 1KG exome and targeted exon samples in 

Figure 2.  In most cases, the pre-processing pipeline has a minimal effect on the size of the resulting 

list of SNPs, with the notable exception of the GATK UnifiedGenotyper (although the impact is 

significantly decreased if only focusing on high-quality SNPs).  However, it is difficult to tell how 

common this trend is for all datasets: for example, the exome samples from SRP019719 do not show 

this same difference (Figure S2) and instead show a relatively greater difference in the number of 

SNPs called by VarScan with default parameters. The size of the SNP lists are notably variable with 

different VarScan parameters: the p-value threshold considerably decreases the number of SNPs 

called, the conservative parameter set is even more restrictive, and both results run with non-default 

setting produce significantly fewer SNPs than GATK.  Among the high-quality calls, the number of 
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SNPs is similar for GATK HaplotypeCaller versus GATK UnifiedGenotyper.  The relative number of 

indels vary from the relative number of SNP calls: however, there are only a limited number of indel 

calls on chr20 for the targeted exon panel, so we think the number of 1KG exome indel calls are more 

reliable for assessing general trends.  There is a modest but noticeable increase in the number of 

indels called if the indel realignment was run, and the GATK HaplotypeCaller includes a much larger 

number of indels than the GATK UnifiedGenotyper.  Similar to the SNP calls, VarScan produces 

fewer indel calls when using more stringent parameters. 

Second, we assume that most variants should have known frequencies, and that an over-

representation of variants of unknown frequencies should correspond to an increased false positive 

rate.  Of course, some unknown frequency variants will in fact be accurate and the proportion of true 

unknown frequency variants will vary with demographics (subjects from ethnicities that have been 

characterized in greater detail will likely show fewer unknown frequency variants, and vice versa).  

However, some unknown frequency rates are clearly unacceptable: for example, more than 50% of 

the variants called by VarScan (using default parameters) are unknown frequency variants, and the 

majority of these unknown frequency variants are predicted to be damaging (Figure 3 and Figure S3).  

In contrast, there is only a minority of variant calls (0.4-9.7% for 1KG exome; 0.8-4.2% for 1KG 

targeted exon; 0.1-2.1% for SRP019719 exome samples) are known to be present at low frequency 

(<1%; see Methods) in the overall population, and this is true for all samples using all variant calling 

strategies.  A high proportion of unknown frequency variants is especially dubious in the 1000 

Genomes samples (Figure 3), where these sequencing of these particular individuals was used in the 

determination of variant frequencies.  Likewise, the unknown variant frequencies universally high for 

the “Recalibrate Only” SRP019719 samples for all variant callers; in this case, the abnormally high 

run-time (Figure S1) and number of variants called (Figure S2) corroborate the conclusion that there 

was a technical problem in producing these variant calls (as predicted by the large number of 

unknown frequency variants).  Additionally, results in the subsequent section will show that 

reproducibility is worse for variant lists with a very high proportion of unknown frequency variants. 

Most GATK unknown variant distributions look similar, except when the GATK 

UnifiedGenotyper is run without quality score recalibration in the 1000 Genomes samples (Figure 3).  

However, trend doesn’t apply to the SRP019719 samples (Figure S3), emphasizing that there are 
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other factors that can influence these results.  The pre-processing steps have a modest impact on the 

VarScan frequencies, but the VarScan parameters have a very strong impact on the results.  Namely, 

the unknown variant frequency is extremely high when running VarScan with default parameters 

(much higher than observed for low frequency variants), and we expect these SNPs may have a high 

false positive rate.  However, the distribution for VarScan variants called with conservative 

parameters looks very similar to the GATK distributions, so these are likely reliable variant calls. 

ANNOVAR can also annotate variant frequencies for indels.  However, small indels have not 

been characterised as well as SNPs (for example, there are considerably fewer indels in dbSNP 

(Sherry et al. 2001), compared to SNPs) and damaging predictions focus primarily on SNPs.  

Additionally, there are almost no indels in the coding regions of chromosome 20 for the 1000 

Genomes targeted exon dataset.  Nevertheless, Figure S4 shows the variant frequencies for indel 

calls in the 1000 Genome and SRP019719 datasets.  Similar to the SNP distributions, VarScan-Cons 

contains the least number of unknown frequency indels (among the VarScan comparisons), which is 

likely associated with a lower false positive rate.  Also, the unknown frequency indels are more 

common in GATK HaplotypeCaller variants than GATK UnifiedGenotyper variants.  Arguably, this 

could indicate that the higher number of indels called by the HaplotypeCaller is also associated with a 

higher false positive rate.  However, the variant frequencies alone are not sufficient to prove this to be 

the case because there may have been technical limitations in discovering the indels uniquely called 

by the GATK HaplotypeCaller.  Nevertheless, there is at least one study showing the validation rate 

for HaplotypeCaller indels was lower than UnifiedGenotyper indels (Lescai et al. 2014), which is 

consistent with the hypothesis that the HaplotypeCaller indels may be lower quality (and the VarScan 

indels may be similar quality to the GATK UnifiedGenotyper indels). 

Reproducibility of GATK and VarScan Variant Calls 

 The recovery rate for validated SNPs is similar for each variant calling pipeline (Figure 3, 

Table S7).  Statistics are only provided for the 1KG exome samples, because no validated SNPs 

occur in the targeted regions for the targeted exon samples (for the samples selected for this study).  

Out of the total 35 validated SNPs present among the 12 exome samples, recovery rates varied 

between 80-94%.  VarScan-Default had the highest overall sensitivity and VarScan-Cons had the 
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lowest overall sensitivity.  The pre-processing steps had little impact on the results: in fact, the only 

effect was that base recalibration caused one fewer validated SNP to be recovered when using the 

GATK UnifiedGenotyper.  There is certainly more similarity in the recovery rate among variant callers 

than in the total number of SNPs produced by the different strategies, which would make sense if the 

larger variant lists have a proportionately higher false positive rate: unfortunately, this is a limited 

number of validated SNPs, so it is difficult to say how closely these are tied to the true sensitivity rates. 

 The recovery of targeted exon variants (within the set of targeted genes) among the exome 

samples was also typically quite high (Figure 5).  The main exception is for variants called using 

VarScan with default parameters, and this is also true for the VarScan calls with the p-value filter (to a 

lesser extent).  In this case, it is important to note that the targeted exon calls are not truly a gold 

standard.  In other words, we expect these calls to have a high false positive rate based upon the 

abnormally high proportion of unknown frequency variants (Figure 3), and false positives in the exon 

targeted dataset are not likely to be recovered in the exome dataset.  For example, position 17933286 

on chromosome 20 for individual NA18566 is covered by 189 reads in the targeted exon sample and 

109 reads in the exome sample: 90% of reads match the reference sequence in the targeted exon 

sample and 99% percent of the reads match the reference sequence in the exome sample.  Using the 

default parameters, VarScan calls a variant “G” allele in the targeted exon sample (which is present in 

12/189 reads).  However, this is likely a normal diploid individual with the true genotype of T/T at this 

position, with deviations from the reference sequence that are probably due to technical error (where 

the proportion of errors found at a particular site can randomly fluctuate between samples). 

SNP chips can also be used to assess sensitivity for variant lists.  However, it should be 

noted that these will mostly be common SNPs, which importantly means that recovery of SNP array 

variants may not represent the accuracy of rare variant calls.  Nevertheless, it is useful to to see how 

the SNP chip recovery compared to the validated SNPs and the total SNP calls.  In most cases, all 

variant calling algorithms could recover >85% of Omni SNP chip variants from the 1000 Genomes 

exome samples (Figure 6A).  Similarly, we compared variant calls for a subject from the SRP019719 

dataset that had both Illumina exome and SNP chip data: again, the majority (88-96%) of SNP chip 

variants were recovered in the paired exome dataset (Figure 6B).  In both cases, recovery was 

restricted to SNP chip variants within targeted regions for the exome sample.  It is also worth noting 
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that SNP chip alleles matching the reference sequence are not considered, and concordance would 

of course be higher if these sites were considered.  Unlike the validated variants (Figure 4), VarScan 

(using default parameters) no longer had the highest sensitivity; instead, the average recovery of SNP 

chip variants was slightly higher for GATK.  In short, we believe that all variant calling strategies show 

a similar recovery rate for validated SNPs and SNP chip variants, with a false negative rate for these 

common variants likely being less than 15%. 

 Additionally, there are two 1000 Genomes individuals that had two targeted exon samples 

(NA18637: SRR013654 + SRR013709, and NA18510: SRR017908 + SRR018122).  If we treat these 

samples as technical replicates, then this provides another method to assess the reproducibility of the 

variant calls.  The SNP concordance between samples was clearly higher for NA18637 than NA18510 

(Figure S5A).  These trends hold true when only coding variants are considered (Figure S5B) or only 

coding variants within targeted genes are considered (Figure S5C), although the level of concordance 

increases when using a more focused set of SNPs.  Similar statistics were provided for indels (Figure 

S6), but the sample size was too small to compare indels with more focused variant sets.  It is unlikely 

that one NA18510 sample was simply mislabelled: the concordance between exome and targeted 

exon samples was more similar (Table S8 and S9), and we would expect worse concordance 

between two random individuals.  One possible factor is that the percent duplicates was similar for 

both NA18637 samples but SRR018122 has twice as many duplicates as SRR017908 (Table S1), 

and in turn the total number of unique, on-target reads was much more similar for the NA18637 

samples than the NA18510 samples.  Also, it is worth noting that the concordance of indel calls was 

better for the GATK UnifiedGenotyper (and usually VarScan) than the GATK HaplotypeCaller (Figure 

S7), and this is true for both samples.  This may corroborate the conclusion that an increased false 

positive rate causes the GATK HaplotypeCaller to produce a larger number of unknown frequency 

variants (Figure S4). 

Overlap of High-Quality GATK and VarScan Variant Calls 

Given the previous comparisons, we believe the highest quality variant calls can be made by 

excluding GATK variants with LowQual flags (e.g. UG-HQ and HC-HQ) and using the conservative 

parameters defined in this manuscript when running VarScan (e.g. VarScan-Cons).  Because the 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.403v3 | CC-BY 4.0 Open Access | received: 12 Jun 2014, published: 12 Jun 2014

P
re
P
ri
n
ts



14Ȁ 

Ȁ 

number of variants called increases when running the indel realignment and base recalibrator steps, 

we compared coding variant lists produced using variant callers with “full pipeline” pre-processing 

steps.  In the 1000 Genomes samples, the variant caller concordance is quite high (Figure 7 and 

Figure S7).  For example, all SNPs called using VarScan-Cons were also called using the GATK 

HaplotypeCaller.  Additionally, all indels called using VarScan-Cons were also called by either the 

GATK HaplotypeCaller or the GATK UnifiedGenotyper.  Because only chr20 variants can be reported 

for the 1000 Genomes dataset in this manuscript, it may also be useful to see the overlap for the 

genome-wide variant lists from SRP019719 (Figure 7).  This time, the VarScan-Cons variants were 

not completely recovered by using one or both GATK variant callers, but there was still only a minority 

of variants that were not represented in either list of GATK variants (2.9% of VarScan-Cons SNPs and 

1.5% of VarScan-Cons indels).  This emphasizes that VarScan-Cons likely calls robust, reliable 

variants.   

The high recovery of VarScan-Cons variants may result from high specificity with decreased 

sensitivity, which is potentially the biggest drawback to this strategy.  The degree to which VarScan-

Cons recovers the set of high-quality GATK variants varies between datasets.  Among the 1000 

Genome variants on chromosome 20, 87% of UnifiedGenotyper SNPs and 88% of HaplotypeCaller 

SNPs were also called by VarScan-Cons in the exome samples.  For the targeted exon samples, 62% 

of UnifiedGenotyper SNPs and 68% of HaplotypeCaller SNPs were called by VarScan-Cons in the 

targeted exon samples, but this lower percentage may be due to the smaller number of SNPs and/or 

lower on-target coverage (Table S1-S3).  For indels in the 1000 Genomes exome dataset, 69% of 

UnifiedGenotyper SNPs but only 38% of HaplotypeCaller SNPs were also called by VarScan-Cons.  

We would expect indel calls to have a higher false positive rate, but this could also be due to the small 

number of coding indels on chromosome 20 as well as the potentially higher false-positive rate for the 

HaplotypeCaller (Figure S4).  Accordingly, the SRP019719 exome samples show similar statistics for 

SNP concordance (84% recovery for UnifiedGenotyper SNPs, 86% recovery for HaplotyperCaller 

SNPs) but much better results for UnifiedGenotyper indels (81% recovery).  There is still only 51% 

recovery for HaplotypeCaller indels among VarScan-Cons indels, but it is possible that the indels 

uniquely called by GATK have a higher false positive rate (which has been previously reported for 
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loss-of-function indels in Lescai et al. 2014).  Either way, it appears that VarScan-Cons produces a 

reliable set of SNP calls. 

Application of QC Metrics to Other Variant Callers 

Although we were primarily interested in comparing VarScan (with various sets of parameters) 

to GATK, we also examined similar metrics for other variant callers.  Given that the distribution of rare 

and unknown variant frequencies was similar for the 1000 Genomes targeted exon and exome 

datasets, we used the targeted exon samples to test additional variant callers.  In particular, we tested 

freebayes (DePristo et al. 2011) and samtools (Li et al. 2009), directly using the BWA alignment (with 

duplicates removed) as well as the “full pipeline” (GATK indel realignment + quality score 

recalibration).  It is clear that freebayes yields too many unknown frequency variants (Figure S8), so it 

was not tested on any further datasets.  Of course, changes in parameters and/or downstream 

filtering of variants may result in a decrease in the unknown variant frequency; however, we were 

using these two lists of variants (called with default parameters) as examples of how the quality 

control metrics in this dataset could be applied more broadly.  Interestingly, the pre-processing steps 

appeared to have minimal effect on the 1000 Genomes targeted exon and exome datasets, but 

running the “full pipeline” for pre-processing considerably decreased the proportion of unknown 

frequency variants for samtools variant calls in the SRP019719 exome dataset (Figure S8). 

SNP overlap is also shown for these four sets of variant calls (Figure S9).  For the exome 

datasets, adding VarScan-Cons only reduced the number of variants otherwise called by GATK 

UnifiedGenotyper, GATK HaplotypeCaller, and samtools by ~10%.  In other words, we would expect 

that variant calling with VarScan-Cons to have sensitivity similar to requiring variants to be called by 

GATK UnifiedGenotyper, GATK HaplotypeCaller, and samtools. 

The ANNOVAR frequency plots (like those shown in Figure 3, Figure S3, and Figure S8) are 

a useful metric, but they only show average trends across the dataset and do not show how the 

frequency of unknown variants compares to the total number of variants called.  If the number of 

conditions is reduced to only those using the “full pipeline” for pre-processing, then one can visualize 

the comparison between variant callers (Figure 8).  There is more variability in the proportion of 

unknown frequency variants for the targeted exon dataset (compared to either exome dataset), but 
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we suspect this may relate to the lower number of total SNPs and/or the lower on-target coverage 

(Table S1-S3).  While it is not necessarily safe to assume that the false positive rate substantially 

varies when the proportion of unknown frequency variants is between 0 and 6% (which is the 

observed range for these variant callers in the exome datasets), the proportion of unknown frequency 

variants is universally low for all VarScan-Cons calls in all three datasets while there is more variability 

in the proportion of unknown frequency variants in the GATK and samtools variant calls. 

DISCUSSION 

 Although running VarScan with default parameters (with the functions defined in the Methods 

section) was shown to result in an unacceptably high false positive rate (in accordance to a previous 

publication, Cheng et al. 2014; also see Figure 3 and Figure S3), running VarScan with a 

conservative set of non-standard parameters (referred to as VarScan-Cons in this study) can produce 

a reliable set of variants that should show a high validation rate (especially for SNPs).  Almost all 

variants called with VarScan-Cons were also called using the GATK HaplotypeCaller or GATK 

UnifiedGenotyper, with a modest decrease in sensitivity for SNPs (Figure 6).  GATK HaplotypeCaller 

called a substantial number of indels not called using VarScan-Cons (as well as GATK 

UnifiedGenotyper), even after removing variants that were flagged as low quality.  However, it is 

possible that the GATK HaplotypeCaller indels also have an increased false positive rate (as reported 

in Lescai et al. 2014; also see Figure S4 and S7), so it will be important to see if this is independently 

validated in other studies. 

Use of GATK (both in terms of variant calling as well as pre-processing) can considerably 

increase the run-time for analysis (Figure 1 and Figure S1), especially when applying HaplotypeCaller 

on samples with high-coverage reads covering a significant proportion of the genome.  Of course, 

run-times will vary based upon computational resources.  If users only have a limited number of 

samples to analyze, cloud-based solutions may be more efficient than analyzing the data locally 

(Asmann et al. 2012; Fischer et al. 2012; Karczewski et al. 2014; Langmead et al. 2009).  Additionally, 

parallelizing jobs by chromosome could also assist with decreasing the run-time for certain tasks. 

This study focused on variant calling in (most likely) normal human samples due to the 

availability of a large amount of public validation data.  However, the strategies described in this study 
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may not apply equally well in all circumstances.  For example, sometimes variants may be present in 

a minority of cells in a sample (such as a heterogeneous tumor), and it may not be safe to make 

assumptions about the ploidy of the sample (which might affect the usefulness of the GATK 

HaplotypeCaller, for example).  Likewise, somatic variant calling is also an area of interest (Wang et 

al. 2013) that would typically utilize different variant calling tools.  Additionally, the indel metrics in this 

study only apply to small indels: large indels and structural variants require a different set of 

algorithms.  Nevertheless, we think the strategies described in this study (comparing the proportion of 

unknown frequency variants, using filters for high-quality variants, etc.) can be useful to help other 

scientists prioritize variant calling strategies for their own data. 
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 FIGURE LEGENDS 

 
Figure 1: Run Times for Variant Calling Pipelines for GATK versus VarScan (1KG) A. Run times 

for selected 1000 Genomes targeted exon samples (n=14, Table S1). Run-times are displayed for the 

entire variant calling pipeline when using both GATK indel realignment and quality score recalibration 

(“Full Pipeline” - purple), indel realignment only (“Realign Only” - red), quality score recalibration only 

(“Recalibrate Only” - green), or neither (“No Preprocess” – blue).  Run times are provided for the 

GATK UnifiedGenotyper (“UG”), GATK HaplotypeCaller (“HC”), and VarScan using 3 sets of 

parameters (see Methods).  “VarScan-Cons” is the most conservative set of parameters. B. Same as 

A, but for selected 1000 Genomes exome samples (n=12, Table S2). 

Figure 2: Number of Variants Called for GATK versus VarScan (1KG – chr20) A. Number of 

SNPs called for selected 1000 Genomes (1KG) targeted exon samples (n=14, left) and exome 

samples (n=12, right).  The number of SNPs called is displayed for variants called using both GATK 

indel realignment and quality score recalibration (“Full Pipeline” - purple), indel realignment only 

(“Realign Only” - red), quality score recalibration only (“Recalibrate Only” - green), or neither (“No 

Preprocess” – blue).  Variant counts are provided for the GATK UnifiedGenotyper (“UG”), GATK 

HaplotypeCaller (“HC”), and VarScan using 3 sets of parameters (see Methods).  UnifiedGenotyper 

and HaplotypeCaller variants are then divided into the set of all variants (“UG-all” and “HC-all”) and 

higher-quality variant calls where variants flagged as low quality have been removed (“UG-HQ” and 
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“HC-HQ”).  “VarScan-Cons” is the most conservative set of parameters for VarScan.  These values 

represent the total number of SNPs called.  B. Same as A, for indels instead of SNPs.Ȁ 

Figure 3: Distribution of ANNOVAR Annotations for Coding SNP Variants (1KG – chr20) A. 

Distribution of variant types defined in the ANNOVAR exome report for selected 1000 Genomes (1KG) 

targeted exon samples (n=14).  Variants are classified based upon population frequency and 

damaging prediction (see Methods).  Low frequency variants (MAF < 0.01) that are displayed in 

orange if they are predicted to be damaging and are displayed in green if they are not predicted to be 

damaging.  Unknown frequency variants are displayed in red if they are predicted to be damaging and 

are displayed in blue if they are not predicted to be damaging.  Although all samples should contain 

some unknown frequency variants, a high proportion of unknown frequency variants are expected to 

correlate with a high false positive rate.  Seven variant calling strategies were tested (GATK 

UnifiedGenotyper and HaplotypeCaller, with and without filtering low quality variants; VarScan with 3 

sets of parameters, see Methods).  “VarScan-Cons” is the most conservative set of parameters for 

VarScan.  Each variant caller was also tested with 4 preprocessing conditions, corresponding to the 

colored boxes under the bar plot: variants called using both GATK indel realignment and quality score 

recalibration (purple), indel realignment only (red), quality score recalibration only (green), or neither 

(blue).  B. Same as A, but for selected 1000 Genomes exome samples (n=12, Table S2). 

Figure 4: Recovery of 1KG Validated SNPs (chr20) A pooled set of 35 validated variant from the 

1000 Genomes exome sample characterized in this study (n=12) was used to assess the sensitivity of 

various variant calling algorithms.  The 1000 Genomes targeted exon samples were not compared 

because no validated variants were covered in targeted regions for that design.  Seven variant calling 

strategies were tested (GATK UnifiedGenotyper and HaplotypeCaller, with and without filtering low 

quality variants; VarScan with 3 sets of parameters, see Methods).  “VarScan-Cons” is the most 

conservative set of parameters for VarScan.  Each variant caller was also tested with 4 preprocessing 

conditions: variants called using both GATK indel realignment and quality score recalibration (“Full 

Pipeline” - purple), indel realignment only (“Realign Only” - red), quality score recalibration only 

(“Recalibrate Only” - green), or neither (“No Preprocess” – blue).  Publically available validated 

variants are only available for chr20, so this is the maximum number of validated SNPs that can be 

characterized for these samples.  The validation status for each individual SNP under each variant 
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calling condition is provided in Table S7.  Validated variants were never called for chr20:3193991 for 

individual NA18505 (exome sample SRX237141, covered 81x with the reference allele in all reads) or 

for chr20:57769739 for individual NA18532 (exome sample ERR031956, not covered by any reads 

but located in the coding sequence for ZNF831)Ȁ 

Figure 5: Recovery of Coding SNPs from Targeted Exon Samples (1KG Exome – chr20) SNP 

calls from paired targeted exon and exome datasets were compared to test the robustness of the calls 

made in the targeted exon data.  Indel calls are not presented because there are almost no coding 

indels on chr20 for the targeted exon datasets.  Two subjects has two targeted exon datasets (Table 

S1-S2), and concordance with exome datasets was reported for both targeted exon datasets 

separately (resulting in 14 concordance values per variant calling strategy).  Seven variant calling 

strategies were tested (GATK UnifiedGenotyper and HaplotypeCaller, with and without filtering low 

quality variants; VarScan with 3 sets of parameters, see Methods).  “VarScan-Cons” is the most 

conservative set of parameters for VarScan.  Each variant caller was also tested with 4 preprocessing 

conditions: variants called using both GATK indel realignment and quality score recalibration (“Full 

Pipeline” - purple), indel realignment only (“Realign Only” - red), quality score recalibration only 

(“Recalibrate Only” - green), or neither (“No Preprocess” – blue).  Concordance is reported as 

recovery of SNPs called in the targeted exon data, but these cannot be treated as “gold standard” 

variant calls.  Most clearly, there was a high false positive rate when running VarScan with default 

parameters, so a high proportion of those variants called in the targeted exon samples could not be 

recovered in the exome dataset.  In fact, on-target coverage is typically lower for the targeted exon 

samples than the exome staples (Table S1-S2) 

Figure 6: Recovery of SNP Chip Variants in Exome Samples A. Recovery of variants reported 

from the Omni SNP chip for 1000 Genomes exome samples (n=12).  Only alleles that varied from the 

reference sequence and were located within the regions targeted in the exome sequencing design 

were considered for this analysis (this varied somewhat between samples, between a minimum of 

477 variants and a maximum of 616 variants).  Seven variant calling strategies were tested (GATK 

UnifiedGenotyper and HaplotypeCaller, with and without filtering low quality variants; VarScan with 3 

sets of parameters, see Methods).  “VarScan-Cons” is the most conservative set of parameters for 

VarScan.  Each variant caller was also tested with 4 preprocessing conditions: variants called using 
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both GATK indel realignment and quality score recalibration (“Full Pipeline” - purple), indel 

realignment only (“Realign Only” - red), quality score recalibration only (“Recalibrate Only” - green), or 

neither (“No Preprocess” – blue). B. Same as A, but for 6437 variants on a different SNP chip design 

(Human 610) compared to exome variant calls for sample SRX265476.Ȁ 

Figure 7: Exome Variant Caller Overlap (Coding Variants) All coding variants were tabulated for all 

exome samples (1KG n=12, left; SRP019719 n=15, right).  Only coding variants on chromosome 20 

were considered for the 1000 Genomes (1KG) samples, but all coding variants were considered for 

the SRP019719 samples.  In order to simplify presentation of these results, we focused on the highest 

quality variant calls for each variant calling strategy: GATK UnifiedGenotyper with low-quality variants 

removed (UG-HQ, blue), GATK HaplotypeCaller with low-quality variants removed (HC-HQ, green), 

and VarScan using a custom set of conservative parameters (VarScan-Cons, red).  Similarly, only 

variants subject to GATK indel realignment and quality score recalibration (“Full Pipeline”) are 

considered for this comparison.  To show the different concordance rates, SNPs are presented at the 

figure and indels are presented at the bottom of the figure.  Almost all VarScan-Cons variants were 

also called by GATK (either HaplotypeCaller or UnifiedGenotyper).  All three variant callers called a 

similar number of SNPs, but GATK HaplotyperCaller called more indels than either GATK 

UnifiedGenotyper or VarScan-Cons. 

Figure 8: QC Metrics to Estimate Specificity Versus Sensitivity for Variant Callers (Coding 

SNPs) For each of the three datasets characterized in this study (1KG targeted exon, n=14; 1KG 

exome, n=12; SRP019719 exome, n=15), the number of coding SNPs called per sample is plotted 

along the x-axis and the proportion of unknown frequency variants is plotted on the y-axis.  In order to 

simplify presentation of these results, we focused on the highest quality variant calls for each variant 

calling strategy: GATK UnifiedGenotyper with low-quality variants removed (UG-HQ, blue), GATK 

HaplotypeCaller with low-quality variants removed (HC-HQ, green), and VarScan using a custom set 

of conservative parameters (VarScan-Cons, red).  Additionally, an unfiltered set of variants called via 

samtools are plotted in black.  Only variants subject to GATK indel realignment and quality score 

recalibration (“Full Pipeline”) are considered for this comparison.  The shape of the data point 

corresponds to the depth of on-target coverage: <50x coverage is represented as an X in an open-

circle, 50-100x is represented as an open circle, and >100x is represented as a filled circle.  If the 
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unknown frequency percentage was tightly correlated with the actual false positive rate and the 

number of variants was tightly correlated with the actual sensitivity of the variant caller, than the ideal 

variant caller would show a cluster of data points in the bottom-right hand corner of the plot.Ȁ 
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TableȀ 1:Ȁ ParameterȀ SettingsȀ forȀ VarScanȀ ComparisonsȀ 

Ȁ  VarScan괄ЀDefaultȀ  VarScan괄ЀPvalueȀ  VarScan괄ЀConsȀ 

MinimumȀ CoverageȀ  8Ȁ  8Ȁ  10Ȁ 

MinimumȀ SupportingȀ ReadsȀ  2Ȁ  2Ȁ  4Ȁ 

MinimumȀ AverageȀ QualityȀ  15Ȁ  15Ȁ  20Ȁ 

MinimumȀ VariantȀ FrequencyȀ  0.01Ȁ  0.01Ȁ  0.3Ȁ 

MinimumȀ P괄ЀValueȀ  0.99Ȁ  0.05Ȁ  0.99Ȁ 

Ȁ 
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TableȀ 2:Ȁ AverageȀ RunȀ TimesȀ forȀ VariantȀ CallingȀ StepȀ forȀ VariousȀ VariantȀ CallersȀ 

Ȁ 

Ȁ  1KGȀ TargetedȀ ExonȀ 

(n=14)Ȁ 

1KGȀ ExomeȀ 

(n=12)Ȁ 

SRP019719Ȁ ExomeȀ 

(n=15)Ȁ 

VarScanȀ 

(v.2.2.8)Ȁ 

0:10Ȁ  2:14Ȁ  1:52Ȁ 

GATKȀ UnifiedGenotyperȀ 

(v.2.8.1)Ȁ 

1:55Ȁ  4:32Ȁ  4:10Ȁ 

GATKȀ HaplotypeCallerȀ 

(v.2.8.1)Ȁ 

1:16Ȁ  15:44Ȁ  11:27Ȁ 

GATKȀ HaplotypeCallerȀ 

(v.3.1.1)Ȁ 

1:41Ȁ  18:32Ȁ  14:29Ȁ 

SamtoolsȀ 

(v.0.1.19)Ȁ 

0:26Ȁ  7:04Ȁ  4:51Ȁ 

FreebayesȀ 

(v.0.9.14)Ȁ 

0:43Ȁ  Ȁ  Ȁ 

Ȁ 

AverageȀ run괄ЀtimesȀ forȀ areȀ <FullȀ Pipeline=Ȁ variantsȀ (withȀ indelȀ realignmentȀ and/orȀ qualityȀ scoreȀ 

recalibration).Ȁ Ȁ Ȁ VarScanȀ run괄ЀtimeȀ isȀ forȀ VarScanȀ usingȀ theȀ defaultȀ setting.Ȁ 1KGȀ =Ȁ selectedȀ 1000Ȁ genomesȀ 

projectȀ samples.Ȁ 
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Figure 2: Number of Variants Called for GATK versus VarScan (1KG - chr20)
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Figure 3: Distribution of ANNOVAR Annotations for Coding SNP Variants (1KG - chr20)
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Figure 5: Recovery of Coding SNPs from Targeted Exon Samples (1KG Exome - chr20)
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Figure鈀 6:鈀 Recovery鈀 of鈀 SNP鈀 Chip鈀 Variants鈀 in鈀 Exome鈀 Samples 鈀 
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Figure鈀 7:鈀 Exome鈀 Variant鈀 Caller鈀 Overlap鈀 (Coding鈀 Variants)鈀 

1KG鈀 (chr20)鈀  SRP019719鈀 (all)鈀 
S
N
P
鈀 

In
d
e
l 鈀 

HCː킭HQ

VarScanː킭ConsUGː킭HQ

139

5731

0

0242

615

45

HCː킭HQ

VarScanː킭ConsUGː킭HQ

5308

257349

138

786211168

37475

2319

HCː킭HQ

VarScanː킭ConsUGː킭HQ

78

59

1

05

22

1

HCː킭HQ

VarScanː킭ConsUGː킭HQ

2577

3496

32

5474

762

52

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.403v3 | CC-BY 4.0 Open Access | received: 12 Jun 2014, published: 12 Jun 2014

P
re
P
ri
n
ts



Figure 8: QC Metrics to Estimate Speci�city Versus Sensitivity for Variant Callers (Coding SNPs)
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