
Ensemble-based network aggregation improves the accuracy of 1 

gene network reconstruction 2 

Jeffrey D. Allen1,2, Yang Xie1,2 and Guanghua Xiao1,*  3 

1 Quantitative Biomedical Research Center 4 
2 Simmons Cancer Center, UT Southwestern Medical Center, 5 

* To whom correspondence should be addressed. Tel: 214-648-4553; Fax: 214-648-7673; Email: 6 
Guanghua.Xiao@UTSouthwestern.edu 7 

Present Address:  Guanghua Xiao, 5323 Harry Hines Blvd, UT Southwestern Medical Center, Dallas, 8 
TX, 75390, USA 9 

 10 

ABSTRACT  11 

Reverse engineering approaches to construct context-specific gene regulatory networks (GRNs) 12 
based on genome-wide mRNA expression data have led to significant biological findings. However, 13 
the reliability and reproducibility of the reconstructed GRNs needs to be improved. Here, we propose 14 
an ensemble-based network aggregation approach to improve the accuracy of the network topology 15 
constructed from mRNA expression data. To evaluate the performance of different approaches, we 16 
created dozens of simulated networks and also tested our methods on three Escherichia coli datasets. 17 
We demonstrate three novel applications from this development. First, bootstrapping can be done on 18 
the available samples, turning any network reconstruction approach into an ensemble method. 19 
Second, this aggregation approach can be used to combine GRNs from different network inference 20 
methods, creating a novel network reconstruction approach that consistently outperforms any 21 
constituent method. Third, the approach can be used to effectively integrate GRNs constructed from 22 
different studies – producing more accurate networks. We are releasing an implementation of these 23 
techniques as an R package “ENA” which is able to run network inference in parallel across multiple 24 
servers. We made all of the code and data used in our simulations and analysis available online at 25 
https://github.com/QBRC/ENA-Research to ensure the reproducibility of our results. 26 

INTRODUCTION 27 

Accurate reconstruction of Gene Regulatory Networks (GRNs) from gene expression 28 
microarrays has been shown to be valuable in a myriad of areas surrounding biomedical research[1–29 
5]. Researchers have previously used approaches including Bayesian Network-Based approaches [6], 30 
Correlation-Based approaches [7], and Partial-Correlation-Based approaches [8,9]. These methods 31 
have been shown to have various strengths and weaknesses under different biological/simulation 32 
settings, with no one method excelling in all conditions. [10]. Additionally, leveraging gene expression 33 
data from multiple datasets to construct gene networks is often difficult, due to discrepancies in 34 
microarray platform selection, as well as in normalization and data processing techniques. In this 35 
study, we propose an Ensemble-based Network Aggregation (ENA) approach to integrate gene 36 
networks derived from different methods and different datasets to improve the accuracy of network 37 
inference.  38 

We used a non-parametric, inverse-rank-product, algorithm in the ENA approach to combine 39 
networks reconstructed on the same set of genes. The rank- product method was introduced by 40 
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Breitling et al [11,12] as an effective method for detecting differentially expressed genes in microarray 41 
studies. Because the rank product method is powerful and computationally efficient, it was extended 42 
to be used in other fields, such as RNAi screening [13] and proteomics [14]. This method can be 43 
directly related to the linear rank statistics [15]. In this study, we show three ways to leverage this 44 
approach to generate the ensemble-based networks: 1.) Samples in a dataset can be “bootstrapped” 45 
to reconstruct multiple networks out of a single original dataset using a single reconstruction method, 46 
which can then be aggregated into a more accurate and reproducible network; 2.) Networks produced 47 
by various reconstruction methods can be aggregated into a single network that is more accurate than 48 
the network provided by any individual method; 3.) Networks reconstructed from different studies 49 
which contain the same genes can be combined into a single, more accurate network, despite 50 
differences in platforms or normalization techniques. Because this approach has little overhead, it can 51 
efficiently be applied to dozens or hundreds of networks reconstructed on the same set of genes. We 52 
find that this approach has the ability to improve the accuracy of GRN reconstruction in all three 53 
applications based on simulated gene expression data, as well as Escherichia coli (E. coli) 54 
datasets[16–19].  55 

MATERIAL AND METHODS 56 

Overview of the Inverse-Rank-Product Network Aggregation Approach 57 

Reconstructed gene networks are often returned as a weighted undirected graph ( , )G N= Ω , where 58 

G  is a reconstructed graph, {1,..., }N n= is the set of vertices (genes) in the graph, and 59 

,[ ]ij i j Nω ∈Ω =
 is referred to as the adjacency matrix, in which ijω

 represents the intensity of the 60 

interaction between genes i and j. A larger (absolute) value of ijω
indicates a stronger interaction or 61 

higher confidence in the edge between genes i and j, while 
0ijω =

indicates no interaction, or 62 
conditional independence between genes i and j. Some techniques, such as Sparse PArtial 63 
Correlation Estimations (SPACE) [9], return a sparse matrix in which many of the possible interactions 64 
are 0; other techniques return complete graphs in which all edges are present with non-zero 65 

weightings. Additionally, the distribution of iω  can vary drastically among reconstruction techniques. 66 
For this reason, the aggregation of networks reconstructed using different techniques or different 67 
datasets is challenging. In this study, we used a rank-product method to combine networks to 68 
overcome the different distributions observed in this problem.  69 

Specifically, suppose { }kG=G  is a set of networks constructed on the same set of genes N, 70 

where {1,..., }k K=  is the index of a particular network. For each single network ( , )k kG N= Ω , we 71 

calculate 
k
ijr

, the rank of 
k
ijω

 for { , and }i j N i j∈ < . Since the adjacency matrix Ω  of an 72 
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undirected graph is a symmetric matrix, we only need to calculate the rank of the *( 1) / 2N N −  73 

elements in ijω
 constituting the lower triangle (i < j) of the adjacency matrix. In this study, we give the 74 

lower rank to the high strength/confidence interaction. For example, the interaction with the highest 75 

strength/confidence will have rank 1. This operation is performed on each individual graph 
kG  76 

independently. After the rank of 
k
ijr

 has been computed for each network 
kG  , we calculate the rank 77 

of a particular edge between genes i and j in the aggregated network by taking the product of the 78 

ranks of the same edge across all networks inG , as follows: 1

K
k

ij ij
k

r r
=

=∏

.This function is iterated 79 

over all possible edges to construct the aggregated network 
( , )ijG N r= 

, in which the strength of the 80 
edges in the new network are based on the aforementioned rank-product calculation. 81 

 This algorithm can be efficiently applied to large networks with many reconstructed networks 82 

in G . The complexity of the algorithm is 
( )( )NNKO log⋅

, as 
)(

2
2

2

NO
NN

=
−

elements must 83 

be sorted for each network in 
kG . 84 

Three Applications for Ensemble-based Network Aggregation  85 

The initial application was to leverage the rank-product method to “bootstrap” samples. Each 86 
time, we construct the gene network using a randomly selected subset of the available samples. By 87 

repeating this process B times, we create a set G  consisting of B graphs, each reconstructed using 88 
only randomly selected bootstrap samples in the dataset. For example, here is the procedure to 89 
generate the bootstrapping network from the microarray dataset MD:  90 

1 1 1 1{ , } (for 1 )

RankProduct G

{ , } (for 1 )

ij
Bootstrap

B B B B
ij

MD G N r i j n

MD

MD G N r i j n


→



→ = Ω → ≤ < ≤

→ →

→ = Ω → ≤ < ≤





  

91 
 92 

Of course, this bootstrapping procedure inflates the computational complexity of GRN 93 
reconstruction by orders of magnitude, as GRNs must be reconstructed B times, rather than just once. 94 

Because each graph in G  can be reconstructed independently, it is possible to take advantage of the 95 
“parallelizability” of these simulations by utilizing multiple cores or computers as we discuss below. 96 
Note also that the complexity of GRN reconstruction does scale on the order of samples included, so 97 
each permuted GRN can be constructed slightly more quickly than a single global GRN; for the 98 
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reconstruction techniques employed in this study, however, the performance did not vary greatly 99 
based on the number of samples included. 100 

The second application of the rank-product network merging method was to reconstruct an 101 
aggregated GRN based on the output of multiple different reconstruction techniques. We have 102 
observed that reconstruction techniques perform differently based on different simulation settings [20], 103 
with no one method outperforming the others on all metrics. Thus, we were interested to see whether 104 
or not merging these GRNs would offer an improvement in performance. In this application, the set of 105 

graphs G consist of one graph per network reconstruction technique employed. In our analysis, we 106 
leveraged GeneNet[8], Weighted Correlation Network Analysis (WGCNA) [7], and Sparse PArtial 107 
Correlation Estimation (SPACE) [9], creating a set of 3 graphs which can then be aggregated. 108 
GeneNet and SPACE are partial-correlation-based inference algorithms. GeneNet uses the Moore-109 
Penrose pseudoinverse [21] and bootstrapping to estimate the concentration matrix. The SPACE 110 
algorithm creates a regression problem when trying to estimate the concentration matrix and then 111 
optimizes the results with a symmetric constraint and an L1 penalization. WGCNA is a correlation-112 
based approach which can identify sub-networks using hierarchical clustering. Conceptually, the 113 
aggregated graph would place higher confidence on those edges which were consistently ranked 114 
highly across the three methods, and would place lower confidence on those edges which were only 115 
ranked highly in one graph. This is the procedure to derive the ensemble network based on M 116 
different methods on the same dataset MD:  117 

method 1 1 1 1

method M

{ , } (for 1 )

RankProduct G

{ , } (for 1 )

ij

M M M
ij

G N r i j n

MD

G N r i j n


→



→ = Ω → ≤ < ≤

→

→ = Ω → ≤ < ≤





  

 118 

The final application evaluated in this study was in the merging of networks constructed from 119 
different datasets. Historically, gene expression datasets have been collected from various sites on 120 
different microarray platforms with different procedures for tissue collection; this creates 121 
incompatibilities and difficulties when trying to perform analysis on data from different datasets 122 
simultaneously. Because the rank-product method makes no assumptions on the distribution of the 123 
data at any point, we employ it to combine GRNs produced from different datasets, yielding a single, 124 
aggregated GRN which aims to capture the consistencies in network topology from the GRNs 125 
produced on different datasets. Here is the procedure to derive the aggregated network from datasets 126 
MD1, MD2…. MDD: 127 

1 1 1 1{ , } (for 1 )

RankProduct G

{ , } (for 1 )

ij

D D D D
ij

MD G N r i j n

MD G N r i j n

→

→ = Ω → ≤ < ≤

→

→ = Ω → ≤ < ≤





  

 128 

Software 129 
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The code used to bootstrap samples and aggregate the resultant networks was written in the 130 
R programming language [22]. We created an R Package entitled “ENA” and have made it available 131 
on CRAN (http://cran.r-project.org/web/packages/ENA/index.html); the compiled binaries, as well as 132 
all original source code are available for download there.  133 

Because of the parallelization opportunities in this algorithm, we ensured that our software 134 
would be able to distribute the bootstrapping process across multiple cores and multiple nodes using 135 
MPI [23]. Thus, if 150 CPU cores were available simultaneously, a bootstrapping of 150 samples 136 
could run in approximately the same amount of wall-clock time as a single reconstruction using all 137 
samples could. The ENA package includes robust documentation and (optionally) leverages the RMPI 138 
package to allow parallel execution of the bootstrapping simulations where such a computational 139 
infrastructure is available.  140 

Additionally, we leveraged the Git revision control system via GitHub (http://github.com) to 141 
control not only the R code developed for the ENA package, but also all code, reports, and data used 142 
in the aforementioned simulations and reconstruction techniques; all of this code is freely available at 143 
https://github.com/QBRC/ENA-Research. All the data analysis code that has been used to generate 144 
the results in this study was compiled into a single report and can be reproduced easily by using the 145 
knitr R package [24]. Due to the computational complexity involved in reconstructing this quantity of 146 
gene regulatory networks, the execution may take quite some time when analyzing the larger 147 
networks if not distributed across a large compute cluster.  148 

RESULTS 149 

Simulation 150 

We first tested the ENA methods on a wide array of simulated datasets. We simulated the 151 
gene expression datasets based on previously observed protein-protein interaction networks[25,26], 152 
and the expression data were simulated from conditional normal distributions [27].  We extract five 153 
different network sizes in an approximately scale-free topology: 17 genes with 20 connections, 44 154 
genes with 57 connections, 83 genes with 114 connections, 231 genes with 311 connections, or 612 155 
genes with 911 connections. For each network size, we simulated datasets with differing numbers of 156 
samples (microarrays): 20, 50, 100, 200, 500, and 1,000. Finally, we varied the noise by setting the 157 
standard deviation of the expression values to either 0.25, 0.5, 1.0, or 1.5. In total, we generated 120 158 
datasets to cover all possible arrangements of the above variables.  159 

 To test the effect of integrating networks derived from different datasets, we generated three 160 
different datasets, each containing 200 samples, from the 231-gene networks with noise values 161 
(standard deviation of the distribution of gene expression) of 0.25, 1, and 2. We then used the 162 
methods described above to reconstruct three networks, one from each dataset and then aggregate 163 
those networks. For comparison, we also combined all three datasets into a single dataset containing 164 
these 600 samples and reconstructed a single network from this larger dataset. 165 
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 The performance of methods in this setting can be represented on a Receiver Operating 166 
Characteristic (ROC) Curve, which plots the True Positive Rate against the False Positive Rate, 167 
demonstrating the performance of the method at all relevant edge weight thresholds. The 168 
performance of a method can be quantified by calculating the Area Under the ROC Curve (AUC). The 169 
greater the AUC, the better the performance of the method represented. A perfect reconstruction 170 
would have an AUC of 1, and a random guess could obtain an AUC of 0.5. 171 

Ensemble networks derived from bootstrapping Samples 172 

We found that bootstrapping samples can increase the accuracy of network inference. For 173 
example, the networks reconstructed from the dataset on the 231-gene network with a noise value of 174 
0.25 can be compared to demonstrate the variations in performance as seen in Figures 1 and 2. 175 
Figure 1 shows that by bootstrapping samples in the SPACE algorithm, the AUC of the reconstructed 176 
network can improve from 0.75 to 0.82. Figure 2 shows the degree of AUC improvement with each 177 
iteration of bootstrapping on SPACE, WGCNA and GeneNet with sample sizes of 20, 50 and 100 (left, 178 
middle and right panels). From this figure, the bootstrapping method increases the performance of 179 
SPACE substantially, improves GeneNet slightly when the number of microarrays is small, but does 180 
not noticeably improve the performance of WGCNA. SPACE benefits from bootstrapping in 80% of all 181 
simulated networks, and in 89% of “large” network simulations. Figure 3 shows the average 182 
performance increase achieved by bootstrapping SPACE on different network sizes. The 183 
improvement increases as the network size increases. Based on this evidence, we suggest employing 184 
the bootstrapping approach when using the SPACE algorithm, but not the others evaluated in this 185 
study. 186 

Ensemble networks derived from different methods 187 

Aside from optimizing individual reconstruction techniques, we find that combining different 188 
network reconstruction techniques executed on the same dataset also has the power to significantly 189 
improve the accuracy of the reconstructed networks. Using the dataset from the 83-gene network with 190 
200 samples and a noise value of 0.25, we can review the comparative performance of each 191 
reconstruction technique, as well as the aggregated network. Figure 4 shows that the aggregated 192 
network outperforms any of the individual reconstruction techniques. 193 

We observe that this trend holds true across most of the datasets that we tested: the 194 
aggregated method typically outperforms any single reconstruction technique. This is especially 195 
beneficial in scenarios in which the top performing individual network reconstruction technique may 196 
vary based on the context – some methods perform well on larger networks, others excel in datasets 197 
containing few samples, etc. To have an aggregation technique which consistently outperforms or 198 
matches the best performing individual method eliminates the need to choose a single reconstruction 199 
technique based on the context. 200 

Ensemble networks derived from different datasets 201 
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Finally, we find that the ENA approach works very well when attempting to integrate various 202 
datasets, especially among heterogeneous datasets that contain different distributions of expression 203 
data. After generating three datasets from the 231-gene network, each with 200 samples and noise 204 
values of 0.25, 1, and 2, we reconstruct each network using Bootstrapped SPACE, GeneNet, and 205 
WGCNA, then aggregate the resultant networks into a single network for each dataset, producing one 206 
aggregated network for each of the three datasets. We then use the ENA approach to consolidate 207 
these three networks into a single network representing the underlying network behind the three 208 
distinct datasets. We compare this to the alternative of simply merging all three datasets into a single 209 
600-sample dataset and using the same approach to reconstruct a single network. As shown in 210 
Figure 5, we find the proposed ENA approach outperforms the alternative approach of simply 211 
combining the expression data into a single dataset. Reconstructing on each dataset independently 212 
produces AUCs of 0.96, 0.96, and 0.89 for noise values of 0.25, 1, and 2, respectively. Naïvely 213 
merging the datasets by combining them into one large dataset yields an AUC of 0.96. The network 214 
aggregation approach yields the best performance, with an AUC of 0.98. 215 

Evaluating ENA approach in E. coli datasets 216 

 We then tested the ENA approach on three Escherichia coli (E.coli) datasets: 1. The Many 217 
Microbe Microarrays Database (“M3D”)[16] contains 907 microarrays measured under 466 218 
experimental conditions using Affymetrix GeneChip E.coli Genome arrays. 2. The second dataset 219 
(“Str”) is expression data from laboratory evolution of Escherichia coli on lactate or glycerol 220 
(GSE33147)[17]. This dataset contains 96 microarrays measured under laboratory adaptive evolution 221 
experiments using Affymetrix E. coli Antisense Genome Arrays. 3. The third dataset [18,19] (“BC”) 222 
contains 217 arrays measuring the transcriptional response of E.coli to different perturbations and 223 
stresses, such as drug treatments, UV treatments and heat shock. The RegulonDB database[28,29] 224 
contains the largest and best-known information on transcriptional regulation of E.coli and was used 225 
as the gold standard to evaluate the accuracy of constructed networks.  226 

We were able to obtain similarly positive results by employing these approaches on the E coli 227 
data. Bootstrapping and aggregating the three methods on each dataset independently produced 228 
AUCs of 0.574, 0.616, and 0.599 for the BC, Str, and MD3 datasets respectively. By merging the 229 
three networks produced on each dataset using ENA, we were able to produce a network with an 230 
AUC of 0.655, larger than the AUC of any network produced by any of the datasets independently.  231 

DISCUSSION 232 

The ability to aggregate networks using the rank-product merging approach has shown to be a 233 
valuable contribution in reconstructing gene regulatory networks – and likely to other fields, as well. 234 
By bootstrapping a single dataset using a single approach such as SPACE, we were able to 235 
significantly improve the performance of the algorithm. By aggregating the networks produced by 236 
different reconstruction techniques on a single dataset, we are able to consistently match or 237 
outperform the best-performing technique for that dataset, regardless of fluctuations in the 238 
performance of any one algorithm. By aggregating networks constructed independently on different 239 
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datasets capturing similar biological environments, we are able to reconstruct the network more 240 
accurately than would be possible using any one dataset alone. 241 

It is likely that SPACE was the only method to show consistent and significant improvement from 242 
bootstrapping because the SPACE algorithm models the gene regulation using linear regression; as a 243 
result, the network construction problem is converted to a variable selection problem. In SPACE, the 244 
variable selection problem is solved by sparse regression techniques with a symmetric constraint. By 245 
solving all the regression models simultaneously, SPACE is trying to get the globally optimized results. 246 
However, due to the instability in variable selection [30] caused by collinearity in the data, the 247 
networks constructed by SPACE are sensitive to sampling. A small change in the samples selected 248 
may lead to a relatively large change in the network structure. As a result, the networks constructed 249 
from bootstrapping samples are relatively “independent”, which leads to better accuracy in the 250 
aggregated network.  251 

We provide a user-friendly R package to allow others to use these techniques on their own datasets. 252 
By leveraging the MPI framework, we are able to run the bootstrapping process in parallel across 253 
many cores and nodes, drastically reducing the amount of time it takes to run such analysis. We 254 
include in this package a function which can permute random networks and perform ENA in order to 255 
better estimate the significance of any particular connection observed in a network. This can be used 256 
to reduce a continuous, complete graph to an unweighted graph including only statistically significant 257 
edges. 258 

Finally, we went to great lengths to ensure that all of our analysis would be as reproducible as 259 
possible by structuring our analysis code in reproducible reports – most of which can be regenerated 260 
at the click of a button – and making all of these freely available online at 261 
https://github.com/QBRC/ENA-Research. We feel that this transparency is an important but 262 
uncommon step in the scientific process and hope that other researchers begin incorporating such 263 
practices in their investigation to foster more open, collaborative research. 264 

Availability 265 

The R code used to perform all of the analysis contained in this study is available in the R package 266 
entitled “ENA,” available on CRAN currently. The source code, as well as compiled binaries, are 267 
available for download at http://cran.r-project.org/web/packages/ENA/. 268 
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 348 

TABLE AND FIGURES LEGENDS 349 
Figure 1. Receiver Operating Characteristic (ROC) curves demonstrating the performance of the 350 
SPACE algorithm on the 231-gene network with 20 samples and a noise value of 0.25 when 351 
performing a single iteration or bootstrapping the dataset using the Ensemble Network Aggregation 352 
approach. In this case, the Area Under the ROC Curve (AUC) of the non-bootstrapped SPACE 353 
method is 0.748, while the bootstrapped SPACE method is 0.816. 354 
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 355 

Figure 2. Comparison of the AUCs of the reconstructed networks from the 231-gene network with a 356 
noise value of 0.25 and different sample sizes (20, 50 or 100) for SPACE (a.), GeneNet (b.), and 357 
WGCNA(c.). In these plots, the y-axis shows the performance of the reconstructed network, 358 
measured by the Area Under the Curve; a horizontal line is drawn to represent the AUC of the non-359 
bootstrapped reconstruction (a single reconstruction using all available samples). The x-axis 360 
represents the number of iterations in the bootstrapping process. Points below the horizontal line 361 
represent a loss in accuracy of the reconstructed networks, and points above the horizontal line 362 
represent a gain of AUC – an increase in performance. 363 
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 364 

Figure 3. The effect of network size on ENA performance. The y-axis represents the improvement in 365 
AUC of the bootstrapped SPACE networks vs. the non-bootstrapped SPACE networks. Different bars 366 
represent different sizes of networks in the simulation study.  367 
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 368 

Figure 4. The performance of aggregating different methods. A comparison of the accuracy of the 369 
reconstructed networks using the dataset containing 200 samples (left) and 1,000 samples (right) 370 
from the 83-gene network with a noise value of 0.25. As can be seen, the ensemble network 371 
aggregation approach performs better than any of the other individual techniques on these two 372 
networks. 373 

 374 
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Figure 5. The ROC curves of different approaches to reconstruct the gene network based on three 375 
simulated datasets.  376 

 377 

Figure 6. The AUCs of the produced networks when executing on the E. coli datasets. Note that the 378 
aggregating networks from SPACE, WGCNA and GeneNet increases the accuracy within each 379 
individual dataset, then aggregating results from three datasets further increases the accuracy 380 
beyond what any one dataset offered. 381 

 382 
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Supplementary File ENA-master.zip - contains the source code for the ENA R package,  383 

Supplementary File ENA-Research-Master.zip - contains all of the reproducible analysis code behind 384 
this manuscript. 385 
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