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Coalescent: an Open-Science framework for Importance 
Sampling in Coalescent theory

Importance sampling is widely used in coalescent theory to compute data likelihood. Efficient 

importance sampling requires a trial distribution close to the target distribution of the 

genealogies conditioned on the data. Moreover, an efficient proposal requires intuition about 

how the data influence the target distribution. Different proposals might work under similar 

conditions, and sometimes the corresponding concepts overlap extensively. Currently, there 

is no framework available for coalescent theory that evaluates proposals in an integrated 

manner. Typically, problems are not modeled, optimization is performed vigorously on limited 

datasets, user interaction requires thorough knowledge, and programs are not aligned with 

the current demands of open science. We have designed a general framework 

(http://coalescent.sourceforge.net) for importance sampling, to compute data likelihood under 

the infinite sites model of mutation. The framework models the necessary core concepts, 

comes integrated with several data sets of varying size, implements the standard competing 

proposals, and integrates tightly with our previous framework for calculating exact 

probabilities. The framework computes the data likelihood and provides maximum likelihood 

estimates of the mutation parameter. Well-known benchmarks in the coalescent literature 

validate the framework’s accuracy. We evaluate several proposals in the coalescent 

literature, to discover that the order of efficiency among three standard proposals changes 

when running time is considered along with the effective sample size. The framework 

provides an intuitive user interface with minimal clutter. For speed, the framework switches 

automatically to modern multicore hardware, if available. It runs on three major platforms 

(Windows, Mac and Linux). Extensive tests and coverage make the framework accessible to 

a large community.
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Overview 

Infinite-Sites Model (K69) 

Excellent overviews of various coalescent models are already available (e.g., Hein, Schierup 

& Wiuf, 2005; Wakeley, 2009). Here for the sake of completeness, we briefly describe the 

infinite-sites model (denoted “K69”, after Kimura, 1969). Most of our notation follows 

Wakeley (2009).  

Consider an aligned sample of DNA sequences, and note that alignment columns can contain 

gaps. If an alignment column lacks gaps, call it a “site”. Model K69 considers only sites. 

Under Model K69, the sample evolves its from most recent common ancestor (MRCA) by 

through reproduction and mutation at the sites. Model K69 is most suitable for long DNA 

sequences with low mutation rates, because it permits at most one mutation at each site 

during the evolution of the sampled sequences. The state of each site in a sampled sequence 

(its “character”) can therefore be summarized by a binary digit: 0, if the corresponding DNA 

letter agrees with the MRCA; and 1, otherwise. A site is segregating if some sequences in the 

relevant sample contain the character 1. Thus, the segregating sites comprise the essential 

data in the sample. The sample data can be represented as [ ],D X ν= , where X  is a binary 

matrix (i.e., { }, 0,1i jX ∈ ) with distinct rows iX  (“haplotypes”) and ν  is an column vector 

such that 
iν  counts of multiplicity of the haplotype 

iX  among the sampled sequences. Thus, 
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the character of haplotype iX  at site j  is { }, 0,1i jX ∈ . See Table 1 for a sample data set 

[ ],D X ν=  similar to Figure 8.6 in Wakeley (2009). 

As an aid to visualization, data conforming to Model K69 always have a unique gene tree. 

Figure 1, e.g., shows the gene tree corresponding to Table 1. Within a gene tree, the order of 

mutations on any edge is arbitrary, and permutation of the column order in the haplotype 

matrix X  does not affect the gene tree for ( ),D X ν= . Gusfield (1991) gives an efficient 

algorithm for constructing gene trees.  

Under Model K69, the MRCA (represented by a matrix with a single row of 0s) evolves into 

the sample data [ ],D X ν=  by passing stepwise through a sequence of ancestral 

configurations, which have a form [ ],C X ν=  similar to the sample data. In the following, a 

“singleton row i ” is a row with count 1iν = . Backwards in time, starting from sample back 

to MRCA, each step corresponds to one of three possible evolutionary operations on the 

current ancestral configuration: (1) coalescence (deleting one of some identical rows); (2) 

removing a mutation of type I (changing the only 1 in some column j  into 0, leaving the 

corresponding singleton row i  unique in the ancestral configuration); and (3) removing a 

mutation of type II (changing the only 1 in some column j  into 0, to make the corresponding 

singleton row i  the same as some other row(s) in the ancestral configuration). Removal in 

both mutational types I and II is restricted to “the only 1 in some column” and “a singleton 

row”, because Model K69 permits at most one mutation at each site. Once a mutation is 

removed, the corresponding site is no longer a segregating site (i.e., the corresponding 

column in the new binary matrix has only 0s). Thus, a computer can efficiently represent the 

removal of a mutation simply by removing the corresponding column from X , a 

representation we now use. Under the representation, the MRCA becomes an empty matrix 

with count 1. 
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To represent the three evolutionary operations mathematically, consider an ancestral 

configuration [ ],C X ν= , let ie  denote a column vector with 1 in the i -th position, and 0 

elsewhere Given C , let A  denote the set of singleton rows i , and ( )A i  denote column j  

with the smallest index in row i , so that row i  and column ( )A i  satisfy the restrictions on 

mutations of type I. (In the following, the arbitrary choice of the smallest column index ( )A i  

is feasible, because column order is irrelevant to the gene tree.) Let 
iδ  be the corresponding 

evolutionary operator that deletes column ( )A i  from X , creating the new ancestral 

configuration [ ],i Xδ ν . Similarly, let B  denote the set of singleton rows i , each with a single 

column j  satisfying the restrictions on mutations of type II. For each i , let ( )B i  be the row 

index of the “merge haplotype”, the haplotype that row i  becomes when the 1 in column j  is 

changed to 0. Let iR  be the corresponding evolutionary operator, which deletes row i  and 

column j  from X , creating the haplotype matrix iR X , and which also deletes the i -th row 

of the column vector ν , so the new ancestral configuration is ( )( ),i i B i
R X R eν + 

. 

Having defined the sample space of ancestral configurations [ ],X ν  and the steps that Model 

K69 permits, we now determine the corresponding probability measure [ ],p X ν , which 

implicitly depends on a population mutation parameter θ . The MRCA probability is 

[ ] [ ]( ),  1   1.0p = , and the probabilities [ ],p X ν  satisfy the recursion 

•  
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For introductory examples see (Hein, Schierup & Wiuf, 2005; Wakeley, 2009). 
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Importance Sampling for Computing Likelihood 

Wakeley (2009) gives an overview of importance sampling for computing likelihood in 

coalescent theory. Briefly, here are the key concepts. To make the dependence of the 

probability on the mutational parameter θ  explicit, let ( ) [ ]; ,p D p Xθ ν=  for ( ),D X ν= . 

The data probability in (1.1) can also be written as the following: 

•  ( ) ( ) ( ); | ;
G

p D p D G p Gθ θ= ∑  (1.2)           

where the sum is over all genealogies G  consistent with the data D . Let ( ).q  be any 

probability measure, and [ ].qE  be its expectation, and define the likelihood ratio 

( ) ( ) ( )/w G p G q G= . If ( ).p  is absolutely continuous with respect to ( ).q , i.e., if ( ) 0q G >  

wherever ( ) 0p G > , then 

•  

( ) ( ) ( )
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( ) ( )
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Usually, in the context of importance sampling, ( ).p  is called the target distribution; ( ).q , the 

trial distribution; and ( ).w , the importance sampling weight  (Hammersley & Handscomb, 

1964; Liu, 2001). Given R  realizations 
rG  ( 1,...,r R= ) of the genealogy G  independently 

sampled from the trial distribution ( ).q , then the strong law of large numbers implies that 

with probability 1, 

•  ( ) ( ) ( )1

1

; lim | ;
R

r r
n

r

p D R p D G w Gθ θ−

→∞
=

= ∑ . (1.3) 

Thus, importance sampling provides a likelihood estimator  

•  ( ) ( ) ( )1
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Equation (1.1) provides a sequence of steps from a population sample to its most recent 

common ancestor (MRCA), each step corresponding to a single ancestral coalescence or the 

loss of a single mutation. A Monte Carlo simulation can therefore assign trial probabilities 

( ).q  to these time-steps, to create a sequential importance-sampling scheme (Liu, 2001). 

Many coalescent processes are Markovian, making sequential importance sampling (SIS) a 

natural choice for simulating them, because events occurring at different time-steps are 

independent. The coalescence literature often uses the terminology “proposals” for the 

probability assignments, but “proposals” is not the standard usage in the Monte Carlo 

literature. (The non-standard usage might be derived from the Metropolis method, which 

accepts or rejects “proposals”.) In any case, this paper tries to adhere to the standard 

terminology (Liu, 2001; Robert, C. P. & Casella, G., 2004) in the Monte Carlo literature. 

Standard Sequential Samplers 

Sequential samplers choose among the evolutionary operations corresponding to the different 

terms in equation (1.1). Because each operation is determined once the corresponding 

haplotype 
iX  in the ancestral configuration ( ),C X ν=  is known, we let ( )|q i C  with 

various subscripts denote corresponding trial probability. 

The Ethier-Griffiths-Tavare (EGT) Sequential Sampler 

The EGT recursion in equation (1.1) directly suggests a sequential sampling scheme 

(Griffiths & Tavare, 1994): 
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The Stephens-Donnelly (SD) Sequential Sampler 

Stephens & Donnelly (2000) developed a sampling scheme by characterizing the target 

distribution and then approximating it with 

•  ( )
2 or  or 

|
0 otherwise

i i
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i A i B
q i C

ν ν ≥ ∈ ∈ 
∝  

 
 (1.6) 

The Hobolth-Uyenoyamay-Wiuf (HUW) Proposal 

Hobolth, Uyenoyamay & Wiuf (2008) approximated the effects of all mutations on the 

probabilities for the next step from the sample to the MRCA, to derive 
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where 0θ  is a fixed value of θ ,  

•  

( )

( ) ( )

,

,

,

,

1

( )

1 0

i
m i m

m

i m

i
m i m

m

m i m i

m

p d X
d

u

p d X
n d

d X

θ

θ

ν

θ
ν

ν

 = 
 =  
 − =   −

=

 
 

∑
 

and 

•  

( )

( )

0

0

0 0

11

1

2 0

0

2

2 0

1 11 1

1 2 1

1 11

2 11

1

11
11

1 1

m

m

n d

k

n

m

m d

m

k

n

m

k

n d nd

n k k k k
d

n d n

k kk

np
k

k n

pθ

θ

θ

θ

θ

θ

−− +

=
− +

=

=

− − −  −
  − − + − −  =
− − −  

  − −− +   
 

− +=
−

− + −

∑

∑

∑

, 

where ( )mp dθ  is the probability that the next evolutionary operation (coalescence or 

mutation) involves a row 
iX  where , 1i mX =  (i.e., haplotype i  bears mutation m ), and ,i mu  
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denotes the probability of involving row iX  in the next mutation event m . The proposal 

probability in equation (1.7) sums ,i mu  over all mutations m  for row iX .  

Implementation 

Motivation 

Felsenstein et al. (1999) summarizes the main problems posed by computational inference in 

population genetics. To be useful to a broad community in population genetics, new 

theoretical methods must yield computations linear in time-and space-complexity. To 

compare theoretical methods, computer implementation of the corresponding equations is 

insufficient. Particularly for Monte Carlo methods, an integrative analysis must model whole 

problems, to reuse results, reduce the cost of maintenace, and maintain reliability. We 

therefore followed a systems approach, where the current framework for importance 

sampling mirrors our approach to computing exact coalescent probabilities (Tewari & 

Spouge, 2012). 

 

We now describe the architecture of the framework, diagramming the key classes and 

interfaces with the unified modelling language (UML), while displaying the various 

connections and assumptions. The framework consists of several packages, which 

progressively narrow the most general concepts down to the specifics of K69, the infinite-

sites model of mutation. 

Core framework 

The core framework models the concepts for any domain of sampling. It corresponds to the 

package commons.is. Figure 3 displays the key classes: Sampler, Proposal, and Factor. 

Sampler 

Sampler generalizes equation (1.4):as  

•  ( ) ( )
1

ˆ [ ]
R

q r r

r

E X h X w X
=

= ∑ , (1.8) 
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where ( )h X  is a “mean function”, and ( ) ( ) ( )/r r rw X p X q X= , ( ).p  and ( ).q  being the 

target and trial distributions, respectively. For coalescent models, X  corresponds to the 

genealogy G , and ( )h X  denotes the conditional probability of observing data D  given the 

genealogy X . Note that for coalescent models, X  represents the relevant events in the entire 

genealogical history of the sample, including coalescent events. For the standard sequential 

sampling schemes above, ( ) 1h X =  identically for all X . 

Proposal & Factor 

Proposal draws an independent sample X  each time sample() is called and Factor computes 

( )w X in equation (1.8). Factor can be created by computing the weight ( )w X  directly (by 

implementing sub-interface Proposal_w_Prob) or by implementing an analytical expression 

for the ratio, if available (e.g., the so-called “functional path” 
jF  in equation (12) of Griffiths 

& Tavare, 1994). 

Coalescent Models 

The following subsection describes SIS schemes for coalescent genealogies. Our framework 

for exact probabilities (Tewari & Spouge, 2012) already contains the general concepts for 

coalescent models, so it implements sequential schemes for specific models readily, using the 

key class GProposal within the package coalescent.is. Figure 3 sketches the implementation 

of key classes and their interactions. 

GProposal 

GProposal implements SIS via Proposal_w_Prob. It builds the sample and its probability 

recursively, from the alternatives that equation (1.1) presents for each step, using 

probabilities from the framework for exact probabilities. Figure 4 illustrates SIS in a 

coalescent process. Although the framework does not currently implement partial-weight 

based judgements (Liu, 2001) in its SIS, it can easily accommodate them. 
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Genealogy & AC 

Genealogy and AC (“Ancestral Configuration”) come from the framework for exact 

probabilities. Genealogy defines the chain of events from the sample to the MRCA. AC 

denotes sample configuration in a generic coalescent model and given the allele and event 

types, specifies the recursion. 

Method: proposalWeight 

GProposal specifies the SIS of all coalescent models based on equation (1.1). Specific 

proposals (e.g., equations (1.5), (1.6) and (1.7)) need only implement the abstract method 

proposalWeight. This design localizes errors, limiting the scope of problems associated with 

a specific proposal; a useful feature for Monte Carlo. It also stabilizes results when 

comparing sequential sampling schemes: although general optimizations might improve the 

performance of several schemes, the implementation of each scheme would share the gain, 

thereby maintaining relative efficiencies. 

The Infinite-Sites Model K69 

For the infinite-sites model of mutation (K69), we implemented three standard proposals 

(equations (1.5), (1.6) and (1.7)) with the abstract method proposalWeight, as described 

above. The proposals are collected in GProposals_K69 (see Figure 6), which follows the 

factory design pattern (Gamma et.al., 1995). The framework for exact probabilities already 

specifies the interface K69_AC of the ancestral configuration under infinite-sites model of 

mutation, so we used it to specify the three proposals. Figure 7 illustrates the implementation 

of SD Proposal, which demonstrates that proposals can be written compactly from the 

corresponding equations, leaving the framework to encapsulate the details. 

Multiple Parameters 

When computing a likelihood for a range of parameter values, one can generate several 

realizations to compute a likelihood for each value, or even more efficiently, one can use 

each realization to compute likelihoods for several values (Griffiths & Tavare, 1994). Ideally, 
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sweeping across several values should be pluggable, i.e., the sweep should become 

automatic, once the scheme for the model is given. Our framework is unusual, in that its 

careful design incorporates foundations permitting automatic sweeps, i.e., no additional 

implementation is required to sweep across a range of parameter values, when a standard 

proposal is written against a single model.  

Parallel Sequential Sampling Schemes 

The object-oriented design of the framework naturally promotes the use of multiple computer 

cores. The framework design generally prefers modularity to optimizing running times, but 

platform-independence and the possibility of running the framework on common multi-core 

machines justifies the compromise. Multiple schemes can run on separate threads, reducing 

computing time and providing direct visual feedback on their running times. Some schemes 

both increase statistical power and reduce computing time relative to other schemes, but more 

typically, a nuanced trade-off occurs.  

Tests and Coverage 

The user application is only one part of the framework: extensibility to future solutions also 

puts constraints on it. Its expansion must not break existing features and design contracts 

(Freeman & Pryce, 2009). Debugging must remain manageable and coverage of checked 

exceptions (known causes of disruption) must grow over time. Automated unit tests along 

with their coverage can satisfy these constraints. Coverage measures how well the tests are 

doing their job. Table 2 provides the number of tests and coverage for the packages in the 

framework. Typically, more than 70% coverage should inspire confidence. 

Results 
In the literature, the data set of Griffiths & Tavaré (Griffiths & Tavaré, 1994) has become a 

standard benchmark for proposals. Figure 8 displays the gene tree for the dataset in a format 

similar to Figure 3 of (Hobolth, Uyenoyamay & Wiuf, 2008). We computed the likelihood 
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curve with the framework and validated the maximum likelihood estimates (MLE) with the 

published values shown in Table 3. Table 4 displays the maximum likelihood values for 

various proposals. The published values were estimated from figures in (Wu, 2009), because 

point estimates were not available. The framework’s estimates are consistent with the 

literature. The effective sample size (ESS) for proposal ( ).Q  is defined (Liu, 2001, p.35) as 

•  
( )( )1 varq

R
ESS

w X
=

+
, (1.9) 

where R  is the number of realizations (samples), and w  is the corresponding importance 

weight. Hobolth et al. (Hobolth, Uyenoyamay & Wiuf, 2008) compared various proposals by 

estimating the ESS. Loosely, ESS quantifies the vicinity of the target distribution to the trial 

distribution, so SIS improves as the ESS increases.  

 

Hobolth et al. (Hobolth, Uyenoyamay & Wiuf, 2008) investigated the performance of the 

three proposals by comparing ESSs as mutation rates and numbers of realizations varied. The 

relative efficiency of the three proposals (EGT < SD < HUW) was stable in their Figure 6. 

Our simulation study has two aims: (1) to confirm the proposal ranking; and (2) to consider 

the effect running times have on the ranking. Figure 8 plots the ratio of ESSs to the ESS for 

SD, for various mutation rates and numbers of realizations. For each cell, the tool ms 

(Hudson, 2002)  or msms (Ewing, G. & Hermisson, J., 2010, acting as a cross-platform 

fallback) simulated three independent sets of samples for the corresponding mutation rate and 

number of sample size. Within each cell, there are 2 plots: (1) one for a fixed number of 

realizations; and (2) one for fixed computer running time, the maximum time taken by any 

proposal in the first plot for the fixed number of realizations. The number of realizations was 

108,000, close to 100,000, as in Hobolth et al. (Hobolth, Uyenoyamay & Wiuf, 2008). 
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Discussion 

Table 4 verifies (by both standard error and ESS) the results in (Hobolth, Uyenoyamay & 

Wiuf 2008): the SIS performance order is EGT < SD < HUW. Note, however, that the 

running times for SD and EGT are nearly equal, and half of the running time for HUW. 

Within the framework, all proposals share the same runtime infrastructure, so the accuracy in 

HUW comes at a price: about double the running time per realization.  

 

Like Table 4, Figure 9 verifies the results in (Hobolth, Uyenoyamay & Wiuf, 2008), but 

shows that when the figure of merit is ESS per running time, EGT < HUW < SD, where SD is 

only slightly better than HUW. Although EGT is noticeably faster than HUW, HUW 

compensates with the accuracy of its estimates. The computational expense of HUW derives 

mostly from ( )p dθ  in Equation (1.7), despite its being computed only once per realization. 

However, when HUW computes the MLE of the mutation rate θ , it does not need any 

scaling as occurs in Equation (12) in (Griffiths & Tavare, 1994), partly because of the 

asymptotics in Equation (12) & (13) in (Hobolth, Uyenoyamay & Wiuf, 2008). Thus, HUW 

computes the MLE noticeably faster than EGT, especially when many mutation rates θ  are 

examined. 

Conclusions 
Running time can be a significant consideration when comparing the efficiency of different 

importance sampling schemes. If ESS per running time replaces ESS as a figure of merit, 

then order of efficiency among the three proposals considered (equations (1.5), (1.6) and 

(1.7)) changes from EGT < SD < HUW to EGT < HUW < SD. HUW is noticeably slower 

than both SD & EGT, but its ESS is only slightly inferior to SD, because its accuracy 

compensates for the increase in running time. (Hobolth, Uyenoyamay, & Wiuf, 2008) have 

also indicated that data patterns inherent in coalescent models with mutations could be 
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exploited to improve importance sampling schemes further. Our work might be useful in 

benchmarking these and other improvements to importance sampling schemes. 

 

We have followed a systems approach, in the spirit of open science (Stodden 2013a; Stodden 

2013b; Stodden 2013c). Running our software verifies claims made here, and for verification 

purposes, the supplementary materials include an illustrated stepwise instructions manual. All 

downloads are available at the project website: http://coalescent.sourceforge.net. The user 

interface is intuitive, so it requires only a basic familiarity with the theory. The framework is 

open source, scalable and comes with several test cases and is backed by a large test 

coverage. The present framework augments our earlier framework for exact algorithms 

(Tewari & Spouge, 2012) with the same approach, adding another tool to the likelihood 

analysis for population genetics data under the infinite sites model of mutation. 
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Figures 

Fig 1 

Title: Gene tree for data in Table 1. 

Legend: Gene tree for data in Table 1 drawn using the framework. 

Snapshot: 

 

Fig 2 

Title: Tree operations 

Legend: Tree operations in the recursion for the infinite sites model. 
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Snapshot: 

 

Fig 3 

Title: UML diagram of the core framework. 

Legend: UML diagram of the core framework. The diagram shows key classes in the package 

commons.is. These classes would apply to any domain of sampling. 

Snapshot: 
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Fig 4 

Title: UML diagram of the IS framework specific to infinite-sites model. 

Legend: UML diagram of the IS framework specific to infinite-sites model. The diagram 

shows relations for the key class GProposal in the package coalescent.is.  

Snapshot: 
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Fig 5 

Title: Genealogy, as a domain of sampling. 

Legend: Genealogy, as a domain of sampling. The diagram shows the space of genealogies 

compatible with data (not shown). A sample from this space is marked. Each node is labelled 

in the format ( , )I J : i  corresponds to statistic.eventstoMRCA() in Fig 3 (total number of 

events, coalescent or mutation, before the configuration reaches MRCA) and j  denotes a 

counter at that level. 

Snapshot: 
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Fig 6 

Title: API of factory methods for all implemented proposals. 

Legend: API of factory methods for all implemented proposals for the infinite-sites model. 

API for ancestral configuration (AC) is also shown.  

Snapshot: 
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Fig 7 

Title: Demonstrates writing of a new proposal. 

Legend: Demonstrates writing of a new proposal using the SD proposal. Note that the 

implementation is a close translation of the corresponding equation. 

Snapshot: 
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Fig 8 

Title: Gene tree corresponding to the benchmark data set. 

Legend: Gene tree corresponding to the benchmark data set. The figure was drawn using the 

framework. 

Snapshot: 

 

Fig 9 

Title: Simulation results showing significance of time in proposal efficiency. 

Legend: Simulation results showing significance of time in proposal efficiency. 

It also validates the claims made by HUW for fixed sample size (see text). 

Snapshot: 
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Tables 

Table 1 

Title: A sample data set for Model K69 (the infinite-sites model). 

Legend: Data set for Model K69 similar to Figure 8.6 in Wakeley (2009) The characters are 

encoded as 0 and 1. Mutations are encoded as numbers from 1 to 4. The bolded cells are the 

haplotype matrix X , whose rows iX  give the characters in each haplotype. The column 

vector ( )2,1,1,1
Tν =  to the right of X  counts each haplotype in the sample data set, so the 

total number of genetic samples is 2 1 1 1 5n = + + + = . 

Snapshot: 

Allele 
Mutation 

Count 
1 2 3 4 

a1 1 0 0 0 2 

a2 1 1 1 1 1 

a3 1 1 0 0 1 

a4 0 0 0 0 1 
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Table 2 

Title: Metric for the Tests and Coverage of the framework. 

Legend: Metric for the Tests and Coverage of the framework. Typically, 70% coverage is 

considered stable.  

Snapshot: 

Test Area Number of Tests Coverage (Line) 

Common 47 70% 

Model 10 75% 

Data 31 92% 

Phylogeny 11 86% 

Recursion 23 62% 

Statistic 27 84% 

Providers 30 61% 

Importance Sampling 62 76% 

 241 (total) 75.75% (avg.) 

Table 3 

Title: Computing MLE using multiple proposals.  

Legend: MLE of the mutation rate in the range [1.0, 10.0] with an increment of 0.1 using 

multiple proposals; corresponding published values are included. Likelihood curve and the 

associated data are included in the supplementary material. See text for the reference 

corresponding the published values. 

Snapshot: 

Proposals MLE Sample Size 

 Published Framework Published Framework 

EGT 4.8 4.8 200,000 100,000 

SD [4.5, 5.0] 4.9 100,000 100,000 

HUW [4.5, 5.0] 4.9 100,000 100,000 
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Table 4 

Title: Estimating likelihood at the MLE by multiple proposals. 

Legend: Estimating likelihood at the MLE of population mutation rate 4.8 by multiple 

proposals. Corresponding published values are included. Sample size is 100,000. Exact 

probability is 8.71E-20 (Wu, 2009). 

Snapshot: 

Proposals 

Published Framework 

Likelihood Likelihood Std. Error ESS Time(s) 

EGT 7.76E-20 7.57E-20 8.31E-21 82 1,347 

SD 9.33E-20 9.14E-20 5.41E-21 283 1,046 

HUW 8.70E-20 9.01E-20 3.75E-21 572 2,160 
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