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Abstract  
Emerging viral diseases, most of which are caused by the transmission of viruses from 

animals to humans, pose a threat to public health. Discovering pathogenic viruses through 

surveillance is the key to preparedness for this potential threat. Next generation sequencing 

(NGS) helps us to identify viruses without the design of a specific PCR primer. The major 

task in NGS data analysis is taxonomic identification for vast numbers of sequences. However, 

taxonomic identification via a BLAST search against all the known sequences is a 

computational bottleneck. Here we propose an enhanced lowest-common-ancestor based 

method (ELM) to effectively identify viruses from massive sequence data. To reduce the 

computational cost, ELM uses a customized database composed only of viral sequences for 

the BLAST search. At the same time, ELM adopts a novel criterion to suppress the rise in 

false positive assignments caused by the small database. As a result, identification by ELM is 

more than 1,000 times faster than the conventional methods without loss of accuracy. We 

anticipate that ELM will contribute to direct diagnosis of viral infections. The web server and 

the customized viral database are freely available at 

http://bioinformatics.czc.hokudai.ac.jp/ELM/. 

Keywords: Next generation sequencing, Virus discovery, Diagnostic virology, Virome, 
Taxonomic identification 
 

Introduction  
Most emerging infectious diseases are zoonoses, the pathogens of which are transmitted 

between humans and animals. The 2009 pandemic H1N1 influenza virus spread worldwide 

through reassortment that exchanged a gene segment between pigs and humans (Garten et al. 

2009). Recently, cases of influenza A virus H7N9 transmitted from birds to humans have 

been reported (Gao et al. 2013). The 2003 severe acute respiratory syndrome (SARS) 

outbreak originated from the transmission of a novel bat coronavirus (Li et al. 2005). For the 
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sporadically endemic Ebola virus, bats are suspected to be the natural reservoir, but this is still 

controversial (Feldmann et al. 2004). Vector-borne zoonoses caused by transmission of 

viruses through mosquitoes and ticks have also become a public health concern. The 1999 

outbreak of West Nile virus (WNV) that occurred in New York was caused by the 

transmission of the WNV among birds, horses and humans via mosquitoes (Nash et al. 2001). 

Similarly, severe fever with thrombocytopenia syndrome (SFTS) was found to be due to a 

virus transmitted by ticks (Yu et al. 2011). 

To prepare for the risk of emerging infectious diseases, we need to identify pathogenic 

viruses through surveillance of livestock and wild animals. Although universal PCR primers 

against 16S ribosomal RNA are available for the identification of bacteria, we needed specific 

PCR primers to identify viruses. In recent years, NGS technologies have become available for 

identifying novel viruses that cannot be found by Sanger sequencing due to the difficulty of 

isolation and passage culture (Barzon et al. 2011). 

The taxonomic classification of metagenomic sequences is an important task in NGS 

data analyses (Huson et al. 2007). It has been widely applied to investigate the relationship 

between human health and the microbiome (Turnbaugh et al. 2006). Recently, a metagenomic 

analysis of the virome in a monkey infected with simian immunodeficiency virus was 

conducted, suggesting that the virome was associated with enteropathy caused by HIV 

(Handley et al. 2012). Through the first screening with NGS, the novel influenza virus 

H17N10 was identified in bats from metagenomic samples (Tong et al. 2012). 

The taxonomic classification of NGS data uses sequence similarity searches such as 

BLASTX and BLASTN (Altschul et al. 1990) to assign each sequence into a specific taxon 

based on the hits. However, with the similarity-based approach it is difficult to decide the 

resolution of assignments because the resolution depends on whether the sequences are 

conserved or species specific. The metagenome analyzer (MEGAN) employs the lowest 
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common ancestor (LCA) concept in graph theory to estimate the taxonomical contents of 

samples (Huson et al. 2007). MEGAN evaluates the resolution of similarity-based 

assignments as the level of taxonomy based on the LCA. 

The LCA is the closest taxon shared among two or more taxa found by a BLAST 

search for a read. When multiple taxa are found by the BLAST search with sufficiently 

reliable BLAST scores, the common ancestor is a high-level taxon. The LCA assignments to 

high-level taxa are associated with conserved sequences. When a single taxon is found by a 

BLAST search for a read, the common ancestor still remains a low-level taxon. The LCA 

assignments to low-level taxa are associated with species-specific sequences. Thus, the LCA 

assignments to low-level taxa are more suitable for resolving closely related organisms than 

those to high-level taxa. 

The SOrt-ITEMS (Monzoorul Haque et al. 2009) and CARMA3 (Gerlach & Stoye 

2011) methods extended the LCA using a reciprocal BLAST search to reduce false positives 

in assignments. CARMA3 introduced the concept of the mutation rate into the LCA algorithm, 

and reinforced the reciprocal BLAST search to identify a novel taxon, relatives of which are 

numbered (Gerlach & Stoye 2011). 

While taxonomic classification of metagenomic sequences has been developed with 

respect to accuracy, NGS technologies continue to improve sequencing throughput, and 

require considerable computational time and resources to perform taxonomic classification. 

The throughput of Roche 454 sequencing is 700 Mb with an average length of 400-800 bases. 

The present throughputs of NGS have become over 1 Gb with Illumina sequences of 600 Gb 

and an average length of ~100 bases, SOLiD sequences of 20 Gb with an average length of 

~50 bases, and Ion Torrent PGM sequences of 1 Gb with an average length of ~200 bases 

(Barzon et al. 2011). These massive sequencing data prevent the fast detection of infecting 

viruses from metagenomic samples. 
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To reduce the computational time, we constructed a customized database composed 

only of viruses for the BLAST search. However, customized databases also increase 

accidental hits, i.e. the match of host sequences to viral genomic sequences. Here, we 

introduce ELM with a customized viral database for taxonomic identification. The method is 

based on the assumption that valid hits, the match of viral sequences to viral genomic 

sequences, raise the probability of finding other similar genomic sequences in the BLAST 

search. In other words, true assignments with the LCA should be sensitive to the threshold of 

the bit score in the BLAST search. Consequently, ELM can suppress the rise of false positive 

assignments while saving computational time and resources. 

Materials and Methods 
The ELM server performs taxonomic identification of viral sequences from NGS datasets via 

three steps (Figure 1). In step one, the server carries out a BLASTN search for a customized 

database of viral genomic sequences. In step two, the server performs the LCA-based 

taxonomic assignments using MEGAN software (Huson et al. 2007) with default parameters. 

In step three, the server iterates the LCA assignments with different parameters for the 

threshold of the bit scores for the BLAST hits and investigates the taxa in which the number 

of assigned reads is significantly changed. In this step, the server provides a novel criterion 

for evaluating the LCA assignments. 

BLAST search for customized database 
To reduce the computational time and save disk space, we constructed a customized database 

composed only of viral genomic sequences for a BLASTN search. First, the RefSeq genomic 

sequences were downloaded from the NCBI. Then a total of 3,336 viral genomic sequences 

were selected using a custom-made script program and converted into BLAST databases by 

the formatdb command in the NCBI BLAST package. We used the BLASTN program in the 
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NCBI BLAST+ version 2.2.26 package with the default parameters to search for similar 

sequences. The hits with an E-value under 10−3 were used for subsequent analyses. 

LCA analysis for taxonomic classification 
The LCA method assigns sequence reads to taxa with a criterion for the resolution of 

assignments (Huson et al. 2007). h(q, s) is the set of taxa found by a BLAST search for a 

sequence read q under the threshold of the bit score s. For a set of taxa h(q, s), the common 

ancestor located farthest from the root of the taxonomic tree defines the LCA as the 

representative taxon. Thus, the LCA allows the assignment of a read to a single taxon. At the 

same time, the taxonomic levels indicate the resolution of assignments because the LCA 

allows broad hits to be assigned as high-level taxa but specific hits to be assigned as low-level 

taxa. It also means that the number of the LCA assigned reads depends on the thresholds of 

the bit scores for BLAST hits. 

We use MEGAN software version 4.62.5 for the LCA analysis (Huson et al. 2007). 

MEGAN assigns sequence reads into taxa at ten hierarchical levels: Kingdom, phylum, class, 

order, family, varietas, genus, species group, subspecies, and species in the taxonomic 

ordering relation. 

ELM for evaluating the LCA assignments 
To introduce an additional criterion for the taxonomic assignment, ELM repeats the LCA 

analysis further under different top percent score filters for the BLAST hits and compares 

these LCA assignments with the reference assignment under the top 10% score filter (Figure 

2). Here, the top x percent score filter retains the BLAST hits whose bit scores lie within x% 

of the best score (Huson et al. 2007). n(x) is the total number of the LCA assigned reads for a 

taxon and its descendants under top x percent score filter. Then the difference Δn from that 

under the reference top 10% score filter is given by: 

 

€ 

Δn = n 10( ) − n x( ) (1) 
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Here, Δn indicates to what extent the assigned reads are shifted into upper taxa as increasing x 

greater than 10%. We analyzed the increase of Δn, which is associated with sequence 

similarity to relatives, to discriminate between true and false assignments. In the statistical 

analysis of Δn, we introduce the inflation index IF, which is the Z score for outlier detection, 

to compare the effect of top percent score filters on the taxonomic assignments. The IF for a 

taxon is given by: 

 

€ 

IF =
Δn − µ
σ

 (2) 

where μ is the average of Δn for all assigned taxa, and σ is the standard deviation. Since 

multiple comparisons in IFs under top percent score filters ranging from 20% to 100% are 

performed nine times at 10% intervals, a P value of less than 0.05/9 is accepted for statistical 

significance after Bonferroni correction. Accordingly, IF >2.54 (one-tailed) is accepted with 

statistical significance. 

Benchmark tests for NGS datasets 
To evaluate the ability of ELM to detect pathogenic viruses from large sequence datasets, five 

real datasets were used. Dataset 1 consisted of 4,449,766 unassembled reads from a rodent 

sample in Zambia (Ishii et al. 2011). Reads with an average length of 236 bases were obtained 

by Ion Torrent Personal Genome Machine (PGM) sequencing. Dataset 2 consisted of 

4,146,547 unassembled reads from a reptile sample (SRR: 527074) deposited in the NCBI 

Sequence Read Archive (SRA). Reads with an average length of 200 bases were obtained by 

Illumina sequencing (Stenglein et al. 2012). Dataset 3 consisted of 12,393,506 unassembled 

reads from a simian sample (SRR: 167721) deposited in the SRA. Reads with an average 

length of 73 bases were obtained by Illumina sequencing (Chen et al. 2011). We selected 

these three datasets to evaluate the effects of the read length, host and NGS platform. 

Furthermore, we applied ELM to fecal samples including multiple virus and phage taxa in 

dataset 4 (SRR: 1055974 for 12-day-old piglets) and dataset 5 (SRR: 1055972 for 54-day-old 
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piglets). Reads with an average length of 291 bases in dataset 4 and 400 bases in dataset 5 

were obtained by 454 GS FLX Titanium sequencing (Sachsenroder et al. 2014). In these 

benchmark tests, the BLAST searches were performed on a workstation with an Intel Sandy 

Bridge CPU 2.6 GHz processor. We compared the result of the BLASTN search for the 

customized database with that for the NCBI NT database. 

Results  

Identification of infecting viruses using the LCA with BLASTN-NT 
To identify infecting viruses, we performed conventional LCA-based assignment using the 

results of a BLASTN search of the NCBI NT database (Figure 3). The taxa assigned at the 

varietas level in dataset 1 showed that this rodent host was infected with Old world 

arenavirus (Figure 3A). A previous study showed that the rodent host was infected with Luna 

virus, which belongs to the Old world arenaviruses (Ishii et al. 2011). Totally, 99.9% of the 

sequences were derived from eukaryotes, including sequences from the rodent host. The 

reptile host in dataset 2 was infected with Lymphocytic choriomeningitis virus (Figure 3B). 

This result was consistent with the closest virus described in the literature (Stenglein et al. 

2012). In dataset 2, 99.5% of the sequences were probably derived from the reptile host. 

According to the literature concerning dataset 3, the simian host was infected with a novel 

simian adenovirus, which is close to Simian adenovirus 3, Simian adenovirus 18 and Simian 

adenovirus 21 with about 55% pairwise nucleotide identity (Chen et al. 2011). We found 

Simian adenovirus 49, Simian adenovirus 18 and Simian adenovirus 1 in dataset 3 (Figure 

3C), suggesting results similar to those in the literature. Similarly, in dataset 3, most of the 

sequences (95.1%) were likely derived from the simian host. 

To assess the required computational resources, we measured the elapsed time for the 

BLAST search (Table 1). As seen in Table 1, we found that the elapsed time for the BLAST 

search depended on the number of reads and hits. Although multiple threads and parallel jobs 
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reduced the computational time, we needed at least one day with 8 threads and 32 parallel 

jobs. The sizes of the resulting tabulated format files ranged from 60-648 gigabytes, possibly 

affecting the elapsed time for the LCA analysis. 

Taxonomic classification using the LCA with BLASTN viruses 
According to the literature on taxonomic classification, the sequence similarity search of 

BLAST is a computational bottleneck (Gerlach & Stoye 2011). Therefore, we used the 

customized viral database for a BLAST search to investigate how much the computational 

time was reduced and whether the conventional LCA could identify the infecting viruses. In 

Figure 4, the top 3 assigned reads show the capturing of infecting viruses. However, most of 

the assigned taxa were false positives (Figure 4). At the varietas level of assignments in 

dataset 1, 98.7% of the reads were assigned into Choristoneura occidentalis granulovirus and 

Spodoptera litura granulovirus, and only 0.4% (1,518/383,939) of them were assigned into 

Luna virus (Figure 4A). In the case of BLAST-NT, we failed to identify Luna virus but 

detected Old world arenaviruses, with 1,245 reads at the family level, including the following 

relatives: Mobala virus, 125 reads; Morogoro virus, 73 reads; and Mopeia virus, 56 reads. In 

dataset 2, 8,387 reads were assigned into 141 viral taxa at the genus level, and 573 were 

assigned into Lymphocytic choriomeningitis virus (Figure 4B). In the case of BLAST-NT, 454 

reads were assigned into Lymphocytic choriomeningitis virus. These results showed 

consistency between BLAST viruses and BLAST-NT. Of the 5,952 reads assigned into viral 

taxa at the genus level in dataset 3, 468 were assigned into Simian adenovirus 49 (Figure 4C). 

The most assigned taxon in BLAST viruses was Simian adenovirus 49, but 99 reads in 

BLAST-NT were assigned into the closest relative, Simian adenovirus 18. Although the 

assignments with BLAST-NT were more favorable than those with BLAST viruses, the 

coverage of the identified Simian adenovirus 49 was sufficient to perform the subsequent 

analysis. These results showed that the sensitivity of the LCA with BLASTN viruses 
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outperformed the LCA with BLASTN-NT, suggesting that the BLAST search of the viral 

database was sufficient for subsequent analysis. 

Next, we investigated whether the elapsed time for the BLASTN search was 

effectively reduced (Table 2). The elapsed time in the BLAST search was reduced to 0.03%-

0.05% (Tables 1 and 2). This showed the synergy effect of the reduction of the custom 

database to 0.1% (from 38 Gb to 49 Mb) for the size of FASTA files and to 1.4%-8.8% for 

the number of BLASTN hits (Table 1 and 2). Furthermore, the elapsed time for the LCA 

analysis was also reduced despite the additional nine assignments for ELM analysis. 

Identification of infecting viruses using ELM with BLASTN viruses 
To reduce the false assignments of the BLAST search for the customized viral database, we 

compared true and false assignments to confirm whether the true assignments altered into 

high-level taxa in ELM analysis (Figure 5). As shown for the varietas level assignments of 

dataset 1 in Figure 5A and D, the assignment of Luna virus was significantly changed (IF > 

2.54, ranging from 20% to 100%), suggesting that ELM correctly identified the infecting 

virus. In the genus level assignments of dataset 2, the assignment of Lymphocytic 

choriomeningitis virus was most changed (IF > 9, ranging from 20% to 100%) but, at the 

varietas level, those of unclassified Tospovirus, Tomato spotted wilt virus and Impatiens 

necrotic spot virus were only slightly changed (Figure 5B and E). Figure 5C and F show that, 

in the genus level assignments of dataset 3, the assignment of Simian adenovirus 49 was 

significantly changed (IF > 10, ranging from 20% to 100%). However, at the varietas level, 

the assignments of Ictalurid herpesvirus 1, Simian adenovirus 3 and Human adenovirus 54 

were also changed, suggesting that ELM failed to exclude the false assignment of Ictalurid 

herpesvirus 1. On the other hand, of the taxa shown in Figure 4, the false assignments were 

little changed, suggesting that ELM excluded the false assignments dependent on the 

customized database (not shown in Figure 5). These results suggested that the combination 
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with the taxonomic level was better than only the inflation indices. The results for viruses 

identified using ELM with BLASTN viruses were assembled using SSAKE v3.8.1 (Warren et 

al. 2007) and are summarized in Table 3. 

Next, we evaluated the effect of the BLAST hit score on the inflation indices. The 

results showed that the inflation indices had little association with the E-value in the BLAST 

search (Additional file 1: Figure S1). We also investigated the coverage of the BLAST hits. 

Valid hits in dataset 1 were distributed across target genomic sequences but not a specific 

genomic sequence, something not seen in datasets 2 and 3 (Additional file 1: Figure S2). 

Virome analyses using ELM with BLASTN viruses 
To investigate whether ELM could detect multiple viral taxa, we analyzed the fecal virome of 

piglets using ELM with BLASTN viruses. We identified the shift of Kobuvirus in dataset 4 to 

Bocavirus and Dependovirus in dataset 5, which depended on the age of the piglets (Table 4). 

These results were consistent with abundant virus genera described in the literature 

(Sachsenroder et al. 2014). However, we failed to identify pig stool-associated small circular 

DNA virus in dataset 5 (Table 4). This virus belongs to the single-stranded circular DNA 

viruses. The members of this family show extensive genetic diversity (Cheung et al. 2013). 

The results suggested that, in this case, the inflation index was not preferable for evaluating 

the LCA assignments. 

Discussion 
ELM with a specific database drastically reduced the computational time and saved disk 

space. Furthermore, ELM was effective even for short reads. Though short reads can reduce 

the accuracy of BLAST searches, in this study we verified ELM for average lengths of 

between 73 and 400 bases. The results showed no difference between the capabilities for 

taxonomic assignment. 
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One approach to reduce the computational time needed for the BLAST search is the 

subtraction of reads by mapping host-derived reads onto reference sequences (Chang et al. 

1994; Simons et al. 1995). This approach might be considered effective for reducing analyzed 

sequence data but is limited to known hosts. It is not suitable for surveillance of wild animals 

or metagenomic analysis because the host sequences have yet to be deposited in databases. 

Therefore, we need to decide a moderate threshold for NGS data before the mapping. 

For ELM we adopted another approach using specific databases composed only of 

target sequences to reduce the computational cost. The difficulty in applying this approach 

directly to virus identification was the increase of false positive assignments (Figure 4). We 

tested several ways to solve this problem. As shown in Additional file 1: Figure S1, changing 

the threshold of the E-value dependent on the size of the database is probably not effective for 

discriminating between true and false assignments. The criteria for evaluating breadth 

coverage, i.e. the proportion of reads mapped across the hit genomes and the depth coverage 

(the number of reads mapped at a position), also failed to identify the target viruses 

(Additional file 1: Figure S2). On the other hand, ELM analyzed how sequence similarity to 

the relatives changes. This extension of the LCA method suppressed the rise in false positive 

assignments. A limitation of ELM would be the false-negative errors because ELM cannot 

detect viruses distantly related to other relatives (Table 4). Therefore, viruses without relatives 

should be carefully handled without the inflation index. 

Conclusions 
ELM is especially useful for the first screening of infectious diseases caused by viruses. In 

surveillance for pathogenic viruses, taxonomic assignment of the host sequence is not 

necessary for the initial screening. For this, sensitivity for detecting viruses is particularly 

required. Our results suggest that ELM recovers most reads assigned to target viruses. 
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Therefore, we can apply these results to further sophisticated analyses. ELM will contribute to 

analyses of NGS data for limited targets such as the direct diagnosis of viral infections. 

Abbreviations 
NGS, Next generation sequencing; LCA, Lowest common ancestor; ELM, Enhanced LCA-

based method. 
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Figures 

 

Figure 1  - Overview of ELM server and web interface. 
Users input NGS data as a zip file (~ 1Gb). (1) The web server matches NGS reads against 

known viral genomes using BLAST (Altschul et al. 1990). (2) Taxonomic classification based 

on the LCA is performed using MEGAN under the top 10% score filter (Huson et al. 2007). 

(3) In ELM analyisis, multiple comparisons of the LCA assignments are performed under 

different top percent score filters. The server displays the results with the ratings of taxa. 
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Figure 2  - Schematic representation of the ELM algorithm. 
An example of the LCA assigned NGS reads into target viral taxa. The LCA assignment is 

affected by top percent score filters—that is, the BLAST hits for the similar sequences in the 

relatives. ELM evaluates this effect on the assignments. Circled A to E represent viral taxa on 

a taxonomic tree. The reads assigned as the LCA are shown in red. The reads corresponding 

to the reads assigned to descendant taxa as the LCA are shown in black. The total number of 

the LCA assigned reads for each taxon and its descendants is denoted as n. Δn indicates the 

differences in n as varying thresholds of top percent score filters. The reads with strikeouts 

(blue) are the LCA assignments shifted into the upper taxon. 
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Figure 3  - Taxonomic identification using the LCA with BLASTN-NT. 
The taxonomic trees for (A) rodent, (B) reptile and (C) simian samples. The circle sizes 

indicate the relative numbers of assigned reads. These trees were created using MEGAN 

(Huson et al. 2007). Here, only the viral taxa are illustrated. 
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Figure 4  - Taxonomic classification using the LCA with BLASTN viruses. 
The pie charts illustrate the number of reads assigned to taxa for (A) the rodent sample at the 

varietas level, (B) the reptile sample at the genus level and (C) the simian sample at the genus 

level. Here, only the top three taxa are denoted. 
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Figure 5  - ELM analyses of BLASTN viruses below the varietas level. 
The solid lines depict the differences between the number of the LCA assigned reads for (A) 

rodent, (B) reptile and (C) simian samples and the inflation indices for (D) rodent, (E) reptile 

and (F) simian samples. The dashed lines indicate the inflation indices under the null 

hypothesis. 
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Tables 

Table 1  - Elapsed time for the LCA with BLASTN-NT. 
CPU time Dataset No. # of reads # of BLASTN hits 

BLAST LCA 
1 4,449,766 4,424,602 12,179h 96m 
2 4,146,547 2,754,210 8,704h 22m 
3 12,393,506 10,674,129 23,313h 82m 

 

Table 2  - Elapsed time for ELM with BLASTN viruses. 
CPU time Dataset No. # of BLASTN hits 

BLAST LCA 
1 387,271 4h 5m 
2 38,948 4h 1m 
3 379,780 6h 5m 

 

Table 3  - Detection of the viral genomes using ELM with BLASTN viruses. 
Dataset No. Virusa # of reads # of contigs Average contig length 

1 Luna virus 1,518 405 454 nt 
2 LCMV 573 33 117 nt 
3 SAdV-49 468 11 89 nt 

Contigs were assembled using SSAKE v3.8.1 (Warren et al. 2007). aLCMV, Lymphocytic 

choriomeningitis virus; SAdV-49, Simian adenovirus 49. 

 

Table 4  - Detection of abundant virus genera in fecal viromes of piglets using ELM with 
BLASTN viruses. 

Dataset No. ELM with BLASTN viruses 
(# of reads) 

LCA with BLAST-NT 
(# of reads) 

4 Kobuvirusa (6,449) Kobuvirus (6,446) 

5 Dependovirusa (759), 
Bocavirus (133) 

Dependovirus (754), 
Bocavirus (528), 

Chimpanzee stool associated 
circular ssDNA virusb (106) 

aThe genus includes descendant taxa IF > 2.54. bAccording to the literature (Sachsenroder et 

al. 2014),  this virus is the novel pig stool-associated single-stranded DNA virus, which is not 

assigned to a specific genus. 

 
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.385v1 | CC-BY 4.0 Open Access | received: 11 May 2014, published: 11 May 2014

P
re
P
rin

ts



22 

Additional files 
Additional file 1 – Supplementary data 
File “supplementary.pdf” contains Figure S1 and Figure S2. 
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