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Abstract

NOTE: This is an early preprint version only.

In this paper, we examine a nonlinear concurrent decision-making model (CDM) of inter-

action networks that involve more than two antagonistic components (e.g., proteins, species,

communities, mental choices). The model assumes sigmoid kinetics where every component

stimulates itself but represses all others. We are able to prove general dynamical properties of

the CDM (e.g., location and stability of steady states) for any dimension of the state space even

if the reciprocal antagonism between two components is asymmetric. There are cases where

asymmetric interaction generates oscillatory behavior. Some parameters can serve as biological

regulators for inducing steady state switching by leading a temporal state to escape an undesired

equilibrium. Increasing the maximal growth rate and decreasing the decay rate can expand the

basin of attraction of a steady state with the desired component having the dominant value. We

further show that perpetually adding an external stimulus can shutdown multi-stability of the

system that increases the robustness of the system against stochastic noise.
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3. Search for parameter conditions that control steady state switching.

4. Illustrations of multi-stable systems and repressilators.

Graphical Abstract

1. Introduction

Mathematical analysis of interaction networks are valuable in understanding the dynamics

of complex systems [1, 2, 3, 4, 5]. Concurrent antagonism, where every component of the system

simultaneously represses each other, is one of the interaction systems that commonly occurs

in nature. This type of interaction can be observed from gene regulation [6, 7, 8, 9, 10, 11] to

mental perception and community structures [12, 13, 14, 15, 16]. The concurrent decision-making

model (CDM), which was originally proposed by Cinquin and Demongeot [17], represents the

mutual antagonistic interaction among components. The characteristics (e.g., initial condition,

growth, decay and strength of inhibition) of each component and the inter-component interaction

mechanism of the CDM decide what component eventually dominates the system [18, 19, 20].

In this paper, we study the mathematical properties of the CDM where a component of the

system can denote any inhibiting factor (e.g., protein, species, community, mental choice) as long
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as the interaction among the components follows the network shown in Figure (1). We assume

that each component stimulates itself and the kinetics describing its progression is sigmoidal.

This non-polynomial progression curve is an alternative to the generic polynomial models (e.g.,

Lotka-Volterra), especially when polynomial models cannot replicate the effect of sigmoidal

growth [21, 14, 22, 23, 24, 25]. We can regard the self-stimulation rate in the CDM model

as a characteristic of individuals or populations for increasing fitness and avoiding extinction.

Furthermore, the CDM with sigmoid growth rate can be a candidate model of biological switches

that exhibit multi-stability (co-existence of multiple stable equilibria) [26, 27, 28, 29]. Self-

stimulation is a common property of master switches in gene regulation and other biological

signaling systems [30, 17, 31, 32].

Figure 1: CDM interaction network (adopted from [33, 17]). Bars represent inhibition, while arrows represent

stimulation. The nodes represent interacting components of a system.

The CDM can be used to study various large networks by converting them to coarse-grained

phenomenological networks with auto-activation loops and concurrent antagonism among mod-

ules of sub-networks. The coarse-grained network in CDM format can be a motif that is part

of a much larger network [34, 35, 36, 37, 38, 39]. The qualitative behavior of the dynamics

of the CDM can be analyzed by translating the interaction network into a system of ordinary

differential equations (ODE). Existing ODE models of CDM have been employed to study cell

differentiation but only for symmetric interactions [40, 41, 17]. Our mathematical results are
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generalizable for high-dimensional systems (number of components is more than two) and for

asymmetric antagonism. The model that we analyze has more adjustable parameters to repre-

sent a wider range of situations and to predict more types of outcomes (e.g., multi-stable states

and oscillation).

Stability and bifurcation analyses of the ODE model are performed by utilizing the geometric

properties of the sigmoid kinetics. The analysis focuses on the non-negative real-valued states of

the ODE model and the steady states are classified based on the structure of its components. For

example, a desired steady state refers to the equilibrium point with the desired component having

the dominant value. We search for parameter conditions that control equilibrium switching.

Equilibrium switching means driving a solution to the ODE model to converge from one steady

state to another steady state. We identify if varying the values of some parameters, such as

maximal growth rate, effect of external stimuli, decay rate and interaction strength, can steer

the system toward a desired equilibrium. Illustrative examples of several cases (e.g., finite and

infinite number of steady states, and oscillations) are presented.

2. Model and Methods

A state X = (X1, X2, ..., Xn) represents a temporal stage in the CDM. The component

(coordinate) Xi of a state represents the value (concentration, population, estate, worth) of

the i-th node in the CDM interaction network. A stable steady state X∗ = (X∗1 , X
∗
2 , ..., X

∗
n)

represents the long-term fate of the system for a certain set of parameter values and initial

condition. For example, a steady state may represent a certain cell phenotype in the cellular

differentiation process, an outcome of competition among species, a longstanding social structure

in a community, or a preference from a set of choices. The dominant component dictates the

expressed gene, the victorious species, the leading social class, or the prevailing choice among

conflicting alternatives.

The CDM interaction network with self-stimulation (auto-activation) can be translated to

an ODE model as follows:

dXi

dt
= Fi(X) =

βiX
ci
i

Ki +Xci
i +

∑
j 6=i

γi,jX
ci,j
j

+ gi − ρiXi, (1)

for i = 1, 2, ..., n

where n is the number of nodes in the network. This ODE model is a generalization of the
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symmetric ODE model in [17]. We restrict the parameters to be non-negative real numbers. The

parameter βi is the growth constant of the unrepressed Xi relative to the first-order degradation;

ρi ≤ 1 is the assumed first-order degradation rate (exponential decay) of Xi; and γi,j is the

interaction coefficient associated with the inhibition of Xi by Xj . If γi,j = 0 then Xj does

not inhibit the growth of Xi. The matrix of interaction coefficients [γi,j ] can be symmetric or

asymmetric. Moreover, we consider

gi = ei + αisi (2)

to represent constant basal or constitutive growth (ei) of Xi [42, 43] plus the effect of the external

stimulus with concentration si and rate αi. In this paper, we assume that gi is constant. By

using an ODE model, we assume that the time-dependent average dynamics of the CDM is

continuous in both time and state space.

We define the multivariate sigmoid function Hi by

Hi(X1, X2, ..., Xn) =
βiX

ci
i

Ki +Xci
i +

∑
j 6=i

γi,jX
ci,j
j

(3)

which comes from the classical Hill equation [44, 45]. The terms
∑

j 6=i γi,jX
ci,j
j in the denomi-

nator reflect the inhibitory influence of other components on the growth of Xi. The parameter

Ki > 0 is the threshold constant. If all Xj = 0 for all j 6= i then the function value of Hi is

equal to βi/2 when Xi = K
1/ci
i . The parameter ci ≥ 1 defines the shape and the steepness of

the sigmoid curve associated with Xi, and denotes self-stimulation. The parameter ci,j , j 6= i

affects the strength of inhibition of Xi by Xj . These exponents represent the nonlinear sigmoid

kinetics possibly formed by multiple intrinsic and extrinsic processes affecting the growth of Xi

[46]. In addition, the lower bound of Hi (3) is zero and its upper bound is βi. Thus, the value

βi + gi can also be interpreted as the maximal growth rate of Xi.

2.1. Graphical technique for stability analysis

We can investigate the multivariate sigmoid function (3) by looking at the univariate function

defined by

H1
i (Xi) =

βiX
ci
i

Ki +Xci
i +

∑
j 6=i

γi,jX
ci,j
j

(4)

where each Xj , j 6= i is taken as a dynamic parameter. This means that we project the high-

dimensional space onto a two-dimensional plane. If ci > 1, the graph of the univariate function

5
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.382v1 | CC-BY 4.0 Open Access | received: 8 May 2014, published: 8 May 2014

P
re
P
rin

ts



H1
i in the first quadrant of the Cartesian plane is sigmoidal for any value of Xj , j 6= i. If ci = 1,

the graph of the function H1
i in the first quadrant is hyperbolic for any value of Xj , j 6= i

(although, in this paper, we generally call H1
i with ci ≥ 1 as sigmoid function). Moreover, when

the value of ci increases, the graph of Y = H1
i (Xi) gets steeper. If we add a term gi to H1

i (Xi)

then the graph of Y = H1
i (Xi) in the Cartesian plane is translated upwards by gi units.

Figure 2: Projection of multivariate sigmoid function and decay hyperplane onto a Cartesian plane. We investigate

the intersections of planar Y = ρiXi (line) and Y = H1
i (Xi) + gi (sigmoid) with varying values of

∑
j 6=i γi,jX

ci,j
j .

Note that an intersection of the line and sigmoid curve is not necessarily a component of a steady state.

The geometric properties of the sigmoid function is essential in understanding the nature of

the steady states. To find the steady states (equilibrium points), we need to solve the multivariate

equation Fi(X) = 0 for all i (where Fi is given in the ODE system (1)). This implies that we

need to determine the real solutions to

βiX
ci
i

Ki +Xci
i +

∑
j 6=i

γi,jX
ci,j
j

+ gi = ρiXi for all i. (5)

That is, we identify the intersections of the n+1-dimensional curve generated by the multivariate

sigmoid function Hi(X1, X2, ..., Xn)+gi (left hand side of Equation (5)) and the n+1-dimensional

decay hyperplane generated by ρiXi (right hand side of Equation (5)). For easier analysis, we

rather examine the intersections of the univariate functions defined by Y = H1
i (Xi) + gi and

Y = ρiXi while varying the value of
∑

j 6=i γi,jX
ci,j
j in the denominator of the univariate sigmoid

function H1
i (4) (see Figure (2) for illustration). In the univariate case, we can look at Y = ρiXi
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as a line in the Cartesian plane passing through the origin with slope equal to ρi.

Remark 1. It is always true that

βiX
ci
i

Ki +Xci
i

≥
βiX

ci
i

Ki +Xci
i +

∑
j 6=i

γi,jX
ci,j
j

(6)

for any value of Xj for all j. In fact, if the value of
∑

j 6=i γi,jX
ci,j
j in the denominator of H1

i (Xi)

increases, then the graph of the sigmoid curve Y = H1
i (Xi) shrinks (see Fig. (2)). Note that

each Xj , j 6= i is taken as a dynamic parameter but varying these parameters does not change

the sigmoid shape of Y = H1
i (Xi).

One intuitive strategy for determining the stability of a steady state for a given set of

parameter values is by doing component-wise stability analysis.

Definition 1. Attracting component. Let X = (X1, X2, ..., Xi
∗, ..., Xn), where X is not neces-

sarily a steady state. Under the assumption that the value of
∑

j 6=i γi,jX
ci,j
j in the denominator

of the univariate sigmoid function (4) is fixed, if Xi converges to X∗i for all initial conditions

near X∗i , then we say that the i-th component X∗i of X is attracting.

Property 1. The steady state X∗ = (X1
∗, X2

∗, ..., Xn
∗) of the CDM ODE system (1) is stable

only if all its components are attracting. In other words, if at least one of the components of X∗

is non-attracting, then X∗ is unstable. The converse of this statement is not always true.

Example 1. Consider the CDM ODE system (1) with n = 3, βi = 2, ci = ci,j = 3, Ki = 1,

γi,j = 1 and ρi = 1, for all i, j = 1, 2, 3. Let g1 = 0.1, g2 = 0 and g3 = 0. We want to initially

analyze the stability of one of the steady states, (X1
∗ = 0.10103, X2

∗ = 1.001, X3
∗ = 0), by

employing Property (1). We test if a component is attracting or not by utilizing the geometric

properties of the planar curves Y = H1
i (Xi) + gi and Y = ρiXi, i = 1, 2, 3.

The test is done by investigating the components one by one. Examine the intersection of

Y = H1
1 (X1) + 1 and Y = X1 with X2 = 1.001 and X3 = 0 (Figure (3A)), then determine if

X1
∗ = 0.10103 is attracting using Figure (3D). We conclude that X1

∗ = 0.10103 is an attracting

component.

Now, test the attraction of X2
∗ = 1.001 by looking at the intersection of Y = H1

2 (X2) and

Y = X2 with X1 = 0.10103 and X3 = 0 (Figure (3B)). Furthermore, test X3
∗ = 0 by looking at

the intersection of Y = H1
3 (X3) and Y = X3 with X1 = 0.10103 and X2 = 1.001 (Figure (3C)).

The tests reveal that X2
∗ = 1.001 is non-attracting and X3 = 0 is attracting.
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Figure 3: (A) Graphs of Y = H1
1 (X1) + 1 and Y = X1 with fixed X2 = 1.001 and X3 = 0 (refer to Example (1)).

(B) Graphs of Y = H1
2 (X2) and Y = X2 with fixed X1 = 0.10103 and X3 = 0. (C) Graphs of Y = H1

3 (X3) and

Y = X3 with fixed X1 = 0.10103 and X2 = 1.001. (D) The curves are rotated making the line Y = ρi[Xi] as

the horizontal axis. Positive gradient means non-attracting, negative gradient means attracting. If the gradient

is zero, we look at the left and right neighboring gradients.
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Therefore, the equilibrium point (X1
∗ = 0.10103, X2

∗ = 1.001, X3
∗ = 0) is unstable because

of the presence of a non-attracting component X2
∗ = 1.001.

Note that we can conclude that a steady state is unstable by using Property (1). However,

we cannot immediately conclude if a steady state is stable by using component-wise stability

analysis. There are exceptions where some unstable steady states have components that are

all attracting (see Appendix A.1 for illustration). If the tests are inconclusive, we need to

apply linearization technique using Jacobian matrix. The exceptions usually arise when there

are oscillating solutions to the CDM ODE model (1).

2.2. Several types of equilibrium switching

Equilibrium switching can happen with and without changing parameter values (parameter

regulation). To explain the scenarios of switching, suppose n = 1 (see Figure (4)). Figure

(4A) shows noise-driven switching without parameter regulation. This noise-driven switching is

possible in a system with multi-stable states [47, 48, 49, 41, 50, 51]. Figure (4B) is an example of

switching by permanently changing a parameter value. On the other hand, Figure (4B) presents

a strategy by temporarily varying the value of a parameter. This temporary change in parameter

value drives the solution to the ODE model from one steady state’s basin of attraction to another

steady state’s basin of attraction.

3. Results and Discussion

In this section, we present several mathematical properties of the CDM ODE model (1).

Let the initial value X0 = (X1,0, X2,0, ..., Xn,0) be non-negative real-valued. It follows that the

solution to the ODE model (1) is always non-negative. Note that given non-negative state

variables and parameters in the ODE system (1), if gi > 0 then ρi > 0 for every i is a necessary

and sufficient condition for the existence of a steady state.

Property 2. Suppose ρi > 0. The value gi+βi
ρi

is an upper bound of, but will never be equal

to, the attracting component X∗i . The steady states of the CDM ODE system (1) lie in the

hyperspace [
g1
ρ1
,
g1 + β1
ρ1

)
×
[
g2
ρ2
,
g2 + β2
ρ2

)
× ...×

[
gn
ρn
,
gn + βn
ρn

)
. (7)
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Figure 4: (A) Noise-driven equilibrium switching. (B) Switching by permanently changing a parameter value.

(C) Switching by driving the solution to another basin of attraction through temporarily changing a parameter

value.
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Note that if both gi > 0 and ρi > 0 then Xi = gi/ρi can only be an i-th component of a

steady state of the ODE system (1) if βi = 0. We can expand the size of the hyperspace (7)

by increasing the value of gi and βi (maximal growth rate), and by decreasing the value of ρi

(decay rate).

Property 3. Suppose ρi > 0 for all i. Then each component of any state of the CDM ODE model

(1) is always attracted by an attracting component. Note that this attraction does not necessarily

mean convergence to equilibrium because the value of
∑

j 6=i γi,jX
ci,j
j in the denominator of the

sigmoid function (4) can vary.

The convergence to a steady state, where every Xi converges to an attracting component

Xi
∗ for the given initial condition, is common to CDM ODE models with symmetric interaction

matrix (e.g., γi,j = γ for all i, j, γ is a constant). However, an attracting component can either

be a coordinate of an equilibrium point or an attractor that induces sustained oscillations. These

sustained oscillations are due to the varying value of
∑

j 6=i γi,j [Xj ]
ci,j in the denominator of the

sigmoid function that causes continuous change in the intersections of Y = H1
i (Xi) + gi and

Y = ρi[Xi].

Property 4. Suppose sustained oscillations exist. The value of gi+βi
ρi

is an upper bound of the

sustained oscillating solution to Xi. The sustained oscillations of the CDM ODE system (1) is

contained in the hyperspace (7).

Example 2. One example of such oscillating system is a repressilator (a type of synthetic

biological oscillator [52, 53, 54, 55, 56, 57]) of the form

dX1

dt
=

X2
1

1 +X2
1 +X2

2 + 0.1X2
3

− 0.1X1 + 0.1 (8)

dX2

dt
=

X2
2

1 + 0.1X2
1 +X2

2 +X2
3

− 0.1X2 + 0.1

dX3

dt
=

X2
3

1 +X2
1 + 0.1X2

2 +X2
3

− 0.1X3 + 0.1.

Notice that the interaction among components in this example is asymmetric where one direction

of inhibition is stronger than the reverse direction (Appendix A.1). According to various

mathematical propositions from previous studies, such as the Thomas’ rules, positive circuits

(e.g., two mutually inhibiting components with symmetric reciprocal repression) induce multi-

stability, and negative circuit (e.g., asymmetric inhibition among three components that forms

a repressilator) induce oscillations [58, 59, 60, 61].
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Now, suppose ci and ci,j are integers for all i and j. The corresponding polynomial equation

to

Fi(X) =
βiX

ci
i

Ki +Xci
i +

∑
j 6=i

γi,jX
ci,j
j

− ρiXi + gi = 0 (9)

is

Pi(X) = βiX
ci
i + (gi − ρiXi)

Ki +Xci
i +

∑
j 6=i

γi,jX
ci,j
j

 = 0 for all i. (10)

Property 5. Under the assumption that that there is only a finite number of steady states, the

number of steady states of the CDM ODE model (1) (where ci and ci,j are integers) is at most

n∏
i=1

max{ci + 1, ci,j + 1 for all j 6= i}. (11)

The proof of Property (5) is by Bézout Theorem [62] applied to the system of polynomial

equations (10). Bézout Theorem does not give the exact number of steady states but only the

upper bound. From Property (5), the maximum number of steady states is dependent on the

value of ci and ci,j as well as on n (dimension of our state space). Note that the size of the basin

of attraction of a steady state depends on the number of existing steady states and on the size

of the hyperspace (7). The hyperspace (7) is fixed for a given set of parameter values, and the

basin of attraction of each existing steady state is distributed in this hyperspace. If there are

multiple stable steady states then there are multiple basins of attraction that share the region

of the hyperspace.

We classify the stable steady states based on its dominant component. The following defini-

tion of terms are used to classify the steady states.

Definition 2. Classification of steady states. A component is switched-off (inactive or extinct)

if its value is zero, and switched-on otherwise. A switched-on Xi dominates Xj if Xj/Xi < ε ≤ 1,

where ε > 0 is an acceptable tolerance constant.

• 1-node dominance or premier state refers to the case where a stable steady state has only

one dominant component;

• p-node co-dominance refers to the case where a stable steady state has p dominant com-

ponents such that the dominant components have equal values; and

12
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.382v1 | CC-BY 4.0 Open Access | received: 8 May 2014, published: 8 May 2014

P
re
P
rin

ts



• n-node co-dominance or priming state refers to the case where all components of a stable

steady state have equal positive values.

Suppose we want the i-th component of a state to be the dominant, then we say that X is a

desired steady state if the component X∗i of X is dominant.

Example 3. Consider the CDM ODE model (1) with n = 2, ci = ci,j = 1 and gi = 0, i, j = 1, 2.

If the number of steady states is finite, then we expect that the maximum number of possible

steady states is 4. The possible steady states are

• Zero state (all components are switched-off): (0, 0). This is stable when βi < ρiKi, for all

i = 1, 2.

• One component is switched-on:
(

0, β2−ρ2K2

ρ2

)
. This is a steady state if β2 > ρ2K2, and

stable (premier state) if β1 < ρ1

(
K1 + γ1,2

β2−ρ2K2

ρ2

)
.

• One component is switched-on:
(
β1−ρ1K1

ρ1
, 0
)

. This is a steady state if β1 > ρ1K1, and

stable (premier state) if β2 < ρ2

(
K2 + γ2,1

β1−ρ1K1

ρ1

)
.

• All components are switched-on:(
β1−ρ1

(
K1+γ1,2

(
β2
ρ2
−K2

))
ρ1(1−γ1,2γ2,1) ,

β2−ρ2
(
K2+γ2,1

(
β1
ρ1
−K1

))
ρ2(1−γ2,1γ1,2)

)
.

This state is likely to be stable if it exists. This state satisfies(
β1−ρ1(K1+γ1,2X∗2 )

ρ1
,
β2−ρ2(K2+γ2,1X∗1 )

ρ2

)
= (X∗1 , X

∗
2 ).

There are cases where the polynomial system (10) has infinitely many complex-valued so-

lutions, hence, Property (5) does not apply. Infinitely many steady states could arise if all

equations in the polynomial system (10) have a common factor of degree greater than zero.

Property 6. Suppose ci = ci,j = 1, Ki = K > 0, γi,j = 1, gi = 0, βi = β > 0 and ρi = ρ > 0

where β > ρK for all i and j (K, β and ρ are constants). Then the polynomial system associated

to the CDM ODE model (1) has a non-constant common factor. Any CDM ODE model that

can be converted to this type of polynomial system has infinitely many steady states.

Example 4. An example of a CDM ODE model having infinitely many equilibrium points is
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Figure 5: A phase plane showing an attracting line. Parameter values are n = 2, c1 = c2 = c1,2 = c2,1 = 1,

K1 = K2 = 1, γ1,2 = γ2,1 = 1, g1 = g2 = 0, β1 = 2, β2 = 1, ρ1 = 1 and ρ2 = 1/2.

of the form

dXi

dt
=

AXi

K +Xi +
∑
j 6=i

Xj

−Xi, i = 1, 2, ...,m (12)

dXk

dt
=

Xk

K +Xk +
∑
j 6=k

Xj

− Xk

A
, k = m+ 1,m+ 2, ..., n

where A > K ≥ 1 is a constant (see Figure (5) for illustration). The polynomial system (10) of

this CDM ODE model is similar to the polynomial system of the CDM ODE model described

in Property (7) with β = A and ρ = 1.

Property 7. Suppose ci = ci,j = 1, Ki = K > 0, γi,j = 1, gi = 0, βi = β > 0 and ρi = ρ > 0

for all i and j (K, β and ρ are constants). If β > ρK then the steady states of the ODE system

(1) are the zero state and the non-isolated points lying on the hyperplane with equation

n∑
j=1

Xj =
β

ρ
−K, Xj ≥ 0 for all j. (13)
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In addition, the zero state is an unstable equilibrium point while the hyperplane (13) is an

attractor.

The convergence to the zero state (0, 0, ..., 0) implies that all components eventually switch-

off. Note that the CDM ODE model (1) has a steady state with i-th component X∗i = 0 if and

only if gi = 0. The zero state of the ODE system (1) can only be a steady state if and only if

gi = 0 for all i.

In general, suppose gi = 0 for all i, then the zero state is the only equilibrium point of

the ODE model (1) if the univariate curve Y = H1
i (Xi) lies below the decay line Y = ρiXi

(i.e., H1
i (Xi) < ρiXi, for all Xi > 0) for every i = 1, 2, ..., n. This phenomenon indicates that

the exponential decay of each component is faster than stimulation, thus, we expect that all

components will eventually be switched-off given any initial condition.

Property 8. If ci > 1, gi = 0 and

ρi(Ki
1/ci) ≥ βi (14)

for all i, then the CDM ODE system (1) has only one equilibrium point which is the zero state

because we are sure that the univariate curve Y = H1
i (Xi) lies below the decay line Y = ρiXi.

In addition, if ci = 1, gi = 0 and βi/Ki ≤ ρi for all i, then the ODE system (1) has the zero

state as the sole equilibrium point.

The following property present cases where the solution to the ODE system (1) converges

to the zero state (depending on the initial condition):

Property 9. In the CDM ODE system (1), suppose ci = 1 and gi = 0 for all i. Then the zero

state is a stable equilibrium point when ρi > βi/Ki for all i, or an unstable equilibrium point

when ρi < βi/Ki for at least one i. If ρi = βi/Ki for at least one i, then we have an attractor

only when Xi is restricted to be non-negative and ρj ≥ βj/Kj for every j 6= i.

In addition, suppose ci > 1, ρi > 0 and gi = 0 for all i. Then the zero state is a stable

equilibrium point of the ODE system (1).

Remark 2. Suppose ci > 1, ρi > 0 and gi = 0. Then X∗i = 0 is always an attracting component.

Remark (2) is important because this suggests that if the i-th component is switched-off

then it can never be switched-on again, unless we effectively perturb the system by introducing
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an additive external stimulus (si) or some stochastic noise [63, 49, 48, 41]. In some cases where

a zero attracting component is unwanted, a modified CDM ODE model can be used, such as

dXi

dt
=

βi exp(ci(Xi − δi))
Ki + exp(ci(Xi − δi)) +

∑
j 6=i

γi,j exp(ci,jXj)
+ gi − ρiXi, (15)

for i = 1, 2, ..., n.

The parameter δi shifts the sigmoid kinetics of the i-th component to higher values of Xi. In

cellular differentiation [64, 65], the zero state has trivial biological importance because it does

not represent any phenotype.

3.1. Equilibrium switching by parameter regulation

Property 10. Varying the values of some parameters of the CDM ODE model (1) can enable

equilibrium switching from one stable steady state to another.

We can mathematically manipulate the parameter values to ensure that the initial condition

is in the basin of attraction of the desired steady state. We can do this by decreasing the size

of the basin of attraction of an undesired steady state as well as increasing the size of the basin

of attraction of the desired steady state. For example, we can force the i-th component of a

state to eventually dominate other components by increasing the maximal growth rate βi + gi

[66, 67, 68, 69, 70] or by decreasing the decay rate ρi (Figure (6A-C)) [71, 72, 73, 74].

We assume that changes in external stimuli are represented in the variations of the parameter

gi. The parameter gi is assumed as a constant production term that alters the maximum value of

the multivariate sigmoid function. If we increase the value of gi then the value of the attracting

component X∗i where Y = H1
i (Xi) + gi and Y = ρi(Xi) intersect also increases. In fact, we can

force such enhanced value of X∗i to be the only intersection even if the value of
∑

j 6=i γi,jX
ci,j
j

increases (see Figure (7A) for illustration).

The component Xi inhibits Xj , hence, if we increase the value of X∗i by adding gi then

the value of X∗j , j 6= i where Y = H1
j (Xj) + gj and Y = ρj(Xj) intersect decreases. We can

actually force such decreased value of X∗j to be the only intersection by amplifying gi up to a

sufficient level (note that if gj = 0, then it is possible to make the switched-off X∗j = 0 the only

attracting component). Therefore, by sufficiently changing the value of gi we can have a sole

stable steady state where the i-th component dominates the others (X∗i > X∗j , j 6= i). For any

initial condition, the solution to the CDM ODE model (1) converges to this sole steady state.
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Figure 6: Let n = 2, c1 = c2 = c1,2 = c2,1 = 1, β1 = 1, K1 = K2 = 1, γ1,2 = γ2,1 = 1, ρ1 = 0.2 and g1 = 0.

(A) Varying the value of β2 can switch equilibrium states. Initial values are set to X1,0 = 1 and X2,0 = 1, and

parameter values are ρ2 = 1 and g2 = 0. (B) Varying the value of ρ2 can switch equilibrium states. Initial values

are set to X1,0 = 1 and X2,0 = 1, and parameter values are β2 = 1 and g2 = 0. (C) Varying the value of g2 can

switch equilibrium states even though the initial condition of X2 is switched-off. Initial values are set to X1,0 = 1

and X2,0 = 0, and parameter values are β2 = 1 and ρ2 = 1.
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Figure 7: (A) Increasing the value of gi can steer Xi to converge to high-valued X∗i , and Xj to converge to

low-valued X∗j . (B) Let us consider the ODE model in Example (16) but set g1 = dW where dW is a Gaussian

white noise (see [41]). Stochastic noise can drive sample paths to different steady states of the CDM ODE model.

Out of the 20 simulation runs, 2 of the sample paths tend to the lower-valued attracting component. Initial

condition is (0.4, 0.5), only the sample paths of X1 are shown in the figure. (C) Setting g1 = 0.5 +dW , all sample

paths out of the 20 simulation runs tend to the sole steady state of the CDM ODE model. Initial condition is

(0.4, 0.5), only the sample paths of X1 are shown in the figure.
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The perpetual addition of sufficient amount of external stimulus, represented by constant gi,

can shutdown the multi-stability of the system such that only one stable steady state remains.

Thus, this strategy increases the robustness of the solution to the CDM ODE model against

stochastic noise that induces equilibrium switching. Figure (7B) shows that stochastic noise

can drive sample paths (solutions to stochastic differential equations) to different stable steady

states of the CDM ODE model. However, adding a constant supply of external stimulus can

minimize this noise-driven switching as illustrated in Figure (7C).

Example 5. Consider the CDM ODE model (1) of the form:

dX1

dt
=

X2
1

1 +X2
1 + 1

8X
2
2

− 1

21
X1 (16)

dX2

dt
=

X2
2

1 + 1
8X

2
1 +X2

2

− 1

21
X2.

This system has 9 steady states which is equal to the Bézout upper bound (Property (5)).

There are only 4 stable steady states out of the 9. The four stable steady states represent a

2-node dominance, two premier states (1-node dominance) and a zero state (see Appendix B

for the numerical results).

Now, suppose we introduce g1 = 0.5. Introducing g1 = 0.5 forces X1 to converge to the

high-valued attracting component X∗1 , and forces

X2
2

1 + 1
8X
∗
1
2 +X2

2

<
1

21
X2 (17)

for all values of X2. Hence, there will be exactly one steady state. This steady state is stable

and represents a premier state where X∗1 is dominant and X∗2 is switched-off.

The parameters Ki, ci, ci,j and γi,j do not affect the upper bound of the hyperspace (7).

However, increasing Kj for all j 6= i can force each Xj to converge to the lower-valued attracting

component (or even be switched-off when gj = 0). This increases the chance of Xi to converge to

X∗i > X∗j for all j 6= i. Furthermore, increasing the value of ci or ci,j can result in an increased

number of steady states (by Property (5)). Varying the values of these exponents can prompt

steady state switching (Figure (8)) and can also result in oscillations (see Appendix A.2).

There are cases where the interaction coefficients (γi,j) act as controls to induce steady state

switching. Increasing the inhibition strength of one component can affect its dominance over

the other components. For example, recall the steady state in Example (3) for n = 2 with
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Figure 8: Increasing the inhibition exponent c2,1 and interaction coefficient γ2,1 can drive equilibrium switching.

Let n = 2, X0 = (1, 1.2), c1 = c2 = c1,2 = 2, β1 = β2 = 1, K1 = K2 = 1, γ1,2 = 1, ρ1 = ρ2 = 0.2 and g1 = g2 = 0.

(A) Varying the value of c2,1. (B) Varying the value of γ2,1.
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Figure 9: Varying the interaction coefficients can prompt steady state switching. Suppose n = 3, X0 =

(0.5, 0.5, 0.5), gi = 0, γi,j = γ, βi = 1, ρi = 0.2 and Ki = 1, for all i, j. Only the equilibrium values of X1

are shown. (A) Let ci = ci,j = 1 for all i, j. (B) Let ci = ci,j = 2 for all i, j.
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ci = ci,j = 1 and gi = 0, i, j = 1, 2,(
β1 − ρ1 (K1 + γ1,2X

∗
2 )

ρ1
,
β2 − ρ2 (K2 + γ2,1X

∗
1 )

ρ2

)
. (18)

Notice that as we enhance the inhibition of X1 by X2, represented by γ1,2, it can drive β1 <

ρ1 (K1 + γ1,2X
∗
2 ) that switches-off X∗1 . This drives X2 to eventually dominate X1.

The diagrams in Figure (9) present additional illustrations of steady state switching by

varying the value of the interaction coefficients. However, regulating the interaction among

components is not always as straightforward as regulating the values of βi, gi and ρi in steering

the system toward the desired steady state. Having an asymmetric interaction matrix can

generate oscillating behavior, such as the repressilator (Appendix A.1).

Oscillations can lead to state switching for some period of time. If the solution attains a

desired temporal condition, we can dampen the oscillating behavior (e.g., by parameter reg-

ulation from asymmetric to symmetric [γi,j ]) to have stability where the desired outcome is

maintained (Appendix A.3). This is a strategy where oscillations and stability both assist in

driving a solution towards the desired equilibrium [75]. To avoid volatile effect of randomness,

the oscillation-driven switching can be an alternative to the the noise-driven switching but only

when oscillation is structurally feasible.

4. Conclusions

We are able to show the qualitative dynamics of the CDM by investigating the mathematical

properties of its associated system of ordinary differential equations (ODE) with nonlinear ki-

netics. The CDM can predict multi-stability that may give rise to co-existence or to domination

by some components. Regulating the maximal growth rate (which is possibly influenced by

an external stimulus), decay rate and interaction among components can affect the nature of

the steady states. Parameter regulation is a possible deterministic strategy for controlling the

dominance of a component towards the desired steady state. The introduction of an external

stimulus can result in a system with a sole attractor, which can control the effect of moderate

stochastic noise.

In some cases, CDM can also represent synthetic biological oscillators. Combining the effect

of oscillation and stability can be a potential strategy for attaining the desired outcome. Asym-

metric strength of inhibition among components can result in sustained oscillations, but this is
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not true for all asymmetric systems. Our study can be extended to search for general conditions

that generate oscillatory behavior.

If we want to reactivate a switched-off component then one strategy is to add an external

stimulus that enhances the basal growth. However, it is sometimes impractical or infeasible

to continuously add such a constant amount of inducement. Consequently, we may rather

consider an external stimulus that varies through time. If there are multiple stable steady states,

introducing a varying amount of stimulus can affect the long-term outcome of the CDM dynamics

through equilibrium switching. If deterministic parameter regulation is not perpetually possible,

combining deterministic and stochastic techniques could be done, such as by supplementing the

effect of external stimulus with stochastic fluctuations.

Supplementary Material

For the proofs of the mathematical properties and additional illustrations, see the supporting

text in the Supplementary Material. Send an e-mail to the author to obtain the Supplementary

Material.
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Appendix A. Examples of Oscillators

Appendix A.1. Repressilator in Example (2)

The network representation and matrix of the interaction coefficients of the CDM system in

Example (2) are shown in Figure (A.10). Notice that one direction of inhibition is stronger than

the reverse direction. This network is an example of a negative circuit forming a repressilator.

Figure A.10: Network representation and matrix of the interaction coefficients of the CDM system in Example

(2). Solid bars represent strong inhibition, broken bars represent weak inhibition.

The CDM ODE model in Example (2) does not have stable steady states. In fact, there is

only one steady state, X∗ = (5.693, 5.693, 5.693), but it is unstable. However, each component

X∗i = 5.693 is attracting. Property (1) cannot be used to determine the stability of this steady

30
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.382v1 | CC-BY 4.0 Open Access | received: 8 May 2014, published: 8 May 2014

P
re
P
rin

ts

http://dx.doi.org/10.1093/nar/gkq790
http://dx.doi.org/10.1093/nar/gkq790
http://dx.doi.org/10.1016/j.cell.2009.01.019
http://dx.doi.org/10.1016/j.mcm.2004.08.003
http://dx.doi.org/10.1016/j.mcm.2004.08.003
http://dx.doi.org/10.1371/journal.pone.0027232
http://dx.doi.org/10.1371/journal.pone.0027232


state. Note that if the initial condition X10 = X20 = X30, the solution converges to this sole

steady state; but for other initial conditions, oscillations may persist.

Furthermore, the attracting components of every state contribute in the generation of the

oscillating behavior (see Figure (A.11) for illustration).

Figure A.11: The two sigmoid curves are sample graphs of Y = H1
i (Xi) with different values of Xj , j 6= i. The

denominator of the sigmoid function Hi, i = 1, 2, 3 in the CDM model in Example (2) continuously varies resulting

in oscillations. The oscillating solution to Xi is sequentially attracted by high-valued and low-valued attracting

components.

Appendix A.2. CDM system with asymmetric matrix of inhibition exponents

Another example of an oscillator arising from the asymmetric inhibitory interaction of the

components is of the following form

dX1

dt
=

X2
1

1 +X2
1 +X3

2 +X3
− 0.1X1 + 0.1 (A.1)

dX2

dt
=

X2
2

1 +X1 +X2
2 +X3

3

− 0.1X2 + 0.1

dX3

dt
=

X2
3

1 +X3
1 +X2 +X2

3

− 0.1X3 + 0.1.

Notice that the matrix of inhibition exponents [ci,j ] is asymmetric.
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Appendix A.3. Stabilizing oscillations

Consider the following oscillating system

dX1

dt
=

X2
1

1 +X2
1 +X2

2 + 0.1X2
3

− 0.1X1 + 0.1 (A.2)

dX2

dt
=

X2
2

1 + 0.1X2
1 +X2

2 +X2
3

− 0.1X2 + 0.1

dX3

dt
=

X2
3

1 +X2
1 + φX2

2 +X2
3

− 0.1X3 + 0.1.

where φ = 0.1 with initial condition X0 = (5, 1, 5). If we vary φ by setting

dφ

dt
=

1

1000(1 + φ2)
(A.3)

with initial value of φ equal to 0.1. This would lead to stabilized oscillation towards dominant

X∗2 (Figure (A.12)).

Figure A.12: An example of a controlled oscillating system by regulating an interaction coefficient.

Appendix B. Numerical results for Example (5)

The approximate values of the steady states of the ODE system (16) in Example (5) are

(X∗1 = 18.619, X∗2 = 18.619) — stable (priming state),

(X∗1 = 20.894, X∗2 = 3.1056) — unstable,

(X∗1 = 3.1056, X∗2 = 20.894) — unstable,

(X∗1 = 0.047741, X∗2 = 0.047741) — unstable,

(X∗1 = 0, X∗2 = 0.047728) — unstable,

(X∗1 = 0.047728, X∗2 = 0) — unstable,
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(X∗1 = 0, X∗2 = 20.952) — stable (premier state),

(X∗1 = 20.952, X∗2 = 0) — stable (premier state), and

(X∗1 = 0, X∗2 = 0) — stable (zero state).

If g1 = 0.5 is introduced, the sole equilibrium is (X∗1 = 31.479, X∗2 = 0).

Figure B.13: (A) A phase plane showing the steady states of the ODE system (16) in Example (5), g1 = 0. (B)

Zooming in to show zero state is also stable.
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