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Abstract

Using mitochondrial free energy delivery rate as a tempera-
ture analog, we examine the ‘spontaneous symmetry breaking’
of the group associated with the error minimization coding
scheme related to protein folding, and characterize the phase
transition that drives the collapse of normal folding to patho-
logical amyloid production. Similarly, groupoids prove central
to the study of analogous, often highly punctuated, ‘ground
state’ failures in far more complex biological processes, adopt-
ing Maturana’s perspective on the central role of cognition
throughout the living state.

1 Introduction

One of the more interesting developments in applied mathe-
matics has been the finding of a close relation between infor-
mation theory inequalities and a spectrum of results in the
theory of finite groups (Yeung 2008, Ch. 16):

Given two random variables X1 and X2 having Shannon
uncertainties H(X1) and H(X2) defined in the usual manner
(Cover and Thomas, 2006), the information theory chain rule
states that, for the joint uncertainty H(X1, X2),

H(X1) +H(X2) ≥ H(X1, X2) (1)

Similarly, let G be any finite group, and G1, G2 be sub-
groups of G. Let |G| represent the order of a group, i.e., the
number of elements. Then it is easy to show the intersection
G1 ∩G2 is also a subgroup, and that

log[
|G|
|G1|

] + log[
|G|
|G2

] ≥ log[
|G|

|G1 ∩G2|
] (2)

Defining a probability for a ‘random variate’ associated
with a group G as Pr{X = a} = 1/|G| permits construc-
tion of a group-characterized information source, noting that,
in general, the joint uncertainty of a set of random variables in
not necessarily the logarithm of a rational number. The sur-
prising ultimate result, however, is that there is a one-to-one
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correspondence between unconstrained information inequali-
ties and group inequalities. Indeed, unconstrained inequali-
ties can be proved by techniques in group theory, and certain
group-theoretic inequalities can be proven by techniques of
information theory.

More generally, the theory of error-correcting codes, usu-
ally called algebraic coding theory (e.g., Berlekamp, 1984; van
Lint, 1999; Pretzel, 1996; Roman, 1997), seeks particular re-
dundancies in message coding over noisy channels that enable
efficient reconstruction of lost or distorted information. The
full-bore panopoly of groups, ideals, rings, algebras, and finite
fields is brought to bear on the problem to produce a spectrum
of codes having different capabilities and complexities: BCH,
Goppa, Hamming, Linear, Reed-Muller, Reed-Solomon, and
so on.

Here, we will provide two examples suggesting that the re-
lations between groups, groupoids, and a broad spectrum of
information-related phenomena of interest in biology are, sim-
ilarly, surprisingly intimate.

Group symmetries associated with an error-minimization
coding scheme – as opposed to error correction coding – will
dominate a necessary conditions statistical model of a ‘spon-
taneous symmetry breaking’ phase transition that drives the
collapse of protein folding to pathological amyloid production,
and groupoids emerge as central in the study of a similar wide-
ranging ‘ground state’ failure of cognitive process, adopting
the Maturana/Varela (1980) perspective on the necessity of
cognition at every scale and level of organization of the living
state.

2 The group structure of biological
codes

Tlusty’s (2007) analysis of deterministic-but-for-error codes
(DBFE) that minimize the impact of coding errors provides a
basis for examining the problem of amyloid protein misfold-
ing. Tlusty (2007) models the emergence of the genetic code
as a transition in a noisy information channel, using a Rate
Distortion Theorem methodology. After some development
(Tlusty, 2008) he finds the number of possible amino acids in
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a coding scheme is analogous to the well-known topological
coloring problem. But while in the coding problem one desires
maximal similarity in the colors of neighboring ‘countries’, in
the coloring problem one must color neighboring countries
by different colors. Explicitly, one uses Heawood’s formula
(Ringel and Young, 1968) to determine the number of possi-
ble ‘amino acids’ given a codon graph designed to minimize
errors in coding:

chr(γ) = Int[
1

2
(7 +

√
1 + 48γ)] (3)

where chr(γ) is the number of ‘colored’ regions, Int is the
integer value of the enclosed expression, and γ is the genus
of the surface of the underlying code network – basically the
number of ‘holes’ in the code network. In general, γ = 1 −
(1/2)(V − E + F ), where V is the number of code network
vertices, E the number of network edges, and F the number
of enclosed faces.

The central trick is that one can obtain, for any DBFE code,
an essential group theoretic characterization by noting that
the fundamental group (FG) of a closed, orientable surface
of genus γ – in which the code network is taken as embed-
ded – is the quotient of the free group on the 2γ generators
a1, ..., aγ , b1, ..., bγ by the normal subgroup generated by the
product of the commutators

a1b1a
−1
1 b−11 ...aγbγa

−1
γ b−1γ (4)

This is a standard construction (e.g., Lee 2000). For exam-
ple, the FG of a sphere, an orientable surface with zero holes,
is trivial, having only one element, while that of the torus –
a donut-like orientable surface with one hole – is isomorphic
to the direct product of the integers, written as Z × Z, and
so on.

That is, every DBFE error-minimization biological code is
associated with a fundamental group. The more complex the
code, the richer the symmetries of the associated error net-
work, seen as embedded in a smooth surface of genus γ.

Wallace (2010) suggests that the overall scheme applies to
a ‘protein folding code’ as well. Hecht et al. (2004) note that
protein α-helices have the underlying ‘code’ 101100100110...
where 1 indicates a polar and 0 a non-polar amino acid.
Protein β-sheets, by contrast, have the simpler basic ‘code’
10101010...

Equation (3), most directly, produces the table

γ (# surface holes) chr(γ) (# error classes)
0 4
1 7
2 8
3 9
4 10
5 11

6, 7 12
8, 9 13

In Tlusty’s scheme, the second column represents the max-
imal possible number of product classes that can be reliably

produced by error-prone codes having γ holes in the underly-
ing coding error network.

Normal irregular protein symmetries were first classified
by Levitt and Chothia (1976), following a visual study of
polypeptide chain topologies in a limited dataset of globu-
lar proteins. Four major classes emerged; all α-helices; all
β-sheets; α/β; and α+ β, with the latter two having the ob-
vious meaning.

While this scheme strongly dominates observed irregular
protein forms, Chou and Maggiora (1998), using a much larger
data set, recognize three more ‘minor’ symmetry equivalence
classes; µ (multi-domain); σ (small protein); and ρ (peptide),
and a possible three more subminor groupings.

We infer that, from Tlusty’s perspective, the normal globu-
lar ‘protein folding code error network’ is, essentially, a large
connected ‘sphere’ – producing the four dominant structural
modes – but having as many as three more attachment han-
dles, in the Morse Theory sense (Matsumoto, 2002). These
basic entities then act to produce an almost unlimited set of
functional proteins under normal conditions.

What happens to the fundamental group of a deterministic-
but-for-error code under conditions that are not normal?

Recent work has correlated aging with failure of the mito-
chondrial machinery providing metabolic free energy at the
cellular level of organization (e.g., D.C. Wallace 2005, 2010).
As Lee and Wei (2012) argue, aging is a degenerative process
that is associated with progressive accumulation of deleteri-
ous changes with time, reduction of physiological function and
increase in the chance of disease and death. Studies reveal a
wide spectrum of alterations in mitochondria and mitochon-
drial DNA with aging. Mitochondria are the main cellular
energy sources that generate the cellular energy source ATP
through respiration and oxidative phosphorylation in the in-
ner membrane of mitochondria. The respiratory chain of that
system is also the primary intracellular source of reactive oxy-
gen species and free radicals under normal physiological and
pathological conditions. In addition, mitochondria play a cen-
tral role in a great variety of cellular processes.

Numerous biochemical studies on isolated mitochondria re-
vealed that the electron transport activities of respiratory en-
zyme complexes gradually decline with age in the brain, skele-
tal muscle, liver and skin fibroblasts of normal human sub-
jects. Numerous molecular studies demonstrated that somatic
mutations in mitochondrial DNA accumulate with age in a va-
riety of tissues in humans. These age-associated changes in
mitochondria are well correlated with the deteriorative pro-
cesses of tissues in aging.

However, although abundant experimental data have been
gathered in the past decade to support the concept that de-
cline in mitochondrial energy metabolism, reactive oxygen
species overproduction and accumulation of mitochondrial
DNA mutations in tissue cells are important contributors to
human aging, the detailed mechanisms by which these bio-
chemical events cause aging have remained to be established.
Here we will examine the implications of mitochondrial dete-
rioration for control of protein folding.

The prebiotic ‘amyloid world’ of Maury (2009), in contrast
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to the current rich variety of normal protein structures and
functions, is built on a single β-sheet lamination, and shows,
by stark contrast to the protein world, in its full extent, a
simple eight-fold steric zipper (Sawaya et al. 2007).

As Goldschmidt et al. (2010) put the matter,

We found that [protein segments with high fibril-
lation propensity] tend to be buried or twisted into
unfavorable conformations for forming beta sheets...
For some proteins a delicate balance between pro-
tein folding and misfolding exists that can be tipped
by changes in environment, destabilizing mutations,
or even protein concentration...

In addition to the self-chaperoning effects de-
scribed above, proteins are also protected from fib-
rillation during the process of folding by molecular
chaperones...

Our genome-wide analysis revealed that self-
complementary segments are found in almost all pro-
teins, yet not all proteins are amyloids. The implica-
tion is that chaperoning effects have evolved to con-
strain self-complementary segments from interaction
with each other.

Clearly, effective chaperoning requires considerable
metabolic energy, and failure to provide levels adequate for
both maintaining and operating such biochemical translation
machinery would be expected to trigger a canonical ‘code
collapse’, most likely in a highly punctuated manner. The
formalism is classic.

The existence of a Tlusty-like error minimization coding
structure implies the existence of some information source us-
ing that code-and-translator or code-and-chaperone channel.
As Feynman (2000), following Bennett (1988) argues, it is
possible to make a small (idealized) machine that transforms
information received into work – free energy. Indeed, Feyn-
man defines information precisely in terms of the free energy
needed to erase it. Representing the intensity of available mi-
tochondrial free energy as H, we write a pseudoprobability
for an information source Hj associated with coding mode j
as

Pr[Hj ] =
exp[−Hj/ωH]∑n
i=1 exp[−Hi/ωH)]

(5)

where Hj is the source uncertainty to be associated with each
functional mode j.

This leads to a ‘free energy’ Morse Function, F , defined in
terms of the rate of available metabolic free energy

exp[−F/ωH] =

n∑
i=1

exp[−Hi/ωH] (6)

See the Mathematical Appendix for a summary of standard
material on Morse Functions.

The central insight regarding phase transitions in physical
systems is that certain critical phenomena take place in the
context of a significant alteration in symmetry, with one phase

being far more symmetric than the other (Landau and Lif-
shitz, 2007; Pettini, 2007). A symmetry is lost in the transi-
tion – spontaneous symmetry breaking. The greatest possible
set of symmetries in a physical system is that of the Hamil-
tonian describing its energy states. Usually states accessible
at lower temperatures will lack the symmetries available at
higher temperatures, so that the lower temperature phase is
less symmetric. The randomization of higher temperatures
ensures that higher symmetry/energy states will then be ac-
cessible to the system. The shift between symmetries is highly
punctuated in the temperature index.

This line of argument suggests the existence of com-
plex forms of highly punctuated phase transition in
code/translator function with changes in demand for, or sup-
ply of, the rate of metabolic free energy needed to run the
protein chaperone machine. That is, applying a spontaneous
symmetry breaking argument to F generates topological tran-
sitions involving changes in the fundamental group defined by
error code graph structure as the mitochondrial ‘temperature’
H decreases. As the rate of delivery of the free energy running
the chaperone machines decreases, complex coding schemes
can no longer be sustained, driving a punctuated shift of the
fundamental group of the protein folding code to a degener-
ate, collapsed amyloid state.

Details of such an information phase transition may also
be described using ‘biological’ renormalization methods (Wal-
lace, 2005, Section 4.2) analogous to, but much different from,
those used in the determination of physical phase transition
universality classes (Wilson, 1971). Suppose, in classic man-
ner, it is possible to define a characteristic ‘length’, say l, on
the system. It is then possible to define renormalization sym-
metries in terms of the ‘clumping’ transformation, so that, for
clumps of size L, in an external ‘field’ of strength J (that can
be set to 0 in the limit), one can write, in the usual manner

F [Q(L), J(L)] = f(L)F [Q(1), J(1)]

χ(Q(L), J(L)) =
χ(Q(1), J(1))

L
(7)

where χ is a characteristic correlation length and Q is an
‘inverse temperature measure’, i.e., ∝ 1/ωH.

As described in Wallace (2005), very many ‘biological’
renormalizations, f(L), are possible that lead to a number of
quite different universality classes for biological phase tran-
sition. Indeed, a ‘universality class tuning’ can be used as a
tool for large-scale regulation of the system. While Wilson
(1971) necessarily uses f(L) ∝ L3 for simple physical sys-
tems, following Wallace (2005), it is possible to argue that,
since F is so closely related to information measures, it is
likely to ‘top out’ at different rates with increasing system
size, so other forms of f(L) must be explored. Indeed, stan-
dard renormalization calculations for f(L) ∝ Lδ,m log(L)+1,
and exp[m(L− 1)/L] all carry through.
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3 The groupoid structure of cogni-
tion

The approach of the previous sections can be extended to
larger-scale machinery that uses deterministic-but-for-error
biological or other codes as relatively simple components in
more complex systems. As many have argued, the living
state involves cognitive processes at every scale of organiza-
tion (e.g., Maturana and Varela, 1980; Wallace 2012a, 2014).
It not difficult to show that many forms of cognition are asso-
ciated with groupoid-characterized dual information sources.

Atlan and Cohen (1998) argue that the essence of cogni-
tion involves comparison of a perceived signal with an inter-
nal, learned or inherited picture of the world, and then choice
of one response from a much larger repertoire of possible re-
sponses. That is, cognitive pattern recognition-and-response
proceeds by an algorithmic combination of an incoming exter-
nal sensory signal with an internal ongoing activity – incor-
porating the internalized picture of the world – and triggering
an appropriate action based on a decision that the pattern of
sensory activity requires a response.

Incoming ‘sensory’ input is thus mixed in an unspecified but
systematic manner with internal ‘ongoing’ activity to create a
path of combined signals x = (a0, a1, ..., an, ...). Each ak thus
represents some functional composition of the internal and
the external. An application of this perspective to a standard
neural network is given in Wallace (2005, p.34).

This path is fed into some unspecified ‘decision function’,
h, generating an output h(x) that is an element of one of two
disjoint sets B0 and B1 of possible system responses. Let

B0 ≡ {b0, ..., bk},

B1 ≡ {bk+1, ..., bm}.

Assume a graded response, supposing that if

h(x) ∈ B0,

the pattern is not recognized, and if

h(x) ∈ B1,

the pattern is recognized, and some action bj , k + 1 ≤ j ≤ m
takes place.

Interest focuses on paths x triggering pattern recognition-
and-response: given a fixed initial state a0, examine all possi-
ble subsequent paths x beginning with a0 and leading to the
event h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for all 0 ≤ j < m,
but h(a0, ..., am) ∈ B1.

For each positive integer n, take N(n) as the number of high
probability paths of length n that begin with some particular
a0 and lead to the condition h(x) ∈ B1. Call such paths
‘meaningful’, assuming that N(n) will be considerably less
than the number of all possible paths of length n leading from
a0 to the condition h(x) ∈ B1.

Identification of the ‘alphabet’ of the states aj , Bk may de-
pend on the proper system coarse graining in the sense of
symbolic dynamics (e.g., Beck and Schlogl, 1993).

Combining algorithm, the form of the function h, and
the details of grammar and syntax, are all unspecified in
this model. The assumption permitting inference on nec-
essary conditions constrained by the asymptotic limit the-
orems of information theory is that the finite limit H ≡
limn→∞ log[N(n)]/n both exists and is independent of the
path x. Again, N(n) is the number of high probability paths
of length n.

Call such a pattern recognition-and-response cognitive pro-
cess ergodic. Not all cognitive processes are likely to be er-
godic, implying that H, if it exists, may be path dependent,
although extension to nearly ergodic processes, in a certain
sense, seems possible (e.g., Wallace, 2005, pp. 31-32).

Invoking the Shannon-McMillan Theorem (Cover and
Thomas, 2006), it becomes possible to define an adiabatically,
piecewise stationary, ergodic information source X associated
with stochastic variates Xj having joint and conditional prob-
abilities P (a0, ..., an) and P (an|a0, ..., an−1) such that appro-
priate joint and conditional Shannon uncertainties satisfy the
classic relations

H[X] = lim
n→∞

log[N(n)]

n
=

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)

n
(8)

This information source is defined as dual to the underlying
ergodic cognitive process.

‘Adiabatic’ means that, when the information source is
properly parameterized, within continuous ‘pieces’, changes
in parameter values take place slowly enough so that the in-
formation source remains as close to stationary and ergodic as
needed to make the fundamental limit theorems work. ‘Sta-
tionary’ means that probabilities do not change in time, and
‘ergodic’ that cross-sectional means converge to long-time av-
erages. Between pieces, as described above, it is necessary to
invoke phase change formalism, a ‘biological’ renormalization
that generalizes Wilson’s (1971) approach to physical phase
transition (Wallace, 2005).

Again, Shannon uncertainties H(...) are cross-sectional law-
of-large-numbers sums of the form −

∑
k Pk log[Pk], where

the Pk constitute a probability distribution. See Cover and
Thomas (2006) for the standard details.

We are not, however, constrained in this approach to the
Atlan-Cohen model of cognition that, through the compari-
son with an internal picture of the world, invokes representa-
tion. The essential inference is that a broad class of cognitive
phenomena – with and without representation – can be asso-
ciated with a dual information source. The argument is di-
rect, since cognition inevitably involves choice, choice reduces
uncertainty, and this implies the existence of an information
source.

For cognitive systems, an equivalence class algebra can be
now constructed by choosing different origin points a0, and
defining the equivalence of two states am, an by the existence
of high probability meaningful paths connecting them to the
same origin point. Disjoint partition by equivalence class,
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analogous to orbit equivalence classes for a dynamical sys-
tem, defines a groupoid. See the Mathematical Appendix for
a summary of material on groupoids. This is a weak version
of a very standard argument in algebraic toplogy leading to
the definition of fundamental and free groups (e.g., Lee 2000;
Crowell and Fox 1963, Ch. II, III). One might call this con-
struction the fundamental groupoid of the cognitive process.

The vertices of the resulting network of cognitive dual lan-
guages interact to actually constitute the system of interest.
Each vertex then represents a different information source
dual to a cognitive process. This is not a representation
of a network of interacting physical systems as such, in the
sense of network systems biology. It is an abstract set of
language-analogs dual to the set of cognitive processes of in-
terest, that may become linked into higher order structures
through crosstalk.

Topology is now an object of algebraic study, so-called al-
gebraic topology, via the fundamental underlying symmetries
of geometric spaces. Rotations, mirror transformations, sim-
ple (‘affine’) displacements, and the like, uniquely character-
ize topological spaces, and the networks inherent to cogni-
tive phenomena having dual information sources also have
complex underlying symmetries. Again, characterization via
equivalence classes defines a groupoid, an extension of the idea
of a symmetry group, as summarized by Brown (1987) and
Weinstein (1996). Linkages across this set of languages occur
via the groupoid generalization of Landau’s spontaneous sym-
metry breaking arguments used above (Landau and Lifshitz,
2007; Pettini, 2007). As above, we use a standard approach
to constructing a Morse Function parameterized in the rate
of available metabolic free energy.

With each subgroupoid Gi of the overall cognitive groupoid
associated with the cognitive process of interest we can asso-
ciate a joint information source uncertainty H(XGi

) ≡ HGi
,

where X is the dual information source of the cognitive phe-
nomenon of interest.

Responses of a cognitive system can now be represented by
high probability paths connecting ‘initial’ multivariate states
to ‘final’ configurations, across a great variety of beginning
and end points. This creates a similar variety of groupoid clas-
sifications and associated dual cognitive processes in which
the equivalence of two states is defined by linkages to the
same beginning and end states. Thus it becomes possible to
construct a ‘groupoid free energy’ driven by the quality of
available metabolic free energy, represented by the mitochon-
drial rate H, to be taken as a temperature analog.

The argument-by-abduction from physical theory is that H
constitutes a kind of thermal bath for the processes of biologi-
cal cognition. Thus we can construct another Morse Function
by writing a pseudo-probability for the information sources
XGi

having source uncertainties HGi
as

P [HGi
] =

exp[−HGi
/κH)]∑

j exp[−HGj/κH]
(9)

where κ is an appropriate dimensionless constant characteris-
tic of the particular system. The sum is over all possible sub-
groupiods of the largest available cognitive groupoid. Note

that compound sources, formed by the (tunable, shifting)
union of underlying transitive groupoids, being more complex,
will have higher free-energy-density equivalents than those of
the base transitive groupoids.

The Morse Function defined for invocation of Pettini’s topo-
logical hypothesis or Landau’s spontaneous symmetry break-
ing is then a ‘groupoid free energy’ F given by

exp[−F/κH] ≡
∑
j

exp[−HGj
/κH] (10)

Spontaneous symmetry breaking arguments are invoked
here in terms of the groupoid associated with the set of dual
information sources.

Many other Morse Functions might be constructed, for ex-
ample simply based on representations of the underlying cog-
nitive groupoid(s). The resulting qualitative picture would
not be significantly different.

The essential point is that decline in the rate of available
mitochondrial free energy H, or in the ability to actually use
that free energy as indexed by κ, can lead to punctuated
decline in the complexity of cognitive process within the entity
of interest, according to this model.

If κH is relatively large – a rich and varied real-time free en-
ergy environment – then there are many possible cognitive re-
sponses. If, however, constraints of mitochondrial aging limit
the magnitude of κH, then an essential cognitive system may
or will begin to collapse in a highly punctuated manner to a
kind of ground state in which only limited responses are possi-
ble, represented by a simplified cognitive groupoid structure,
recognizably akin to amyloid collapse in the much simpler
deterministic-but-for-error protein coding machineries.

4 Distortion as order parameter

As described in the Mathematical Appendix, the Rate Dis-
tortion Function (RDF) is the minimum rate of information
transmission necessary to ensure that the average distortion
between message sent and message received, using a particular
distortion measure over a given channel, is less than D ≥ 0.
Usually written R(D), it is always a decreasing convex func-
tion of D, a reverse J-shaped curve(Cover and Thomas 2006).
For example, a Gaussian channel under the squared distortion
measure and in the presence of noise with zero mean and vari-
ance σ2, has R(D) = 1/2 log[σ2/D].

For protein folding in the cell, elaborate regulatory ma-
chinery is provided by the endoplasmic reticulum (e.g., Bu-
drikis et al., 2014), implying the necessity of some comparison
between what is desired and what is produced. In general,
Maturana-like cognitive processes at every scale and level of
organization of the living state must have regulatory systems
that make similar comparisons. What we have argued in the
previous two sections can be restated in terms of the collapse
of the RDF with decreasing available metabolic free energy,
or rather, via convexity, as the sudden appearance of a large
average distortion D, as an analog to the usual order param-
eter in a physical system. That is, in the way magnetization
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disappears above a certain critical temperature in a ferromag-
net, the average distortion declines in a punctuated manner
in the presence of high enough rates of available metabolic
free energy, driven by the underlying groupoid structure, re-
membering that the simplest groupoid is the disjoint union of
groups, including a set consisting of a single group.

5 Discussion and Conclusions

The surprisingly direct correspondence between uncon-
strained information theory inequalities and the structure
of finite groups appears to be an example of a spectrum
of deeper relations between the dynamics of information
sources and sometimes hidden underlying biological symme-
tries. These can be simple groups, as with DBFE error-
minimization biological codes, or subtle ‘tilings’ akin to Ara-
bic decorations – cognitive groupoids. Indeed, Wallace (2011,
2012b) extends the argument to intrinsically disordered pro-
teins and their logic gates, via nonrigid molecular symme-
tries built on semidirect and wreath products of simpler
groups. The satisfactory operation of such gates will then
be a symmetry-constrained punctuated function of available
rates of metabolic free energy, although mathematical descrip-
tion of such intermediate scales is likely to be typically more
difficult than the two relatively simple limits described in this
paper.

Indeed, using the methods of Houghton (1975) it is possible
to define wreath products of groupoids, leading to a ‘nonrigid
theory of cognition’ – not mathematically trivial – that can
be extended further via ‘fuzzy’ generalizations likely to better
fit biological complexities (Wallace, 2014).

What seems clear is that information and symmetries, of
various sorts and subtleties, may have unexpected convolu-
tions and intertwinings, and these, in the context of the living
state, will in turn be driven by the availability of metabolic
free energy. Inability to provide adequate rates of that re-
source is likely to express itself in punctuated failure of physi-
ological function, recognizably analogous to spontaneous sym-
metry breaking in simple physical systems. This, via deteri-
oration of basic cellular mitochondrial energy mechanisms,
appears to be a critical component in the phenomenon of ag-
ing.

6 Mathematical appendix

6.1 Morse Theory

Morse Theory explores relations between analytic behavior of
a function – the location and character of its critical points
– and the underlying topology of the manifold on which the
function is defined. We are interested in a number of such
functions, for example information source uncertainty on a
parameter space and possible iterations involving parameter
manifolds determining critical behavior. An example might
be the sudden onset of a giant component. These can be re-
formulated from a Morse Theory perspective (Pettini, 2007).

The basic idea of Morse Theory is to examine an n-
dimensional manifold M as decomposed into level sets of some
function f : M → R where R is the set of real numbers. The
a-level set of f is defined as

f−1(a) = {x ∈M : f(x) = a},

the set of all points inM with f(x) = a. IfM is compact, then
the whole manifold can be decomposed into such slices in a
canonical fashion between two limits, defined by the minimum
and maximum of f on M . Let the part of M below a be
defined as

Ma = f−1(−∞, a] = {x ∈M : f(x) ≤ a}.

These sets describe the whole manifold as a varies between
the minimum and maximum of f .

Morse functions are defined as a particular set of smooth
functions f : M → R as follows. Suppose a function f has
a critical point xc, so that the derivative df(xc) = 0, with
critical value f(xc). Then, f is a Morse function if its critical
points are nondegenerate in the sense that the Hessian matrix
of second derivatives at xc, whose elements, in terms of local
coordinates are

Hi,j = ∂2f/∂xi∂xj ,

has rank n, which means that it has only nonzero eigenvalues,
so that there are no lines or surfaces of critical points and,
ultimately, critical points are isolated.

The index of the critical point is the number of negative
eigenvalues of H at xc.

A level set f−1(a) of f is called a critical level if a is a
critical value of f , that is, if there is at least one critical point
xc ∈ f−1(a).

Again following Pettini (2007), the essential results of
Morse Theory are:

1. If an interval [a, b] contains no critical values of f , then
the topology of f−1[a, v] does not change for any v ∈ (a, b].
Importantly, the result is valid even if f is not a Morse func-
tion, but only a smooth function.

2. If the interval [a, b] contains critical values, the topology
of f−1[a, v] changes in a manner determined by the properties
of the matrix H at the critical points.

3. If f : M → R is a Morse function, the set of all the
critical points of f is a discrete subset of M , i.e., critical
points are isolated. This is Sard’s Theorem.

4. If f : M → R is a Morse function, with M compact, then
on a finite interval [a, b] ⊂ R, there is only a finite number of
critical points p of f such that f(p) ∈ [a, b]. The set of critical
values of f is a discrete set of R.

5. For any differentiable manifold M , the set of Morse
functions on M is an open dense set in the set of real functions
of M of differentiability class r for 0 ≤ r ≤ ∞.

6. Some topological invariants of M , that is, quantities that
are the same for all the manifolds that have the same topology
as M , can be estimated and sometimes computed exactly once
all the critical points of f are known: let the Morse numbers
µi(i = 0, ...,m) of a function f on M be the number of critical
points of f of index i, (the number of negative eigenvalues of
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H). The Euler characteristic of the complicated manifold M
can be expressed as the alternating sum of the Morse numbers
of any Morse function on M ,

χ =

m∑
i=1

(−1)iµi.

The Euler characteristic reduces, in the case of a simple poly-
hedron, to

χ = V − E + F

where V,E, and F are the numbers of vertices, edges, and
faces in the polyhedron.

7. Another important theorem states that, if the interval
[a, b] contains a critical value of f with a single critical point
xc, then the topology of the set Mb defined above differs from
that of Ma in a way which is determined by the index, i, of
the critical point. Then Mb is homeomorphic to the manifold
obtained from attaching to Ma an i-handle, i.e., the direct
product of an i-disk and an (m− i)-disk.

Pettini (2007) and Matsumoto (2002) contain details and
further references.

6.2 Groupoids

A groupoid, G, is defined by a base set A upon which some
mapping – a morphism – can be defined. Note that not
all possible pairs of states (aj , ak) in the base set A can be
connected by such a morphism. Those that can define the
groupoid element, a morphism g = (aj , ak) having the natu-
ral inverse g−1 = (ak, aj). Given such a pairing, it is possi-
ble to define ‘natural’ end-point maps α(g) = aj , β(g) = ak
from the set of morphisms G into A, and a formally as-
sociative product in the groupoid g1g2 provided α(g1g2) =
α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then, the prod-
uct is defined, and associative, (g1g2)g3 = g1(g2g3). In addi-
tion, there are natural left and right identity elements λg, ρg
such that λgg = g = gρg.

An orbit of the groupoid G over A is an equivalence class
for the relation aj ∼ Gak if and only if there is a groupoid
element g with α(g) = aj and β(g) = ak. A groupoid is called
transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids in that there is a natural
decomposition of the base space of a general groupoid into
orbits. Over each orbit there is a transitive groupoid, and
the disjoint union of these transitive groupoids is the original
groupoid. Conversely, the disjoint union of groupoids is itself
a groupoid.

The isotropy group of a ∈ X consists of those g in G with
α(g) = a = β(g). These groups prove fundamental to classi-
fying groupoids.

If G is any groupoid over A, the map (α, β) : G→ A×A is
a morphism from G to the pair groupoid of A. The image of
(α, β) is the orbit equivalence relation ∼ G, and the functional
kernel is the union of the isotropy groups. If f : X → Y is a
function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X :
f(x1) = f(x2)] defines an equivalence relation.

Groupoids may have additional structure. For example, a
groupoid G is a topological groupoid over a base space X if
G and X are topological spaces and α, β and multiplication
are continuous maps.

In essence, a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection to a base
point by a meaningful path of an information source dual to
a cognitive process.

The morphism (α, β) suggests another way of looking at
groupoids. A groupoid over A identifies not only which ele-
ments of A are equivalent to one another (isomorphic), but it
also parameterizes the different ways (isomorphisms) in which
two elements can be equivalent, i.e., in our context, all possible
information sources dual to some cognitive process. Given the
information theoretic characterization of cognition presented
above, this produces a full modular cognitive network in a
highly natural manner.

6.3 The Rate Distortion Theorem

Suppose a sequence of signals is generated by a biological in-
formation source Y having output yn = y1, y2, .... This is ‘dig-
itized’ in terms of the observed behavior of the system with
which it communicates, for example a sequence of ‘observed
behaviors’ bn = b1, b2, .... Assume each bn is then determin-
istically retranslated back into a reproduction of the original
biological signal, bn → ŷn = ŷ1, ŷ2, ....

Define a distortion measure d(y, ŷ) comparing the orig-
inal to the retranslated path. Many distortion measures
are possible. The Hamming distortion is defined simply as
d(y, ŷ) = 1, y 6= ŷ, d(y, ŷ) = 0, y = ŷ.

For continuous variates, the squared error distortion mea-
sure is just d(y, ŷ) = (y − ŷ)2.

The distortion between paths yn and ŷn is defined as
d(yn, ŷn) ≡ 1

n

∑n
j=1 d(yj , ŷj).

A remarkable characteristic of the Rate Distortion Theorem
is that the basic result is independent of the exact distortion
measure chosen (Cover and Thomas 2006).

Suppose that with each path yn and bn-path retransla-
tion into the y-language, denoted ŷn, there are associated
individual, joint, and conditional probability distributions
p(yn), p(ŷn), p(yn, ŷn), p(yn|ŷn).

The average distortion is defined as

D ≡
∑
yn

p(yn)d(yn, ŷn) (11)

It is possible to define the information transmitted from the
Y to the Ŷ process using the Shannon source uncertainty of
the strings:

I(Y, Ŷ ) ≡ H(Y )−H(Y |Ŷ ) = H(Y ) +H(Ŷ )−H(Y, Ŷ ) (12)

where H(..., ...) is the standard joint, and H(...|...) the condi-
tional, Shannon uncertainties (Cover and Thomas 2006).

If there is no uncertainty in Y given the retranslation Ŷ ,
then no information is lost, and the systems are in perfect
synchrony.
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In general, of course, this will not be true.
The rate distortion function R(D) for a source Y with a

distortion measure d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);

∑
(y,ŷ)

p(y)p(y|ŷ)d(y,ŷ)≤D
I(Y, Ŷ ) (13)

The minimization is over all conditional distributions p(y|ŷ)
for which the joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies
the average distortion constraint (i.e., average distortion ≤
D).

The Rate Distortion Theorem states that R(D) is the min-
imum necessary rate of information transmission which en-
sures the communication between the biological vesicles does
not exceed average distortion D. Thus R(D) defines a mini-
mum necessary channel capacity. Cover and Thomas (2006)
or Dembo and Zeitouni (1998) provide details. The rate dis-
tortion function has been calculated for a number of systems,
often using Lagrange multiplier or Khun-Tucker optimization
methods.

Cover and Thomas (2006, Lemma 13.4.1) show that R(D)
is necessarily a decreasing convex function of D for any rea-
sonable definition of distortion. That is, R(D) is always a
reverse J-shaped curve.

For the standard Gaussian channel having noise with zero
mean and variance σ2, using the squared distortion measure,

R(D) = 1/2 log[σ2/D], 0 ≤ D ≤ σ2

R(D) = 0, D > σ2 (14)

Recall the relation between information source uncertainty
and channel capacity (Cover and Thomas 2006):

H[X] ≤ C (15)

where H is the uncertainty of the source X and C the channel
capacity. Remember also that

C ≡ max
P (X)

I(X|Y ) (16)

where P (X) is chosen so as to maximize the rate of informa-
tion transmission along a channel Y .
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