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Abstract

Model repositories such as the BioModels Database or the CellML Model Repository are
frequently accessed to retrieve computational models describing biological systems. However,
the current designs of these databases limit the types of supported queries, and many data
in these repositories cannot easily be accessed. Computational methods for model retrieval
cannot be applied. In this paper we present a storage concept that meets this challenge. It
grounds on a graph database, reflects the models’ structure, incorporates semantic annotations
and experiment descriptions, and ultimately connects different types of model-related data.
The connections between heterogeneous model-related data and bio-ontologies enable efficient
search via biological facts and grant access to new model features such as network structure.
The introduced concept notably improves the access of computational models and associated
simulations in a model repository. This has positive effects on tasks such as model search,
retrieval, ranking, matching, filtering etc. We exemplify how CellML- and SBML-encoded
models can be maintained in one database, how these models can be linked via annotations,
and queried.
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Introduction

Model repositories such as the BioModels Database (Li et al, [2010) and the CellML model repository (Yu
et al, [2011) offer to the community valuable, curated, and resuable models describing biological systems.
They enable researchers to study biological systems in the computer without necessarily implementing the
models from scratch, thereby saving time, effort and money. In addition, curation has a positive effect
on the quality of models used in modeling projects, because errors in the model encoding are more likely
to be detected, they can be resolved and documented. Finally, model repositories use standard formats,
e.g. the Systems Biology Markup Language (SBML) (Hucka et all, 2010) or CellML (Lloyd et al, |2004)), to
distribute ready-for-reuse models that can immediately be loaded in a large number of computational tools
for simulation, analysis, visualization, or comparison (Hucka et al, [2011)).

Each model describes certain aspects of a system. These aspects may be of functional, behavioral or
structural nature (Kntipfer et al,|2013)) and need to be covered in the description of the model. For example,
the different models of the cell cycle in the BioModels Database contain biological entities and reactions
that together characterize the cell division cycle. Semantic annotations relate model entities to external
resources describing the underlying biology. A model of the cell cycle may be annotated with a term from
Gene Ontology (GO) (Botstein et all [2000) that defines the cell cycle biologically, e. g.,

"The progression of biochemical and morphological phases and events that occur in a cell during
successive cell replication or nuclear replication events. Canonically, the cell cycle comprises
the replication and segregation of genetic material followed by the division of the cell, but in
endocycles or syncytial cells nuclear replication or nuclear division may not be followed by cell
division." (Gene Ontology, GO:0007049)

The SBML representation of this model is only equipped with the GO identifier (here: GO:0007049). This
identifier, however, can be resolved computationally to access the full information from the Gene Ontology,
making a semantic-based comparison of models feasible.

In the past years, the focus shifted from exchanging pure model code towards exchanging models and
model-related information. As a consequence, we understand better what a model is about, the rationale
behind building it, and ultimately how to reuse it. The necessary information to reuse a model is defined
in the Minimum Information guideline for the annotation of models, MIRIAM (Le Novére et all 2005).
MIRIAM requires each biological entity in a model to be defined; links to the publication describing a model
(denoted as reference publication); and instructions on how to use a model to reproduce a published result.
In the following, we refer to these and other model-related information as meta-data.

Before the era of semantic knowledge integration and ontologies, model code contained only few meta-
data. Thus models could be kept in file systems and relational data tables. This approach is unsuitable
for today’s models, because their meta-data is heterogeneous in structure and content. Consequently, it
is difficult to map the meta-data onto relational tables with homogenous and pre-defined properties. This
(technical) limitation results in many types of model-related data which are not extracted from the model.
The information they contain is not accessible and thus lost for computational processing, e.g., when de-
termining model similarities. Examples for neglected meta-data include the structure of the model (Henkel
et al, 2012), model versions (Waltemath et all 2013a)), and associated simulation setups (Waltemath et al]
2013b)). Given the efforts made to encode the biological knowledge in bio-ontologies, and then to link model
entities with semantic information, the current situation is indeed unsatisfying. Often, one consequence of
inaccessible meta-data is that the modeling results are not reproducible, because the link from model code
to simulation experiment is missing (Waltemath et al, 2011b).

In this manuscript we propose the concept of graph databases for model storage and retrieval. Graph
databases support heterogenuous data structures. They furthermore enable a flexible integration of model-
related meta-data. We have focused our studies on models in SBML and CellML formats, associated simu-
lation setups in SED-ML format, and semantic annotations from bio-ontologies. A key feature of our work
is the explicit linking, which allows researchers to postulate queries across different data formats. The in-
tegration of model-related data, simulation experiments, semantic annotations and structure information
supports modelers and biologists in finding models and reproducing scientific findings that are relevant to
their own work. It fosters the exploration of published models and increases model reuse.
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Results

Model reuse can be improved if models and associated data are considered together. In this paper we
present, a novel storage concept that tightly links model code with model-related data. We focus on the data
requested by two Minimum Information Guidelines: MIRIAM for requested information about models and
MIASE , the Minimum Information About a Simulation Experiment (Waltemath et al, 2011al), for requested
information about simulation setups. We store and link all data in a graph-database, where nodes contain
the data, and edges represent the links between the data. The explicit linking of model-related data paves
the way for new types of queries about models, e.g., “Return experiments observing entities representing
a "‘m-phase inducer phosphatase"’” and acting as modifier in a reaction”. This query runs on the different
types of data that need to be linked to get the full picture of a model: model code (identifying all models
that contain entity X); semantic annotations (identifying all entities X that are annotated with a term of a
bio-ontology that is semantically similar to “m-phase inducer phosphatase”); the model’s network structure
(filtering those models where X is a modifier in a reaction); and finally associated simulation experiments
(returning for each relevant model the possible simulations defined for it).

Considered types of data and standard formats

Several types of data are relevant for a meaningful description of computational models in biology (Chelliah
et al, 2009; Kniipfer et all 2013; [Waltemath et all, 2013b). Specifically, [Kniipfer et al| (2013]) distinguish
data for the extrinsic and intrinsic description of model function, behavior and structure. Many of these
aspects have already been described in standard formats, including model structure, simulation descriptions,
simulation results and semantic annotations. The development of standards is a continuous process, and
their uptake by software tools and users progresses at different pace. For example, while many journals
today recommend, or require, the provision of model code during submission (e.g., in SBML), there is no
such recommendation to submit also a graphical representation in the Systems Biology Graphical Notations
(SBGN) (Le Noveére et al, [2009), nor to submit the simulation description (in SED-ML). Some formats
are specified, but so far only used by a small number of software tools, e.g. the Systems Biology Result
Markup Language (SBRML) (Dada et all [2010). However, repeated calls for reproducibility of modeling
results have been published in the past years. The development of standards fosters both, the submission of
model-related data to model repositories such as BioModels Database and the distribution of archives such
as the Research Objects Hettne et al| (2013) or the recently launched COMBINE Archive (Waltemath et al,
2013b). In the following, we will only consider types of data that have been formally specified and for which
curated data is available. These are basically the model code, simulation descriptions, semantic annotations
and cross-references, and the mathematical characterization of models (Waltemath et al, 2013b).

Model code in public model repositories: Modelers use predominantly native programming languages,
most commonly C or C++; script languages such as MATLAB or Python; and markup languages (XML)
to describe their models. Program code and scripts, in general, are hard to understand and share. An XML
representation reduces the obstacles to sharing data among diverse applications by providing a common
format for expressing data structure and content (Seligman and Roenthal, |2001). XML formats for the
standardized representation of models are SBML, CellML or NeuroML (Gleeson et al, 2010). They all focus
on the encoding of the models’ structure, for example the interactions in a pathway, and describe sets of
entities and the processes between them. [Hucka et al| (2003) highlight the advantages of markup languages,
in this case SBML, for model representations: Model definition becomes straight forward, and a tool chain
is available.

Once in standard format, models can be published and shared through open repositories, and they can
be easily used with a variety of simulation tools. BioModels Database guarantees persistence and long-
term availability of ready-to-run models. To date it contains 490 curated modelsEI and several thousands
of automatically generated pathway models which have been generated from the KEGG database (Biichel
et al, [2013)). Many simulation tools read and write models in SBML (Hucka et all,2011)).

Irelease 26 of BioModels Database as of November 4th 2013
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Simulation setups: While models are commonly shared through repositories, simulation experiments
are not yet part of the standardization workflow (Cooper et all |2014). However, the ability to represent
increasingly complex biological phenomena requires models to be instantiated using different conditions, and
these conditions must be formally described together with the model itself. For example, in pharmacometrics,
the calculation of a parametrization of an individualized model is itself a complex procedure that requires
the development of further standards (Swat et al, 2013).

To ensure the reproducibility of simulation results, the Simulation Experiment Description Markup Lan-
guage (SED-ML) (Waltemath et all [2011b) is an XML-based format that encodes the necessary information
to reproduce a particular result. SED-ML Level 1 Version 1 (Waltemath et all [2011c) enables the repro-
duction of time course simulations. After the recent update to Level 1 Version 2, SED-ML now covers more
types of experiments, including pulse experiments and parameter scans (Bergmann et al} 2013). For selected
models, both BioModels Database and the CellML Model Repository recently started to provide SED-ML
files. Surprisingly though, these SED-ML files are not linked with the models inside the database. Therefore,
the information about applicable simulation experiments, for example, cannot be derived for model retrieval,
comparison or similar tasks that potentially improve model reuse. This is, however, desired by researchers
who wish to define generic experimental setups, so-called virtual experiments (Cooper et all,2014]), and link
these to sets of models for comparison, validation and functional curation |Cooper et al| (2011)). Hence these
types of meta-data are relevant for future database design decisions.

Semantic annotations and cross-references: Semantic annotations link model entities to terms in
bio-ontologies. Ontologies, in general, are defined as specifications of a conceptualization (Gruber et al,
1993)). Bio-ontologies, e.g. Gene Ontology, then are ontologies with a focus on biological terms. Many cross-
references between ontologies are provided in BioPortal (Noy et al, 2009). Models in SBML and CellML
use bio-ontologies to encode semantic annotations as RDF triples (Lassila et all [1998). For example, an
RDF triple could be added to the SBML species "X" and link it to the ontology term "ATP" in the ChEBI
database for chemical interactions (Degtyarenko et al,2008)) (ID "CHEBI:15422"). So-called qualifiers specify
the relation between entity and ontology term (Juty et al,|2012). A model entity could be ATP or have a part
ATP. The sum of semantic annotations in a model describes its biological and mathematical background. In
BioModels Database, models carry between three and 800 annotations, but on average 71 annotations, per
model (Alm et al, [2014).

A graph database for simulation models and associated data

If models encode networks - why do not we store them as graphs rather than using a relational approach? We
found graph databases to be the best suitable concept to store models, because: (1) Many models in public
databases encode networks that can be represented as graphs. (2) No unified schema exists for models and
meta-data, making it difficult to define a relational database schema. (3) The highly linked models, entities
within models, and meta-data are difficult to represent in a table-like relational database management system
such as MySQL.

Traditionally, relational databases were developed for homogeneous, structured data, e.g. numerical
data sets. Models, however, take various size and structure. SBML models in BioModels Database, for
example, import data structures from external standards and link to entries in bio-ontologies. Among
the external standards are vCard, electronic businesscards that identify the model author and curators
(http://www.w3.org/ TR /vcard-rdf/), or Dublin Core, a vocabulary mainly used to describe web resources
(http://dublincore.org/). Some models are associated with simulation descriptions or graphical represen-
tations. Finding a relational representation of all these links and at the same time building an efficient
database is not possible for such heterogeneous structures. Furthermore, relational databases are not de-
signed to store semi-structured documents efficiently (Robinson et al, |2013). A core concept of relational
databases is a fixed schema which defines the structure of the data they contain. Semi-structured documents
(Bunemanl, [1997), however, have only loose constraints on the structure of the data. All XML formats are
semi-structured, and so are SBML, CellML and SED-ML. Architectural choices in current model repositories
date back to times when only a limited number of alternatives existed, standardization of external knowledge
only began, and model files were only scarcely associated with meta-data. Since then the databases have
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grown and functionality has been extended. The focus has shifted from model code to "model-related data".
Interestingly, only a few systems’ architectures have been revised.

NoSQL approaches, together with semantic web applications, more recently gained popularity in the Life
Sciences (Splendiani et all, 2011), e.g., as Key-Value Stores, BigTable (Ghemawat et al, 2003), document
databases, triple stores, or graph databases (Angles and Gutierrezl 2008). We will here focus on the graph
database Neo4J (Vicknair et all |2010)). It is based on the concept of describing data in terms of nodes, edges
and attributes. Nodes are connected via directed edges (relations) of certain types. Both, nodes and edges
can then hold attributes. The Neo4J architecture follows the fundamental properties of databases, i.e. the
ACID principles (atomicity, consistency, isolation, durability).

For demonstration purposes, we use here one of the early models in the BioModels Database, namely
Tyson’s model on cell division (Tyson| [1991). This model is fairly small, exists as SBML and CellML
representation, and it is available from both BioModels Databasd?| and the CellML Model RepositoryP}

Database design and data import

All data needs to be transformed into a representation of nodes and edges during import. The entry point
for each data item in our database is a root node, which we call document root node. Attached to this node
may either be one model (e.g. an SBML node), or a data item that is related to the model (e.g. a SED-ML
node). The entry point for each ontology in our database is an ontology root node.

More specifically, SBML models are represented by a model node which serves as the anchor for all
related model entities (Figure 1, left part). The model node stores the model’s name (cyan in Figure 1) and
id. Attached to the model node are annotation nodes, including the reference publication (purple and grey).
The model node is also connected to reaction, species and compartment nodes to reflect the underlying
structures in the biological network. The example in Figure 1 shows a subset of nodes and edges for the
Tyson model. All information about these nodes is directly extracted from the model’s SBML representation.
The figure displays three species nodes (in green), one reaction node (in red) and one compartment node (in
orange). The edge between the species node pM (a complex of phosphorylated Cyclin and phosphorylated
cdc2) and the compartment node Cell represents the fact that the species pM is located in the compartment
Cell. Because we have qualified relations in the SBML model, we can even be more specific and store the
information that pM is linked to Cell via the relation isContainedIn. Further model entities are stored
analogously, i.e. encoded parameters, events and other SBML concepts. Finally, the semantic annotations
are extracted from the SBML model and stored. The use of graph databases makes this mapping intuitive:
Nodes representing some model entity are linked to nodes representing a particular term in a bio-ontology.
The edge specifies that relation. An additional node is created and connected each time a new URI is
detected during model import. For our example, the species node pM is related via hasPart to the InterPro
term Diphthine synthase (in grey). Taken together, the sum of extracted information provides a detailed
representation of the models’ network structure and all annotations.

CellML models represent networks of connections between so-called components. A component con-
tains variables and mathematical relationships that manipulate those variables (Cuellar et al, [2003). This is
a different, more abstract approach to representing reaction networks, and one of the reasons why an inte-
grated storage of SBML and CellML models on the XML level is so difficult (Kohn and Strombéck, 2008).
Examples for CellML components are physical compartments, events, species, or other convenient modeling
abstractions. As for SBML models, the entry point is a document node that is connected to a model node
and serves as an anchor for the component nodes. Each model entity can be related to a semantic annota-
tion. Figure 1 (right side) shows the representation of the CellML encoding of the Tyson model. Attached
to the model node are the component nodes, for example C2, Cp, or environment. Each component holds a
number of variables. These variables are mapped to corresponding variables of connected components, e.g.
the variable time in component node C2 is connected to the variable time in the environment node. Please
note here that the model node links to the identical publication node as the SBML model. If existing, an-
notations are extracted from the CellML model and mapped to the database using the same URI scheme as
with SBML models. While CellML models today are only sparsely annotated, several projects work towards

2http://www.ebi.ac.uk/biomodels-main/BIOMDO0O00000005
3http://models.cellml.org/exposure/9bff394be3ade829feed94151b3d68b3/tyson_1991.cellml/view

Peer] PrePrints | http://dx.doi.org/10.7287/peerj.preprints.376v2 | CC-BY 4.0 Open Access | rec: 6 Oct 2014, publ: 6 Oct 2014


http://www.ebi.ac.uk/biomodels-main/BIOMD0000000005
http://models.cellml.org/exposure/9bff394be3ade829feed94151b3d68b3/tyson_1991.cellml/view

Tyson 1991 model (SBML), graph database schema

&ML

isD,
- "o
©ag,
Yy

“Kegg Pathway " ,
 sce04111

W

| Document |

BGN )

Modeling the cell division cycle: cdc2 and cyclin interactions, John J. Tyson, 1991
SBGN Process Description

poyelin | ——@—> @

p-cyclin

o ————>  cdc2k
A

Iy

totalcdc2 ‘—OIII % N W

J;V

p-cyclin

cdezp |« cdo2k-P

O« B cyclin < (=] [%]

is_connected

y N
[ o X

Tyson 1991 model (CellML), graph database schema

Al

i,

"oy
;ni‘.

| Document |

‘ isDescribedBy -

environment ) S-connected £ oy

asProduct

- asReactant isContainedin |

_r .
) SBO:OODUG4; ‘/GO:DUOSBZS')

is_connected

0

is_mapped_to

hasPart

1 isVersionOf
isVersionOf

L .
/Interpro:
IPRO06670

EC-Code: -
YR

'Uniprot:Po4551 )

Figure 1: Representations of the Tyson 1991 model. The SBGN (top) representation shows the process
description for the Tyson 1991 model. The graph database representation for the SBML encoded model is
shown left, for CellML right. The document node is colored in yellow, model nodes in blue, annotation
nodes in silver, and publication nodes in purple. For the SBML representation, reaction nodes are red,
species nodes are dark green and compartment nodes are brown. For the CellML representation, component
nodes are light green and variables are light red.

fully annotated CellML models (Wimalaratne et all, 2009; |Gennari et al, 2011; de Bono et al, 2011). Our
database is updated accordingly.

SED-ML descriptions specify simulation setups for models. They thereby link models, simulation
algorithms, and output definitions (plots). A SED-ML description also explicitly declares the observed
variables. In our design, the SEDML node serves as an anchor for one experiment. The Modelreference node
links the experiment to all Model nodes used in the simulation. Figure 2 exemplifies how a model reference
links one SED-ML description to an SBML and a CellML model. The algorithm used for the simulation is
described by a term from the Kinetic Simulation Algorithm Ontology (KiSAO) (Courtot et al, [2011). KiSAO
terms are imported into the database as terms from any other bio-ontology. A subset of KiSAO terms is
depicted in Figure 2.

As aforementioned, bio-ontologies are integrated into the graph database to cover the semantic annota-
tions in model representations and simulation descriptions. For example, model entities are annotated with
domain knowledge from GO, ChEBI, UniProt; simulation descriptions contain links to simulation algorithms
in KiSAQ. Most bio-ontologies are available in the Web Ontology Language (OWL), which is a standard
format for the representation of semantic information on the web. We parse these ontologies and add all
concepts and relations as nodes and edges, respectively. Cross references are currently not mapped to the
database, because these links cannot easily be determined in a reliable and consistent manner.

Table [I] summarizes the data types in our database and shows the number and size of the documents.
Integration of further data resources is possible. For example, we provide an importer for ontologies encoded
in OWL. However, the post-processing to link ontologies with models and simulation experiments needs to
be done manually. Adding data encoded in SBRML (Dada et all [2010) or NuMI[] would require additional
importers and again a manual post-processing.

“http://code.google.com/p/numl/
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253

Data domain Documents Nodes H Ontology Nodes Domain references

SBML 462 91488 KiSAO 261 38
CellML 841 143521 SBO 606 8839
SED-ML 38 3352 GO 39787 7555

Table 1: Left: Number of files and stored nodes for each data domain. Right: Number of nodes for each
stored ontology. The domain references state the number of links from a concept of an Ontology into a data
domain. Here, all KiSAO concepts are linked to the domain of SED-ML while all SBO and GO concepts are
referred to from the CellML or SBML domain.

Linking model-related data

The main advantage of the graph-based concept described in the previous section is the possibility to define
flexible links between the data domains. In concordance with previous considerations (Henkel et all, [2012;
Waltemath et all, 2013b)), we incorporate the following types of links:

(a) links between annotations (in SBML, CellML and SED-ML) and ontology entries,
(b) links between models (in SBML or CellML format) and SED-ML,

(c) links between model entities and SED-ML variables, and

(d) links between model entities from different model representation formats.

Figure 2 shows all existing links for the Tyson model. The database provides two encodings of the model,
one in SBML and one in CellML format. Both representations are outlined on the left hand side of the figure.
The first type of link is between model entities and ontology concepts (a). Here we only consider existing
annotations. For each annotation in a model we add an explicit link to the data entry in the referenced
bio-ontology. For example, based on the SBO annotation in the SBML model we build an additional edge
between the node representing that annotation in SBML and the entry in SBO itself. Each concept (from
an ontology) is only stored once but can be referred to by multiple model entities.

Another type of link is that between a model and a simulation description (b). When importing a SED-
ML file into the database, we resolve the model references and check if those models are contained in our
database. If this is the case, then additional edges are introduced for each model reference, between one
model node and one SED-ML Modelreference node at a time. In the example in Figure 2, the original SED-
ML file contained two model references, pointing to the Tyson 1991 model in SBML and CellML format,
respectively. Thus we introduced two new edges in our database.

Furthermore, the variables of a DataGenerator in a SED-ML file may point to a specific entity in the
referenced model. This pointer is used to identify the entity under observation, or for pre-processing before
simulation. While we do not store the specific processing of a model entity, we keep the information if a
model entity is part of a simulation. Consequently, a third type of link in our database is between the
SED-ML Datagenerator node and a model entity (c). At the time of import, the SED-ML file is analyzed
and the referenced species of the corresponding model is explicitly linked. Also, we flag species that are
altered during SED-ML pre-processing (e.g., if the concentration of a species is changed). The links (a) —
(c) can be established with information given in the documents. We regard them explicit links.

In addition, we determine implicit links between models of different representation formats (d). As we
showed earlier, two models may link to the same publication (Pubmed:1831270 in Figure 2). Our system
concludes that, if two models share a publication, the entities of that model which are equally named share
the same role in both model files. Even if the names are not fully identical but highly similar (e.g. in
terms of Levenshtein Distance or stemming) it can be assumed that the entities are, in fact, identical. The
confidence can be increased further if also the annotations match. For each such pair of entities, we add an
additional edge to the database. Figure 2 shows the explicit connection of the entities C2 in the SBML and
C2 in the CellML model. Both entities are linked because they have the same name, and they stem from the
same reference publication.
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Figure 2: Linking models, simulation descriptions and ontologies. Linking between different data
domains: simulation experiment descriptions and models (dashed line); defined observation variables and
model entities (dotted line); annotated model entities and simulation experiment descriptions (dashed-dotted
line); and model entities of different representation formats (double dotted-dashed line). The SBO example
is explained in detail in the Implementation Section. The references to the simulation algorithm within a
simulation experiment description are mapped to the corresponding entity in KiSAO.
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Discussion

Advantages of implementing a graph-based concept

The main advantages of a graph-based concept for model storage are easy integration of heterogeneous
resources; extensibility with further data resources; and improved model search.

Realization of explicit linking between heterogeneous resources. Currently, models and model-
related data are only sparesly linked in the, predominantly relational, model repositories. Relational
databases store data in tables and use the concept of primary and foreign keys to relate tables. Histor-
ically, they were designed for structured, homogenous data. However, they do not perform well on highly
connected, semi-structured and heterogenous XML data. In a graph database, the integration of hetero-
geneous resources is straight forward. The concept of edges allows arbitrary connections to be defined by
the creators of the database at any time. Particularly helpful for later model comparison are edges that
connect nodes across model representation formats. For example, our database contains two representations
of Tyson’s 1991 cell cycle model, in SBML and in CellML, respectively. This link now becomes exploitable,
because both model nodes share one publication node (PubMed:1831270). It is also useful to represent
relations between a model and a simulation setup. Storing this information in the graph database allows
modelers to quickly retrieve all models associated with a simulation experiment, and vice versa. For example,
our graph database contains the information that there exists a SED-ML file which simulates and observes
the change in concentration in CP in both encodings of the Tyson 1991 model (SBML and CellML) and then
compares the simulation outcome (Figure 2). Finally, our database establishes links from model annotations
into bio-ontologies. For example, the SBML model in Figure 2 contains the entity Cell which is annotated
with a term from SBO. We can thus easily retrieve all models that are annotated with a particular ontology
term. This is, for example, helpful in the classification of models (Alm et all 2014).

Extensibility of database schema. Our graph database is schema optional. New data resources can
efficiently be integrated and the database thus easily be extended. Specifically, we plan to integrate links
to result data (in NuML format) and to Wet Lab descriptions once these exist in standard format. Data in
NuML format could be linked to model entities, for example, when storing different parametrizations of a
particular model.

Possibility to incorporate model structure. As current repositories do not represent the structure
of a model, they cannot answer questions such as "Which model in the database contains the species that
modifies most reactions?". To identify a species as the modifier of a reaction, this information must exist
in the database. Figure 1 shows how we keep the information on the model structure: For each reaction in
the model we map all reactants, modifier and products. Now a user can search for models that fulfill the
following two conditions: (1) the species should only serve as a modifier in any of the model’s reactions,
and (2) only the topmost species per model should be considered. Our graph database retrieves the model
"Schaber2012 - Hog pathway in yeast" El, because the species Hog1PPActive occurs in ten reactions and only
acts as a modifier (Query 1).

MATCH (species:SBML_SPECIES)-[isMod:IS_MODIFIER]->()
WHERE NOT ((species)-[:IS_REACTANT]->() OR (species)-[:IS_PRODUCT]->())
WITH  species, count(isMod) AS numOfMod ORDER BY numOfMod DESC LIMIT 1
MATCH species-[:BELONGS_TO]->model
WHERE (model:SBML_MODEL)
RETURN model.NAME AS Model, species.NAME as Species, numOfMod

Query 1: Return the model with the most species acting only as a modifier.

Result 1: The model "Schaber2012 - Hog pathway in yeast" having the species HoglPPActive which is acting as a modifier

in ten reactions.

Graph databases offer further exciting applications, including the structure-based comparison of models.
Combinations of nodes and edges form sub-networks which can for the first time be compared to each other
using graph matching techniques. Once specific algorithms to map sub-models and identify suitable interfaces
for automatized model coupling are in place, it will be possible to integrate them with our ranked retrieval
system (Henkel et al, [2010). The Methods section contains additional examples for novel queries.

Soriginally from BioModels Database, http://www.ebi.ac.uk/biomodels-main/BIOMDO000000429
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Exploiting links to associated virtual experiments

Another type of query that cannot, as of now, be answered by current model repositories is: "Which
simulation experiments for SBML and CellML models study the change of concentration in 'm- phase inducer
phosphatase’?". To answer this question, it is not sufficient to query the model only. The repository must
also support the retrieval of simulation experiments. In few cases, SED-ML files are provided in open
repositories, enabling users to reproduce one or more figures of the reference publication. However, it is as
of now not possible to include the SED-ML file in queries. Consequently, one cannot ask questions about
the relation of a SED-ML file and a model. For example, Novak’s 1997 cell cycle model can be run with two
different setups, either reproducing Figure 2a or Figure 2b of Novak and Tyson|(1997). Our approach stores
the links between simulation setups and models and thus knows which experiments are applicable to which
models (Query 2). When SED-ML descriptions are defined as templates for virtual experiments, and thus are
applicable to classes of models (Cooper et al, |2014)), it is also interesting — and now indeed possible — to ask
the question: "Which models use this particular experiment description?". Furthermore, the links between
SED-ML elements and KiSAO allow us to define restrictions on the SED-ML files we want to consider in a
search result, e. g., to retrieve only models that can actually be simulated with a given simulation algorithm.
With our system, the query "Which CellML encoded models can be simulated using a Livermore Solver?"
can be answered (Query 3). One can also imagine to restrict results to changes in concentrations of a certain
parameter.

MATCH (m:SBML_MODEL)-[:REFERENCES_SIMULATION_MODEL]-ref -[:BELONGS_TO*2]->(sed:DOCUMENT)
WHERE m.NAME=’Novak1997 - Cell Cycle’
RETURN m.NAME AS Model, m.ID as ModellD, ref.MODELSOURCE as ModelSource, sed.FILENAME as SEDMLFile

Query 2: Return all simulations that can be applied to the model "Novak1997 - Cell Cycle"
Result 2: The requested model can be run by two simulations, reproducing Figure 2a and 2b by [Novak and Tyson| (1997)

MATCH (sed:DOCUMENT)<-[:BELONGS_TO*2]-(sim:SEDML_SIMULATION)-[:SIMULATES]->

(ref : SEDML_MODELREFERENCE) - [: REFERENCES_SIMULATION_MODEL]->m
WHERE (sim.SIMKISAO=’KISAD:0000019’) AND filter(lable in labels(m) where lable =’CELLML_MODEL?’)
RETURN m.NAME, sed.FILENAME

Query 3: Return only CellML models that can be simulated using a Livermore Solver (KISAO:0000019).
Result 3: The CellML encoded "Tyson 1991" model and the corresponding SED-ML file.

START res=node:annotationIndex (’RESOURCETEXT:(m-phase inducer phosphatase)’)
MATCH res<-[rel:is]-(a:ANNOTATION) -->(s:SBHL_SPECIES)<-[:0BSERVES]-o-[:BELONGS_TO%]->(doc:DOCUNENT)
WITH  doc,res,s,o
MATCH ()<-[:IS_MODIFIER]-s-[:BELONGS_TO]->m
RETURN DISTINCT doc.FILENAME AS SEDML, collect(distinct m.NAME) AS Model,
collect(distinct res.URI) AS Resource, collect(distinct s.NAME) AS Species, collect(distinct o.TARGET) AS Target

Query 4: Return simulation descriptions observing a particular species that plays the role of a modifier or reaction,

respectively. The observed species should be annotated as "m-phase inducer phosphatase" using the qualifier is.

Result 4: The result is shown and explained in Figure 3.

Strikingly, it is also possible to derive information from the graph database by combining the different
data sets. Query 4 shows such a complex example. It combines index and structure information and spans
data sets of ontology, models and simulation experiments. It retrieves simulation experiment description and
corresponding models where a species is marked for observation by the simulation description. Additionally,
the observed species must be annotated with a resource that is related to the phrase "m-phase inducer
phosphatase" and the species must play the role of a modifier. The result is shown in Figure 3. To our
knowledge this is the first time a system can answer queries spanned over different data sets and combining
them with an index look-up.

Statistics

Another interesting application for our graph database is to generate statistics about the integrated data.
For example, we are interested in the most frequently used annotations for models in BioModels Database
(Query 5) As the SBO is completely integrated, we find that the term SBO:0000009 is the most frequently
used term for annotation. We can also compute the number of annotations using SBO:0000009 or one of
its 125 children (Query 6). Finally, the system can also derive statistical values. For example, the average
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number of annotations per model, as well as the minimum, maximum, and the standard derivation, can
be computed for the set of SBML and CellML models available from BioModels Database and the CellML
Model Repository (Query 7).

MATCH (r:RESOURCE)-[qualifier:BELONGS_TD]->()
WITH r, count(qualifier) AS AnnotationCount ORDER BY AnnotationCount DESC LIMIT 3
RETURN r.URI as Annotation, AnnotationCount

Query 5: What are the top-most three annotations used?
Result 5: Top three annotations used are SBO:0000009 (1127 times), SBO:0000252 (509 times), GO:0043241 (484 times)

MATCH ()-[rel]l->(res:RESOURCE)-[:IS_ONTOLOGY_ENTRY]-c-[:isA*0..]->s
WHERE s.id="SB0_0000009"
RETURN count (rel)

Query 6: How many annotations point to the term SBO:0000009 or one of its children?
Result 6: 3373 annotations pointing to SBO:0000009 or one of its children, 1127 of them point directly to SBO:0000009.

MATCH (m: SBML_MODEL)<-[:BELONGS_TO*1..2] -(a: ANNOTATION)<-[:BELONGS_TO]-(r:RESOURCE)
WITH m as Model, count(r) AS NumberOfAnnotation
RETURN max (NumberOfAnnotation), min(NumberOfAnnotation), avg(NumberOfAnnotation), stdev(NumberOfAnnotation)

Query 7: What is the minimum, maximum and average number of annotations per model?
Result 7: A model has a maximum of 800, a minimum of three and an average of 71 annotations.

SEDML Model Resource Species Target £3
BIOMD0000000007 fig_2a_b_sedmixml  Movak1997 - Cell Cycle  htp:ffidentifiers.org Cde25 bl : [listOfSp I:species|@id="Cdc25]
Juniprot/PO6652
BIOMD0000000007 _fig_2a_sedml.xml Novak1997 - Cell Cycle  hitp:fiidentifiers. org Cde25 bl : [listOfSp I:species|@id="Cdc25]
Juniprot/PO6652
BIOMD0000000144._fig1b_sedml.xml Calzone2007_CeliCycle  hitp:fiidentifiers.org Stgn, StgPn bl : listOfSp I:species[@id="Stgn, /sbml:sbmi/sbml- madel/sbml listOfSpecies
Juniprot/P20483 Stge, StgPe Isbml-species[@id="StgPn], /sbml : listOfSp species[@id="Stgc], /sbml-sbml
sbml: listOfSpecies/sbml:species|@id="StgPc]
Retuned 3 rows in 137 ms v ®
inducer ph Iy is]-(a - BELONGS_TO%]—>
SEDML Model Resource Species Target £
BIOMD0000000144_figlb_sedmixml  Calzane2007_CellCycle  hitp:ffidentifiers.org Stgn, StgPn fsbml : listOfSp species[@id="Stgr], /sbmlsbml/sbml model/sbm listOfSpecies
funiprot/P20483 Stge, StgPe Isbml species[@id="StgPn], /sbml : listOfSp species[@id="Stgc], /sbmlsbml/sbmlmodel
Isbml listOfSpecies/sbml species|@id="StgPc]
Retuned 1 row in 177 ms v B

Figure 3: Results for Query BM3. The top query output shown in this Figure restricts the species role
to modifier. Here, three SED-ML files are matching. The first and second belong to the same model and
are observing the same species Cdc25. The third result is a SED-ML file where the observation of four
species is encoded. The bottom query output shows the result of the same query but the species must be
acting as a reactant. Here, only one SED-ML file is returned; the same as the third result of the top query
output. Observed species’ are annotated with a UniProt ID. P06652 is the protein Cdc25 in yeast whereas
P20483 is the protein Stg (Cdc25) in the fruit fly. Simulation files for CellML files are not retrieved, because
CellML files are not yet fully annotated. If the CellML version of the Novak 1997 model had had annotations
"m-phase inducer phosphatase", the database would have also returned the simulation description for that
model.

Comparison with other approaches

RDF-triple-stores and SPARQL Semantic Systems Biology has been termed a new field of research
that aims to improve formal knowledge representation of computational models to enhance construction,
comparison, validation, or retrieval (Dumontier et al,|2013)). Several projects have started to convert model
representations into semantically enriched formats to make the models comparable and to integrate the

12

Peer] PrePrints | http://dx.doi.org/10.7287/peerj.preprints.376v2 | CC-BY 4.0 Open Access | rec: 6 Oct 2014, publ: 6 Oct 2014



386

387

388

389

390

392

393

395

396

397

398

400

knowledge about computational models better with knowledge contained in bio-ontologies. In general, the
idea is to transform all data into RDF, store the RDF triples into several databases and provide SPARQIE
endpoints to access the triples. For example, all models in BioModels Database have been converted into
OWL representations before, using straight forward to more complex transformation methods (e. g., (Kohn
and Strombackl, 2008; [Lister et all 2010; [Hoehndorf et all, 2011)). SPARQL has become the de-facto query
language for the Semantic Web community and is also used in the domain of computational biology, e.g.
Bio2RDPﬂ (Belleau et al, 2008) or recently the BioModels Database SPARQL endpoint (Jupp et al, 2014a)).
While an in-depth comparison of graph-databases with RDF triple-stores (and associated query languages) is
not in the scope of this paper, we could like to point out two disadvantages of RDF triple-stores and SPARQL
in the domain of computational biology: First, in a triple-store everything is a triple of subject, predicate and
object, e.g. :a :isRelatedTo :b. In consequence, it is not possible to distinguish links between entities
(:a :isVersion0f :P06652) and simple entity properties (:a :hasName :cdc25). Second, triple-stores and
SPARQL are tailored towards sub-graph retrieval. Thus, common graph algorithms like Dijkstra’s algorithm
(shortest path), directed path traversing, spanning trees or sophisticated graph matching patterns are hardly
applicable on RDF triple-stores (Przyjaciel-Zablocki et al, |2012).

BioModels Database Recently, the European Bioinformatics Institute in Hinxton, UK, announced
a SPARQL endpoint for BioModels Databasdﬂ All SBML encoded models in BioModels Database were
converted into RDF representations and added to the EBI RDF Platform (Jupp et al, 2014b). To compare
our concept against BioModels Database’s approach to convert SBML models into RDF, we translated the
query examples from the EBI web page into queries that we executed in our graph database. The results
are shown in the following listings. Additionally, Figure 4 shows a visualization for Query BM3.

MATCH (m:SBML_MODEL) -->(s:SBNL_SPECIES)
WHERE (m.ID="BIOMD0000000001")
RETURN m AS Model, collect(s.ID) as SpeciesID, collect(s.NAME) as SpeciesName

Query BM1: From model BIOMDO0000000001, list all species identifiers and names
Result BM1: 12 species IDs (ALL, I, DL, ILL, D, DLL, B, BL, A, AL, IL, BL) and names (ActiveACh2, Intermediate,

)

MATCH (r:RESOURCE) -->()-[:BELONGS_T0]->(element)-->(m:SBHL_HODEL)
WHERE m.ID="BIOMD0000000001"
RETURN element.ID AS Element, LABELS(element) AS ElmentType, collect(r.URI) AS ElementAnnotation

Query BM2: Get element annotations of the model BIOMDO0000000001
Result BM2: 104 annotations for 65 distinct elements, for example species ALL is annotated with IPR002394, GO:0005892
and SBO:0000297

MATCH (r:RESOURCE)<-[rell-()-->e-[:BELONGS_T0]->(m:SBNL_HODEL)
WHERE r.URI="".*G0.*0005892"
RETURN m.ID AS ModelID, collect(e.ID) AS ElementIDs, type(rel) AS Qualifier, r.URI as URI

Query BM3: All model elements with annotations to acetylcholine-gated channel complex

Result BM3: From each model (BIOMDO0000000001 and BIOMDO0000000002) the same 12 species IDs are returned (ALL,

1, DL, ILL, D, DLL, B, BL, A, AL, IL, BL), all are qualified with isVersionOf. A graphical representation is shown in

Figure 4.

When comparing the query examples and results, we could easily reproduce all queries and results using
our system. One of the original SPARQL queries corresponds to Query BM3, asking for models annotated
with the "acetylcholine-gated channel complex". Due to the missing index support for this RDF store, the
user must manually look-up and transform this annotation term into a URL, and paste that into the query.
Our system, in the contrary, is able to retrieve this information automatically by a simple index-based query.
A detailed example for the automatic conversion of an annotation is given in the aforementioned Query 4 or
in Query M6 in the Methods section.

COMBINE Archive The types of meta-data considered in this work are also agreed upon by an effort
called the COMBINE archive (Waltemath et al, 2013b), which aims at publishing extractable archive files
that then contain all files necessary to reproduce a scientific modeling result in the life sciences. However,

Shttp://www.w3.org/TR/rdf-sparql-query/
"http://bio2rdf.org/
8http://www.ebi.ac.uk/rdf/services/biomodels/
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Figure 4: Visualization for Query BM3. The centered, purple node is the requested annotation
GO:0005892, the green nodes are the species linked to the GO annotation, the orange nodes are the mod-
els "Edelstein1996 - EPSP ACh event" (BIOMDO0000000001) and "Edelstein1996 - EPSP ACh species"
(BIOMD0000000002).

we argue that the COMBINE archive is not a solution for the management of those files, but contributes to
their export and exchange among researchers.

We conclude that our system incorporates and links knowledge that is in principle already available in
public repositories, but not yet utilized. The knowledge is encoded in meta-data, in particular links to
simulation experiments and semantic annotations with terms from bio-ontologies. The key to using this
knowledge in model management tasks is its explicit linking and indexing in the database. We have demon-
strated how relevant meta-data can be stored in a graph-database such as Neo4J, and we have exemplified
how the meta-data can subsequently improve model retrieval and thus model reuse.

Our concept is easy to adapt and implement. An interface to test and query the database described
in this paper is availableEl In addition, a web APE designed to search SBML, CellML and SED-ML files
is available for testing. A prototype implementation is running as a search service on an instance of the
Physiome Model Repository, which is the backend of the CellML Model RepositoryE

Materials and Methods

Mapping XML encoded models and model-related data to the graph database

When importing models to the database, the database entry point is a document node. This document node
links to a model node via the directed edge hasModel. The model node has a model name and relations
(i.e., edges) to nodes that represent model entities. In the case of SBML these entities include species,
compartments, or reactions. For example, a model’s species is represented by its own node. Additionally,
an edge from the model node to the species node is created and named hasSpecies. Nodes for each
reaction and compartment are created and connected with hasReaction and hasComartment, respectively.
Moreover, relations of model elements are mapped to the graph database, i.e. a species node is connected to
a compartment node with isContainedIn. To ensure an easy traversal upwards, a connection is created from
each node of the stored model that points to the parent of the current node. The corresponding edges are
named belongsTo. Furthermore, it is possible to attach an annotation to each model entity, describing the
particular entity in more detail. All such annotations are stored to the database and indexed. The textual
descriptions of terms in ontologies such as GO or ChEBI are retrieved from the according web pages, indexed
and then processed. This index is afterwards used for ranked model retrieval as described in (Henkel et al
. Attached to every node is a so-called label that names the type of node, e.g. species, compartment
or annotation. Labels are indexed and allow to select all nodes of a specific type.

9https://sems.uni-rostock.de/projects/masymos/
O0https://sems.uni-rostock.de/projects/morre/
Uhttp://staging.physiomeproject.org/
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Cypher and one an adaption of (Henkel et all |2010). The data itself is stored in a Neo4J graph database.
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We have implemented the graph-based storage according to the architecture depicted in Figure 5. The
Neo4J|E| database stores model files, simulation descriptions and model-related information in a graph man-
ner. The retrieval engine is based on the ranked retrieval described in (Henkel et all [2010). It allows users
to access the data in the database, and retrieve ranked lists of results for their text queries. Queries are
resolved using the Lucene frameworkIEL and ranked based on predefined similarity features. The data import
pushes different data formats, including model code, simulation experiment descriptions and ontologies, into
the graph database. Afterwards a post-process takes care of linking the added data of different domains.

Models and Simulation Descriptions are added to the database using format-dependent importers.
Each supported format has its specification. Consequently, importers were implemented for SBML (based on
jSBML (Dréger et all 2011)), for CellML, and for SED-ML (based on jlibsedml (Waltemath et all 2011b)).
All importers share a common interface which maps the model and simulation files onto a graph structure.
The import keeps the models’ semantic information and all content that is relevant for later model querying,
retrieval and display.

Bio-ontologies available in OWL can also be imported using the owl-api*] and the JFact™] reasoner.
However, after adding an ontology to the database a post-processing is required to link model or simulation
description entities to the newly added Ontology concepts. This post-processing is part of the linking process.

Linking models and simulations is done using the graph query and data modeling language CypheIE
(Robinson et all [2013)), which is shipped along with Neo4J. The following query shows the command to link
SBO annotations of models to the corresponding concepts of the SBO using Cypher.

MATCH (res:RESOURCE), (sbo:SBOOntology)

WHERE (res.URI =~ ".*SBO.*") AND (RIGHT(res.URI, 7) = RIGHT (sbo.id, 7))
CREATE res-[link:IS_ONTOLOGY_ENTRY]->sbo

RETURN count (link);

Query P1: Select and match and link the SBO annotations extracted from models with corresponding concepts from the

SBO.

Result P1: The number of created links.

The MATCH clause selects every node that is labeled with the term "RESOURCE" and "SBOOntology"
into the variable res and sbo, respectively. The WHERE clause restricts the selection to only those nodes
satisfying the following constraints. In this case, the attribute URI of a resource node must contain the string

Phttp://www.neodj.org/
13http://lucene.apache.org/core/
Mhttp://owlapi.sourceforge.net/
5http://jfact.sourceforge.net/
16http://www.neodj.org/learn/cypher
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"SBO" and the last seven digits must correspond to the last seven digits of a node id out of the selected
SBO concepts. This pairs all SBO annotations used in a stored model with the corresponding entry within
the SB-Ontology. For the selected pairs of nodes the CREATE clause adds a new directed edge to the graph
connecting both nodes. The label of the selected edge is IS_ONTOLOGY_ENTRY. Finally, the RETURN clause
counts the number of edges created by this command and returns it to the user. A similar procedure applies
to other bio-ontologies.

Supported types of queries

The Cypher Query Language provides direct access to the data in our graph database. Cypher is the
declarative language to pose queries against graph structures, similarly to SQL for relational databases.
Our system supports standard queries such as data look-ups, filtering and aggregation. In addition, more
complex queries regarding the model’s structure can be posed.

Look-up and filtering. Database look-ups and filtering are shown in Query M1 and in Query M2. In
these examples, the MATCH clause uses a build-in index to retrieve all nodes labeled as CellML model
(Query M1) while the WHERE clause restricts the nodes to the ones matching the given name (Query M2).
The result of the first query is a list of 841 stored CellML models, while the second query returns only the
Tyson 1991 model.

MATCH (m:CELLML_MODEL)
RETURN m

Query M1: Database look-up. Return all CellML models
Result M1: List of 841 models

MATCH (m:CELLML_MODEL)
WHERE m.NAME = ’tyson_1991°
RETURN m

Query M2: Database look-up and filtering. Return CellML models with the name ‘"tyson_ 1991"
Result M2: A model node containing the attribute NAME:"tyson_1991"

Graph matching. Query M3 shows how graph structures can be queried. In this example, all components
from the Tyson 1991 model are selected. Eight component names are returned, as denoted in the RETURN
clause.

MATCH (m: CELLML_MODEL) -->(c:CELLNLCONPONENT)
WHERE m.NAME = ’tyson_1991°
RETURN c.NAME

Query M3: Database graph structure query. Select the aforementioned Tyson model and return all its components.
Result M3: The components YP, Y, M, pM, CP, C2, environment and reaction constants.

Aggregation. In SQL, aggregation functions such as count() or sum() group values from multiple rows
into a single value. Query M4, shows how to define a query that counts the number of species for each
model in the graph database. The MATCH clause selects the Tyson 1991 model, all connected components
and variables. The RETURN clause counts and returns the number of variables for this model. Further
examples of aggregation queries have been shown in Table [I]in the Results section.

MATCH (m:CELLML_MODEL) -->(c:CELLKLCONPORENT)-->(v:CELLHLVARIABLE)
WHERE m.NAME = ’tyson_1991°
RETURN count (v)

Query M4: Database aggregation query. Count the number of variables contained by any component of the aforementioned
Tyson model
Result M4: This model has 68 variables.

Statistics We provide statistics as another type of queries. Query M5 returns the minimum, maximum
and average for the number of variables attached to components in CellML models. To provide these statistic
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values, elements (in this case the CellML components) are selected and bound to an aggregation value using
the WITH clause.

MATCH (m:CELLML_MODEL) -->(c:CELLNLCONPONENT)-->(v:CELLNLVARIABLE)
WITH ¢ as component, count(v) as NumOfVar
RETURN min(Num0OfVar), max(NumOfVar), avg(NumOfVar), stdev(NumOfVar)

Query M5: Statistics query. Retrieve minimum, maximum average and standard derivation of for the number of variables
attached to a component.

Result M5: A minimum of one and a maximum of 431 variables are attached to a component of a CellML model. On
average each component has 9.64 variables attached with a standard derivation of almost 16.

Index support. Finally, Query M6 uses an index to retrieve nodes matching a given pattern. The
indexed annotations are queried for the term "m-phase inducer phosphatase" using the START clause.

START res=node:annotationIndex (’RESOURCETEXT:(m-phase inducer phosphatase)’)
RETURN res

Query M6: Database index query. Retrieve all annotations containing the phrase "m-phase inducer phosphatase"
Result M6: A set of seven resources (InterPro IPR000751; Enzyme Commission number 3.1.3.48; and UniProt: P30311,
P23748, P20483, P06652, P30304)

Database scaling

Biichel et al| (2013) describe how to build computational models from biochemical pathway maps. The
path2modelsE] project resulted in more than 140.000 SBML models of a total size of 70GB. We used this
data-set to challenge the database’s performance on an average office system (Intel Core 2 Quad @ 2.66 GHz
CPU, 8 GB RAM, Windows 7 64 Bit). The database was created in 20 hours and 40 min, thus every model
required 531 ms on average. While importing the path2models project, 45.5 million nodes and 492 million
relationships where created; the database size is approximately 83GB, including the indices.
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