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Abstract13

Model repositories such as the BioModels Database or the CellML Model Repository are14

frequently accessed to retrieve computational models describing biological systems. However,15

the current designs of these databases limit the types of supported queries, and many data16

in these repositories cannot easily be accessed. Computational methods for model retrieval17

cannot be applied. In this paper we present a storage concept that meets this challenge. It18

grounds on a graph database, re�ects the models' structure, incorporates semantic annotations19

and experiment descriptions, and ultimately connects di�erent types of model-related data.20

The connections between heterogeneous model-related data and bio-ontologies enable e�cient21

search via biological facts and grant access to new model features such as network structure.22

The introduced concept notably improves the access of computational models and associated23

simulations in a model repository. This has positive e�ects on tasks such as model search,24

retrieval, ranking, matching, �ltering etc. We exemplify how CellML- and SBML-encoded25

models can be maintained in one database, how these models can be linked via annotations,26

and queried.27
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Introduction28

Model repositories such as the BioModels Database (Li et al , 2010) and the CellML model repository (Yu29

et al , 2011) o�er to the community valuable, curated, and resuable models describing biological systems.30

They enable researchers to study biological systems in the computer without necessarily implementing the31

models from scratch, thereby saving time, e�ort and money. In addition, curation has a positive e�ect32

on the quality of models used in modeling projects, because errors in the model encoding are more likely33

to be detected, they can be resolved and documented. Finally, model repositories use standard formats,34

e. g. the Systems Biology Markup Language (SBML) (Hucka et al , 2010) or CellML (Lloyd et al , 2004), to35

distribute ready-for-reuse models that can immediately be loaded in a large number of computational tools36

for simulation, analysis, visualization, or comparison (Hucka et al , 2011).37

Each model describes certain aspects of a system. These aspects may be of functional, behavioral or38

structural nature (Knüpfer et al , 2013) and need to be covered in the description of the model. For example,39

the di�erent models of the cell cycle in the BioModels Database contain biological entities and reactions40

that together characterize the cell division cycle. Semantic annotations relate model entities to external41

resources describing the underlying biology. A model of the cell cycle may be annotated with a term from42

Gene Ontology (GO) (Botstein et al , 2000) that de�nes the cell cycle biologically, e. g.,43

"The progression of biochemical and morphological phases and events that occur in a cell during44

successive cell replication or nuclear replication events. Canonically, the cell cycle comprises45

the replication and segregation of genetic material followed by the division of the cell, but in46

endocycles or syncytial cells nuclear replication or nuclear division may not be followed by cell47

division." (Gene Ontology, GO:0007049)48

The SBML representation of this model is only equipped with the GO identi�er (here: GO:0007049). This49

identi�er, however, can be resolved computationally to access the full information from the Gene Ontology,50

making a semantic-based comparison of models feasible.51

In the past years, the focus shifted from exchanging pure model code towards exchanging models and52

model-related information. As a consequence, we understand better what a model is about, the rationale53

behind building it, and ultimately how to reuse it. The necessary information to reuse a model is de�ned54

in the Minimum Information guideline for the annotation of models, MIRIAM (Le Novère et al , 2005).55

MIRIAM requires each biological entity in a model to be de�ned; links to the publication describing a model56

(denoted as reference publication); and instructions on how to use a model to reproduce a published result.57

In the following, we refer to these and other model-related information as meta-data.58

Before the era of semantic knowledge integration and ontologies, model code contained only few meta-59

data. Thus models could be kept in �le systems and relational data tables. This approach is unsuitable60

for today's models, because their meta-data is heterogeneous in structure and content. Consequently, it61

is di�cult to map the meta-data onto relational tables with homogenous and pre-de�ned properties. This62

(technical) limitation results in many types of model-related data which are not extracted from the model.63

The information they contain is not accessible and thus lost for computational processing, e. g., when de-64

termining model similarities. Examples for neglected meta-data include the structure of the model (Henkel65

et al , 2012), model versions (Waltemath et al , 2013a), and associated simulation setups (Waltemath et al ,66

2013b). Given the e�orts made to encode the biological knowledge in bio-ontologies, and then to link model67

entities with semantic information, the current situation is indeed unsatisfying. Often, one consequence of68

inaccessible meta-data is that the modeling results are not reproducible, because the link from model code69

to simulation experiment is missing (Waltemath et al , 2011b).70

In this manuscript we propose the concept of graph databases for model storage and retrieval. Graph71

databases support heterogenuous data structures. They furthermore enable a �exible integration of model-72

related meta-data. We have focused our studies on models in SBML and CellML formats, associated simu-73

lation setups in SED-ML format, and semantic annotations from bio-ontologies. A key feature of our work74

is the explicit linking, which allows researchers to postulate queries across di�erent data formats. The in-75

tegration of model-related data, simulation experiments, semantic annotations and structure information76

supports modelers and biologists in �nding models and reproducing scienti�c �ndings that are relevant to77

their own work. It fosters the exploration of published models and increases model reuse.78
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Results79

Model reuse can be improved if models and associated data are considered together. In this paper we80

present a novel storage concept that tightly links model code with model-related data. We focus on the data81

requested by two Minimum Information Guidelines: MIRIAM for requested information about models and82

MIASE , the Minimum Information About a Simulation Experiment (Waltemath et al , 2011a), for requested83

information about simulation setups. We store and link all data in a graph-database, where nodes contain84

the data, and edges represent the links between the data. The explicit linking of model-related data paves85

the way for new types of queries about models, e. g., �Return experiments observing entities representing86

a "`m-phase inducer phosphatase"' and acting as modi�er in a reaction�. This query runs on the di�erent87

types of data that need to be linked to get the full picture of a model: model code (identifying all models88

that contain entity X); semantic annotations (identifying all entities X that are annotated with a term of a89

bio-ontology that is semantically similar to �m-phase inducer phosphatase�); the model's network structure90

(�ltering those models where X is a modi�er in a reaction); and �nally associated simulation experiments91

(returning for each relevant model the possible simulations de�ned for it).92

Considered types of data and standard formats93

Several types of data are relevant for a meaningful description of computational models in biology (Chelliah94

et al , 2009; Knüpfer et al , 2013; Waltemath et al , 2013b). Speci�cally, Knüpfer et al (2013) distinguish95

data for the extrinsic and intrinsic description of model function, behavior and structure. Many of these96

aspects have already been described in standard formats, including model structure, simulation descriptions,97

simulation results and semantic annotations. The development of standards is a continuous process, and98

their uptake by software tools and users progresses at di�erent pace. For example, while many journals99

today recommend, or require, the provision of model code during submission (e. g., in SBML), there is no100

such recommendation to submit also a graphical representation in the Systems Biology Graphical Notations101

(SBGN) (Le Novère et al , 2009), nor to submit the simulation description (in SED-ML). Some formats102

are speci�ed, but so far only used by a small number of software tools, e. g. the Systems Biology Result103

Markup Language (SBRML) (Dada et al , 2010). However, repeated calls for reproducibility of modeling104

results have been published in the past years. The development of standards fosters both, the submission of105

model-related data to model repositories such as BioModels Database and the distribution of archives such106

as the Research Objects Hettne et al (2013) or the recently launched COMBINE Archive (Waltemath et al ,107

2013b). In the following, we will only consider types of data that have been formally speci�ed and for which108

curated data is available. These are basically the model code, simulation descriptions, semantic annotations109

and cross-references, and the mathematical characterization of models (Waltemath et al , 2013b).110

Model code in public model repositories: Modelers use predominantly native programming languages,111

most commonly C or C++; script languages such as MATLAB or Python; and markup languages (XML)112

to describe their models. Program code and scripts, in general, are hard to understand and share. An XML113

representation reduces the obstacles to sharing data among diverse applications by providing a common114

format for expressing data structure and content (Seligman and Roenthal, 2001). XML formats for the115

standardized representation of models are SBML, CellML or NeuroML (Gleeson et al , 2010). They all focus116

on the encoding of the models' structure, for example the interactions in a pathway, and describe sets of117

entities and the processes between them. Hucka et al (2003) highlight the advantages of markup languages,118

in this case SBML, for model representations: Model de�nition becomes straight forward, and a tool chain119

is available.120

Once in standard format, models can be published and shared through open repositories, and they can121

be easily used with a variety of simulation tools. BioModels Database guarantees persistence and long-122

term availability of ready-to-run models. To date it contains 490 curated models1 and several thousands123

of automatically generated pathway models which have been generated from the KEGG database (Büchel124

et al , 2013). Many simulation tools read and write models in SBML (Hucka et al , 2011).125

1release 26 of BioModels Database as of November 4th 2013
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Simulation setups: While models are commonly shared through repositories, simulation experiments126

are not yet part of the standardization work�ow (Cooper et al , 2014). However, the ability to represent127

increasingly complex biological phenomena requires models to be instantiated using di�erent conditions, and128

these conditions must be formally described together with the model itself. For example, in pharmacometrics,129

the calculation of a parametrization of an individualized model is itself a complex procedure that requires130

the development of further standards (Swat et al , 2013).131

To ensure the reproducibility of simulation results, the Simulation Experiment Description Markup Lan-132

guage (SED-ML) (Waltemath et al , 2011b) is an XML-based format that encodes the necessary information133

to reproduce a particular result. SED-ML Level 1 Version 1 (Waltemath et al , 2011c) enables the repro-134

duction of time course simulations. After the recent update to Level 1 Version 2, SED-ML now covers more135

types of experiments, including pulse experiments and parameter scans (Bergmann et al , 2013). For selected136

models, both BioModels Database and the CellML Model Repository recently started to provide SED-ML137

�les. Surprisingly though, these SED-ML �les are not linked with the models inside the database. Therefore,138

the information about applicable simulation experiments, for example, cannot be derived for model retrieval,139

comparison or similar tasks that potentially improve model reuse. This is, however, desired by researchers140

who wish to de�ne generic experimental setups, so-called virtual experiments (Cooper et al , 2014), and link141

these to sets of models for comparison, validation and functional curation Cooper et al (2011). Hence these142

types of meta-data are relevant for future database design decisions.143

Semantic annotations and cross-references: Semantic annotations link model entities to terms in144

bio-ontologies. Ontologies, in general, are de�ned as speci�cations of a conceptualization (Gruber et al ,145

1993). Bio-ontologies, e. g. Gene Ontology, then are ontologies with a focus on biological terms. Many cross-146

references between ontologies are provided in BioPortal (Noy et al , 2009). Models in SBML and CellML147

use bio-ontologies to encode semantic annotations as RDF triples (Lassila et al , 1998). For example, an148

RDF triple could be added to the SBML species "X" and link it to the ontology term "ATP" in the ChEBI149

database for chemical interactions (Degtyarenko et al , 2008) (ID "CHEBI:15422"). So-called quali�ers specify150

the relation between entity and ontology term (Juty et al , 2012). A model entity could be ATP or have a part151

ATP. The sum of semantic annotations in a model describes its biological and mathematical background. In152

BioModels Database, models carry between three and 800 annotations, but on average 71 annotations, per153

model (Alm et al , 2014).154

A graph database for simulation models and associated data155

If models encode networks - why do not we store them as graphs rather than using a relational approach? We156

found graph databases to be the best suitable concept to store models, because: (1) Many models in public157

databases encode networks that can be represented as graphs. (2) No uni�ed schema exists for models and158

meta-data, making it di�cult to de�ne a relational database schema. (3) The highly linked models, entities159

within models, and meta-data are di�cult to represent in a table-like relational database management system160

such as MySQL.161

Traditionally, relational databases were developed for homogeneous, structured data, e. g. numerical162

data sets. Models, however, take various size and structure. SBML models in BioModels Database, for163

example, import data structures from external standards and link to entries in bio-ontologies. Among164

the external standards are vCard, electronic businesscards that identify the model author and curators165

(http://www.w3.org/TR/vcard-rdf/), or Dublin Core, a vocabulary mainly used to describe web resources166

(http://dublincore.org/). Some models are associated with simulation descriptions or graphical represen-167

tations. Finding a relational representation of all these links and at the same time building an e�cient168

database is not possible for such heterogeneous structures. Furthermore, relational databases are not de-169

signed to store semi-structured documents e�ciently (Robinson et al , 2013). A core concept of relational170

databases is a �xed schema which de�nes the structure of the data they contain. Semi-structured documents171

(Buneman, 1997), however, have only loose constraints on the structure of the data. All XML formats are172

semi-structured, and so are SBML, CellML and SED-ML. Architectural choices in current model repositories173

date back to times when only a limited number of alternatives existed, standardization of external knowledge174

only began, and model �les were only scarcely associated with meta-data. Since then the databases have175
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grown and functionality has been extended. The focus has shifted from model code to "model-related data".176

Interestingly, only a few systems' architectures have been revised.177

NoSQL approaches, together with semantic web applications, more recently gained popularity in the Life178

Sciences (Splendiani et al , 2011), e. g., as Key-Value Stores, BigTable (Ghemawat et al , 2003), document179

databases, triple stores, or graph databases (Angles and Gutierrez, 2008). We will here focus on the graph180

database Neo4J (Vicknair et al , 2010). It is based on the concept of describing data in terms of nodes, edges181

and attributes. Nodes are connected via directed edges (relations) of certain types. Both, nodes and edges182

can then hold attributes. The Neo4J architecture follows the fundamental properties of databases, i .e. the183

ACID principles (atomicity, consistency, isolation, durability).184

For demonstration purposes, we use here one of the early models in the BioModels Database, namely185

Tyson's model on cell division (Tyson, 1991). This model is fairly small, exists as SBML and CellML186

representation, and it is available from both BioModels Database2 and the CellML Model Repository3.187

Database design and data import188

All data needs to be transformed into a representation of nodes and edges during import. The entry point189

for each data item in our database is a root node, which we call document root node. Attached to this node190

may either be one model (e. g. an SBML node), or a data item that is related to the model (e. g. a SED-ML191

node). The entry point for each ontology in our database is an ontology root node.192

More speci�cally, SBML models are represented by a model node which serves as the anchor for all193

related model entities (Figure 1, left part). The model node stores the model's name (cyan in Figure 1) and194

id. Attached to the model node are annotation nodes, including the reference publication (purple and grey).195

The model node is also connected to reaction, species and compartment nodes to re�ect the underlying196

structures in the biological network. The example in Figure 1 shows a subset of nodes and edges for the197

Tyson model. All information about these nodes is directly extracted from the model's SBML representation.198

The �gure displays three species nodes (in green), one reaction node (in red) and one compartment node (in199

orange). The edge between the species node pM (a complex of phosphorylated Cyclin and phosphorylated200

cdc2) and the compartment node Cell represents the fact that the species pM is located in the compartment201

Cell. Because we have quali�ed relations in the SBML model, we can even be more speci�c and store the202

information that pM is linked to Cell via the relation isContainedIn. Further model entities are stored203

analogously, i .e. encoded parameters, events and other SBML concepts. Finally, the semantic annotations204

are extracted from the SBML model and stored. The use of graph databases makes this mapping intuitive:205

Nodes representing some model entity are linked to nodes representing a particular term in a bio-ontology.206

The edge speci�es that relation. An additional node is created and connected each time a new URI is207

detected during model import. For our example, the species node pM is related via hasPart to the InterPro208

term Diphthine synthase (in grey). Taken together, the sum of extracted information provides a detailed209

representation of the models' network structure and all annotations.210

CellML models represent networks of connections between so-called components. A component con-211

tains variables and mathematical relationships that manipulate those variables (Cuellar et al , 2003). This is212

a di�erent, more abstract approach to representing reaction networks, and one of the reasons why an inte-213

grated storage of SBML and CellML models on the XML level is so di�cult (Köhn and Strömbäck, 2008).214

Examples for CellML components are physical compartments, events, species, or other convenient modeling215

abstractions. As for SBML models, the entry point is a document node that is connected to a model node216

and serves as an anchor for the component nodes. Each model entity can be related to a semantic annota-217

tion. Figure 1 (right side) shows the representation of the CellML encoding of the Tyson model. Attached218

to the model node are the component nodes, for example C2, Cp, or environment. Each component holds a219

number of variables. These variables are mapped to corresponding variables of connected components, e .g.220

the variable time in component node C2 is connected to the variable time in the environment node. Please221

note here that the model node links to the identical publication node as the SBML model. If existing, an-222

notations are extracted from the CellML model and mapped to the database using the same URI scheme as223

with SBML models. While CellML models today are only sparsely annotated, several projects work towards224

2http://www.ebi.ac.uk/biomodels-main/BIOMD0000000005
3http://models.cellml.org/exposure/9bff394be3ade829feed94151b3d68b3/tyson_1991.cellml/view
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Figure 1: Representations of the Tyson 1991 model. The SBGN (top) representation shows the process
description for the Tyson 1991 model. The graph database representation for the SBML encoded model is
shown left, for CellML right. The document node is colored in yellow, model nodes in blue, annotation
nodes in silver, and publication nodes in purple. For the SBML representation, reaction nodes are red,
species nodes are dark green and compartment nodes are brown. For the CellML representation, component
nodes are light green and variables are light red.

fully annotated CellML models (Wimalaratne et al , 2009; Gennari et al , 2011; de Bono et al , 2011). Our225

database is updated accordingly.226

SED-ML descriptions specify simulation setups for models. They thereby link models, simulation227

algorithms, and output de�nitions (plots). A SED-ML description also explicitly declares the observed228

variables. In our design, the SEDML node serves as an anchor for one experiment. The Modelreference node229

links the experiment to all Model nodes used in the simulation. Figure 2 exempli�es how a model reference230

links one SED-ML description to an SBML and a CellML model. The algorithm used for the simulation is231

described by a term from the Kinetic Simulation Algorithm Ontology (KiSAO) (Courtot et al , 2011). KiSAO232

terms are imported into the database as terms from any other bio-ontology. A subset of KiSAO terms is233

depicted in Figure 2.234

As aforementioned, bio-ontologies are integrated into the graph database to cover the semantic annota-235

tions in model representations and simulation descriptions. For example, model entities are annotated with236

domain knowledge from GO, ChEBI, UniProt; simulation descriptions contain links to simulation algorithms237

in KiSAO. Most bio-ontologies are available in the Web Ontology Language (OWL), which is a standard238

format for the representation of semantic information on the web. We parse these ontologies and add all239

concepts and relations as nodes and edges, respectively. Cross references are currently not mapped to the240

database, because these links cannot easily be determined in a reliable and consistent manner.241

Table 1 summarizes the data types in our database and shows the number and size of the documents.242

Integration of further data resources is possible. For example, we provide an importer for ontologies encoded243

in OWL. However, the post-processing to link ontologies with models and simulation experiments needs to244

be done manually. Adding data encoded in SBRML (Dada et al , 2010) or NuML4 would require additional245

importers and again a manual post-processing.246

4http://code.google.com/p/numl/
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Data domain Documents Nodes Ontology Nodes Domain references
SBML 462 91488 KiSAO 261 38
CellML 841 143521 SBO 606 8839
SED-ML 38 3352 GO 39787 7555

Table 1: Left: Number of �les and stored nodes for each data domain. Right: Number of nodes for each
stored ontology. The domain references state the number of links from a concept of an Ontology into a data
domain. Here, all KiSAO concepts are linked to the domain of SED-ML while all SBO and GO concepts are
referred to from the CellML or SBML domain.

Linking model-related data247

The main advantage of the graph-based concept described in the previous section is the possibility to de�ne248

�exible links between the data domains. In concordance with previous considerations (Henkel et al , 2012;249

Waltemath et al , 2013b), we incorporate the following types of links:250

(a) links between annotations (in SBML, CellML and SED-ML) and ontology entries,251

(b) links between models (in SBML or CellML format) and SED-ML,252

(c) links between model entities and SED-ML variables, and253

(d) links between model entities from di�erent model representation formats.254

Figure 2 shows all existing links for the Tyson model. The database provides two encodings of the model,255

one in SBML and one in CellML format. Both representations are outlined on the left hand side of the �gure.256

The �rst type of link is between model entities and ontology concepts (a). Here we only consider existing257

annotations. For each annotation in a model we add an explicit link to the data entry in the referenced258

bio-ontology. For example, based on the SBO annotation in the SBML model we build an additional edge259

between the node representing that annotation in SBML and the entry in SBO itself. Each concept (from260

an ontology) is only stored once but can be referred to by multiple model entities.261

Another type of link is that between a model and a simulation description (b). When importing a SED-262

ML �le into the database, we resolve the model references and check if those models are contained in our263

database. If this is the case, then additional edges are introduced for each model reference, between one264

model node and one SED-ML Modelreference node at a time. In the example in Figure 2, the original SED-265

ML �le contained two model references, pointing to the Tyson 1991 model in SBML and CellML format,266

respectively. Thus we introduced two new edges in our database.267

Furthermore, the variables of a DataGenerator in a SED-ML �le may point to a speci�c entity in the268

referenced model. This pointer is used to identify the entity under observation, or for pre-processing before269

simulation. While we do not store the speci�c processing of a model entity, we keep the information if a270

model entity is part of a simulation. Consequently, a third type of link in our database is between the271

SED-ML Datagenerator node and a model entity (c). At the time of import, the SED-ML �le is analyzed272

and the referenced species of the corresponding model is explicitly linked. Also, we �ag species that are273

altered during SED-ML pre-processing (e. g., if the concentration of a species is changed). The links (a) �274

(c) can be established with information given in the documents. We regard them explicit links.275

In addition, we determine implicit links between models of di�erent representation formats (d). As we276

showed earlier, two models may link to the same publication (Pubmed:1831270 in Figure 2). Our system277

concludes that, if two models share a publication, the entities of that model which are equally named share278

the same role in both model �les. Even if the names are not fully identical but highly similar (e .g. in279

terms of Levenshtein Distance or stemming) it can be assumed that the entities are, in fact, identical. The280

con�dence can be increased further if also the annotations match. For each such pair of entities, we add an281

additional edge to the database. Figure 2 shows the explicit connection of the entities C2 in the SBML and282

C2 in the CellML model. Both entities are linked because they have the same name, and they stem from the283

same reference publication.284
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Figure 2: Linking models, simulation descriptions and ontologies. Linking between di�erent data
domains: simulation experiment descriptions and models (dashed line); de�ned observation variables and
model entities (dotted line); annotated model entities and simulation experiment descriptions (dashed-dotted
line); and model entities of di�erent representation formats (double dotted-dashed line). The SBO example
is explained in detail in the Implementation Section. The references to the simulation algorithm within a
simulation experiment description are mapped to the corresponding entity in KiSAO.
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Discussion285

Advantages of implementing a graph-based concept286

The main advantages of a graph-based concept for model storage are easy integration of heterogeneous287

resources; extensibility with further data resources; and improved model search.288

Realization of explicit linking between heterogeneous resources. Currently, models and model-289

related data are only sparesly linked in the, predominantly relational, model repositories. Relational290

databases store data in tables and use the concept of primary and foreign keys to relate tables. Histor-291

ically, they were designed for structured, homogenous data. However, they do not perform well on highly292

connected, semi-structured and heterogenous XML data. In a graph database, the integration of hetero-293

geneous resources is straight forward. The concept of edges allows arbitrary connections to be de�ned by294

the creators of the database at any time. Particularly helpful for later model comparison are edges that295

connect nodes across model representation formats. For example, our database contains two representations296

of Tyson's 1991 cell cycle model, in SBML and in CellML, respectively. This link now becomes exploitable,297

because both model nodes share one publication node (PubMed:1831270). It is also useful to represent298

relations between a model and a simulation setup. Storing this information in the graph database allows299

modelers to quickly retrieve all models associated with a simulation experiment, and vice versa. For example,300

our graph database contains the information that there exists a SED-ML �le which simulates and observes301

the change in concentration in CP in both encodings of the Tyson 1991 model (SBML and CellML) and then302

compares the simulation outcome (Figure 2). Finally, our database establishes links from model annotations303

into bio-ontologies. For example, the SBML model in Figure 2 contains the entity Cell which is annotated304

with a term from SBO. We can thus easily retrieve all models that are annotated with a particular ontology305

term. This is, for example, helpful in the classi�cation of models (Alm et al , 2014).306

Extensibility of database schema. Our graph database is schema optional. New data resources can307

e�ciently be integrated and the database thus easily be extended. Speci�cally, we plan to integrate links308

to result data (in NuML format) and to Wet Lab descriptions once these exist in standard format. Data in309

NuML format could be linked to model entities, for example, when storing di�erent parametrizations of a310

particular model.311

Possibility to incorporate model structure. As current repositories do not represent the structure312

of a model, they cannot answer questions such as "Which model in the database contains the species that313

modi�es most reactions?". To identify a species as the modi�er of a reaction, this information must exist314

in the database. Figure 1 shows how we keep the information on the model structure: For each reaction in315

the model we map all reactants, modi�er and products. Now a user can search for models that ful�ll the316

following two conditions: (1) the species should only serve as a modi�er in any of the model's reactions,317

and (2) only the topmost species per model should be considered. Our graph database retrieves the model318

"Schaber2012 - Hog pathway in yeast" 5, because the species Hog1PPActive occurs in ten reactions and only319

acts as a modi�er (Query 1).320

MATCH (species:SBML_SPECIES )-[isMod:IS_MODIFIER ]->()

WHERE NOT(( species )-[: IS_REACTANT ]->() OR (species )-[: IS_PRODUCT ]->())

WITH species , count(isMod) AS numOfMod ORDER BY numOfMod DESC LIMIT 1

MATCH species -[: BELONGS_TO]->model

WHERE (model:SBML_MODEL)

RETURN model.NAME AS Model , species.NAME as Species , numOfMod

Query 1: Return the model with the most species acting only as a modi�er.
Result 1: The model "Schaber2012 - Hog pathway in yeast" having the species Hog1PPActive which is acting as a modi�er
in ten reactions.

321

Graph databases o�er further exciting applications, including the structure-based comparison of models.322

Combinations of nodes and edges form sub-networks which can for the �rst time be compared to each other323

using graph matching techniques. Once speci�c algorithms to map sub-models and identify suitable interfaces324

for automatized model coupling are in place, it will be possible to integrate them with our ranked retrieval325

system (Henkel et al , 2010). The Methods section contains additional examples for novel queries.326

5originally from BioModels Database, http://www.ebi.ac.uk/biomodels-main/BIOMD0000000429
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Exploiting links to associated virtual experiments327

Another type of query that cannot, as of now, be answered by current model repositories is: "Which328

simulation experiments for SBML and CellML models study the change of concentration in 'm- phase inducer329

phosphatase'?". To answer this question, it is not su�cient to query the model only. The repository must330

also support the retrieval of simulation experiments. In few cases, SED-ML �les are provided in open331

repositories, enabling users to reproduce one or more �gures of the reference publication. However, it is as332

of now not possible to include the SED-ML �le in queries. Consequently, one cannot ask questions about333

the relation of a SED-ML �le and a model. For example, Novak's 1997 cell cycle model can be run with two334

di�erent setups, either reproducing Figure 2a or Figure 2b of Novak and Tyson (1997). Our approach stores335

the links between simulation setups and models and thus knows which experiments are applicable to which336

models (Query 2). When SED-ML descriptions are de�ned as templates for virtual experiments, and thus are337

applicable to classes of models (Cooper et al , 2014), it is also interesting � and now indeed possible � to ask338

the question: "Which models use this particular experiment description?". Furthermore, the links between339

SED-ML elements and KiSAO allow us to de�ne restrictions on the SED-ML �les we want to consider in a340

search result, e. g., to retrieve only models that can actually be simulated with a given simulation algorithm.341

With our system, the query "Which CellML encoded models can be simulated using a Livermore Solver?"342

can be answered (Query 3). One can also imagine to restrict results to changes in concentrations of a certain343

parameter.344

MATCH (m:SBML_MODEL )-[: REFERENCES_SIMULATION_MODEL]-ref -[: BELONGS_TO *2]->(sed:DOCUMENT)

WHERE m.NAME='Novak1997 - Cell Cycle'

RETURN m.NAME AS Model , m.ID as ModelID , ref.MODELSOURCE as ModelSource , sed.FILENAME as SEDMLFile

Query 2: Return all simulations that can be applied to the model "Novak1997 - Cell Cycle"
Result 2: The requested model can be run by two simulations, reproducing Figure 2a and 2b by Novak and Tyson (1997)

MATCH (sed:DOCUMENT )<-[: BELONGS_TO *2]-(sim:SEDML_SIMULATION )-[: SIMULATES]->

(ref:SEDML_MODELREFERENCE )-[: REFERENCES_SIMULATION_MODEL]->m

WHERE (sim.SIMKISAO='KISAO :0000019 ') AND filter(lable in labels(m) where lable ='CELLML_MODEL ')

RETURN m.NAME , sed.FILENAME

Query 3: Return only CellML models that can be simulated using a Livermore Solver (KISAO:0000019).
Result 3: The CellML encoded "Tyson 1991" model and the corresponding SED-ML �le.

START res=node:annotationIndex('RESOURCETEXT :(m-phase inducer phosphatase)')

MATCH res <-[rel:is]-(a:ANNOTATION)-->(s:SBML_SPECIES )<-[: OBSERVES]-o-[: BELONGS_TO *]->(doc:DOCUMENT)

WITH doc ,res ,s,o

MATCH ()<-[: IS_MODIFIER]-s-[: BELONGS_TO]->m

RETURN DISTINCT doc.FILENAME AS SEDML , collect(distinct m.NAME) AS Model ,

collect(distinct res.URI) AS Resource , collect(distinct s.NAME) AS Species , collect(distinct o.TARGET) AS Target

Query 4: Return simulation descriptions observing a particular species that plays the role of a modi�er or reaction,
respectively. The observed species should be annotated as "m-phase inducer phosphatase" using the quali�er is.
Result 4: The result is shown and explained in Figure 3.

345

Strikingly, it is also possible to derive information from the graph database by combining the di�erent346

data sets. Query 4 shows such a complex example. It combines index and structure information and spans347

data sets of ontology, models and simulation experiments. It retrieves simulation experiment description and348

corresponding models where a species is marked for observation by the simulation description. Additionally,349

the observed species must be annotated with a resource that is related to the phrase "m-phase inducer350

phosphatase" and the species must play the role of a modi�er. The result is shown in Figure 3. To our351

knowledge this is the �rst time a system can answer queries spanned over di�erent data sets and combining352

them with an index look-up.353

Statistics354

Another interesting application for our graph database is to generate statistics about the integrated data.355

For example, we are interested in the most frequently used annotations for models in BioModels Database356

(Query 5) As the SBO is completely integrated, we �nd that the term SBO:0000009 is the most frequently357

used term for annotation. We can also compute the number of annotations using SBO:0000009 or one of358

its 125 children (Query 6). Finally, the system can also derive statistical values. For example, the average359
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number of annotations per model, as well as the minimum, maximum, and the standard derivation, can360

be computed for the set of SBML and CellML models available from BioModels Database and the CellML361

Model Repository (Query 7).362

MATCH (r:RESOURCE)-[qualifier:BELONGS_TO ]->()

WITH r, count(qualifier) AS AnnotationCount ORDER BY AnnotationCount DESC LIMIT 3

RETURN r.URI as Annotation , AnnotationCount

Query 5: What are the top-most three annotations used?
Result 5: Top three annotations used are SBO:0000009 (1127 times), SBO:0000252 (509 times), GO:0043241 (484 times)

MATCH ()-[rel]->(res:RESOURCE )-[: IS_ONTOLOGY_ENTRY]-c-[:isA*0..]->s

WHERE s.id="SBO_0000009"

RETURN count(rel)

Query 6: How many annotations point to the term SBO:0000009 or one of its children?
Result 6: 3373 annotations pointing to SBO:0000009 or one of its children, 1127 of them point directly to SBO:0000009.

MATCH (m:SBML_MODEL )<-[: BELONGS_TO *1..2] -(a:ANNOTATION )<-[: BELONGS_TO ]-(r:RESOURCE)

WITH m as Model , count(r) AS NumberOfAnnotation

RETURN max(NumberOfAnnotation), min(NumberOfAnnotation), avg(NumberOfAnnotation), stdev(NumberOfAnnotation)

Query 7: What is the minimum, maximum and average number of annotations per model?
Result 7: A model has a maximum of 800, a minimum of three and an average of 71 annotations.

363

Figure 3: Results for Query BM3. The top query output shown in this Figure restricts the species role
to modi�er. Here, three SED-ML �les are matching. The �rst and second belong to the same model and
are observing the same species Cdc25. The third result is a SED-ML �le where the observation of four
species is encoded. The bottom query output shows the result of the same query but the species must be
acting as a reactant. Here, only one SED-ML �le is returned; the same as the third result of the top query
output. Observed species' are annotated with a UniProt ID. P06652 is the protein Cdc25 in yeast whereas
P20483 is the protein Stg (Cdc25 ) in the fruit �y. Simulation �les for CellML �les are not retrieved, because
CellML �les are not yet fully annotated. If the CellML version of the Novak 1997 model had had annotations
"m-phase inducer phosphatase", the database would have also returned the simulation description for that
model.

Comparison with other approaches364

RDF-triple-stores and SPARQL Semantic Systems Biology has been termed a new �eld of research365

that aims to improve formal knowledge representation of computational models to enhance construction,366

comparison, validation, or retrieval (Dumontier et al , 2013). Several projects have started to convert model367

representations into semantically enriched formats to make the models comparable and to integrate the368
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knowledge about computational models better with knowledge contained in bio-ontologies. In general, the369

idea is to transform all data into RDF, store the RDF triples into several databases and provide SPARQL6370

endpoints to access the triples. For example, all models in BioModels Database have been converted into371

OWL representations before, using straight forward to more complex transformation methods (e. g., (Köhn372

and Strömbäck, 2008; Lister et al , 2010; Hoehndorf et al , 2011)). SPARQL has become the de-facto query373

language for the Semantic Web community and is also used in the domain of computational biology, e .g.374

Bio2RDF7 (Belleau et al , 2008) or recently the BioModels Database SPARQL endpoint (Jupp et al , 2014a).375

While an in-depth comparison of graph-databases with RDF triple-stores (and associated query languages) is376

not in the scope of this paper, we could like to point out two disadvantages of RDF triple-stores and SPARQL377

in the domain of computational biology: First, in a triple-store everything is a triple of subject, predicate and378

object, e. g. :a :isRelatedTo :b. In consequence, it is not possible to distinguish links between entities379

(:a :isVersionOf :P06652) and simple entity properties (:a :hasName :cdc25). Second, triple-stores and380

SPARQL are tailored towards sub-graph retrieval. Thus, common graph algorithms like Dijkstra's algorithm381

(shortest path), directed path traversing, spanning trees or sophisticated graph matching patterns are hardly382

applicable on RDF triple-stores (Przyjaciel-Zablocki et al , 2012).383

BioModels Database Recently, the European Bioinformatics Institute in Hinxton, UK, announced384

a SPARQL endpoint for BioModels Database8. All SBML encoded models in BioModels Database were385

converted into RDF representations and added to the EBI RDF Platform (Jupp et al , 2014b). To compare386

our concept against BioModels Database's approach to convert SBML models into RDF, we translated the387

query examples from the EBI web page into queries that we executed in our graph database. The results388

are shown in the following listings. Additionally, Figure 4 shows a visualization for Query BM3.389

MATCH (m:SBML_MODEL)-->(s:SBML_SPECIES)

WHERE (m.ID="BIOMD0000000001")

RETURN m AS Model , collect(s.ID) as SpeciesID , collect(s.NAME) as SpeciesName

Query BM1: From model BIOMD0000000001, list all species identi�ers and names
Result BM1: 12 species IDs (ALL, I, DL, ILL, D, DLL, B, BL, A, AL, IL, BL) and names (ActiveACh2, Intermediate,
. . . )

MATCH (r:RESOURCE)-- >()-[: BELONGS_TO]->(element)-->(m:SBML_MODEL)

WHERE m.ID="BIOMD0000000001"

RETURN element.ID AS Element , LABELS(element) AS ElmentType , collect(r.URI) AS ElementAnnotation

Query BM2: Get element annotations of the model BIOMD0000000001
Result BM2: 104 annotations for 65 distinct elements, for example species ALL is annotated with IPR002394, GO:0005892
and SBO:0000297

MATCH (r:RESOURCE)<-[rel]-()-->e-[: BELONGS_TO]->(m:SBML_MODEL)

WHERE r.URI=~".*GO .*0005892"

RETURN m.ID AS ModelID , collect(e.ID) AS ElementIDs , type(rel) AS Qualifier , r.URI as URI

Query BM3: All model elements with annotations to acetylcholine-gated channel complex
Result BM3: From each model (BIOMD0000000001 and BIOMD0000000002) the same 12 species IDs are returned (ALL,
I, DL, ILL, D, DLL, B, BL, A, AL, IL, BL), all are quali�ed with isVersionOf. A graphical representation is shown in
Figure 4.

390

When comparing the query examples and results, we could easily reproduce all queries and results using391

our system. One of the original SPARQL queries corresponds to Query BM3, asking for models annotated392

with the "acetylcholine-gated channel complex". Due to the missing index support for this RDF store, the393

user must manually look-up and transform this annotation term into a URL, and paste that into the query.394

Our system, in the contrary, is able to retrieve this information automatically by a simple index-based query.395

A detailed example for the automatic conversion of an annotation is given in the aforementioned Query 4 or396

in Query M6 in the Methods section.397

COMBINE Archive The types of meta-data considered in this work are also agreed upon by an e�ort398

called the COMBINE archive (Waltemath et al , 2013b), which aims at publishing extractable archive �les399

that then contain all �les necessary to reproduce a scienti�c modeling result in the life sciences. However,400

6http://www.w3.org/TR/rdf-sparql-query/
7http://bio2rdf.org/
8http://www.ebi.ac.uk/rdf/services/biomodels/

13

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.376v2 | CC-BY 4.0 Open Access | rec: 6 Oct 2014, publ: 6 Oct 2014

P
re
P
rin

ts

http://www.w3.org/TR/rdf-sparql-query/
http://bio2rdf.org/
http://www.ebi.ac.uk/rdf/services/biomodels/


Figure 4: Visualization for Query BM3. The centered, purple node is the requested annotation
GO:0005892, the green nodes are the species linked to the GO annotation, the orange nodes are the mod-
els "Edelstein1996 - EPSP ACh event" (BIOMD0000000001) and "Edelstein1996 - EPSP ACh species"
(BIOMD0000000002).

we argue that the COMBINE archive is not a solution for the management of those �les, but contributes to401

their export and exchange among researchers.402

We conclude that our system incorporates and links knowledge that is in principle already available in403

public repositories, but not yet utilized. The knowledge is encoded in meta-data, in particular links to404

simulation experiments and semantic annotations with terms from bio-ontologies. The key to using this405

knowledge in model management tasks is its explicit linking and indexing in the database. We have demon-406

strated how relevant meta-data can be stored in a graph-database such as Neo4J, and we have exempli�ed407

how the meta-data can subsequently improve model retrieval and thus model reuse.408

Our concept is easy to adapt and implement. An interface to test and query the database described409

in this paper is available.9 In addition, a web API10 designed to search SBML, CellML and SED-ML �les410

is available for testing. A prototype implementation is running as a search service on an instance of the411

Physiome Model Repository, which is the backend of the CellML Model Repository.11412

Materials and Methods413

Mapping XML encoded models and model-related data to the graph database414

When importing models to the database, the database entry point is a document node. This document node415

links to a model node via the directed edge hasModel. The model node has a model name and relations416

(i. e., edges) to nodes that represent model entities. In the case of SBML these entities include species,417

compartments, or reactions. For example, a model's species is represented by its own node. Additionally,418

an edge from the model node to the species node is created and named hasSpecies. Nodes for each419

reaction and compartment are created and connected with hasReaction and hasComartment, respectively.420

Moreover, relations of model elements are mapped to the graph database, i .e. a species node is connected to421

a compartment node with isContainedIn. To ensure an easy traversal upwards, a connection is created from422

each node of the stored model that points to the parent of the current node. The corresponding edges are423

named belongsTo. Furthermore, it is possible to attach an annotation to each model entity, describing the424

particular entity in more detail. All such annotations are stored to the database and indexed. The textual425

descriptions of terms in ontologies such as GO or ChEBI are retrieved from the according web pages, indexed426

and then processed. This index is afterwards used for ranked model retrieval as described in (Henkel et al ,427

2010). Attached to every node is a so-called label that names the type of node, e. g. species, compartment428

or annotation. Labels are indexed and allow to select all nodes of a speci�c type.429

9https://sems.uni-rostock.de/projects/masymos/
10https://sems.uni-rostock.de/projects/morre/
11http://staging.physiomeproject.org/
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Implementation430

Figure 5: Architecture of our graph database. Data from di�erent models, simulation descriptions
or ontologies is imported using a format dependent importer. Each import undergoes a post processing
afterwards. The stored graph and index structures are available via two RestAPI based retrieval interfaces,
Cypher and one an adaption of (Henkel et al , 2010). The data itself is stored in a Neo4J graph database.

We have implemented the graph-based storage according to the architecture depicted in Figure 5. The431

Neo4J12 database stores model �les, simulation descriptions and model-related information in a graph man-432

ner. The retrieval engine is based on the ranked retrieval described in (Henkel et al , 2010). It allows users433

to access the data in the database, and retrieve ranked lists of results for their text queries. Queries are434

resolved using the Lucene framework13, and ranked based on prede�ned similarity features. The data import435

pushes di�erent data formats, including model code, simulation experiment descriptions and ontologies, into436

the graph database. Afterwards a post-process takes care of linking the added data of di�erent domains.437

Models and Simulation Descriptions are added to the database using format-dependent importers.438

Each supported format has its speci�cation. Consequently, importers were implemented for SBML (based on439

jSBML (Dräger et al , 2011)), for CellML, and for SED-ML (based on jlibsedml (Waltemath et al , 2011b)).440

All importers share a common interface which maps the model and simulation �les onto a graph structure.441

The import keeps the models' semantic information and all content that is relevant for later model querying,442

retrieval and display.443

Bio-ontologies available in OWL can also be imported using the owl-api14 and the JFact15 reasoner.444

However, after adding an ontology to the database a post-processing is required to link model or simulation445

description entities to the newly added Ontology concepts. This post-processing is part of the linking process.446

Linking models and simulations is done using the graph query and data modeling language Cypher16447

(Robinson et al , 2013), which is shipped along with Neo4J. The following query shows the command to link448

SBO annotations of models to the corresponding concepts of the SBO using Cypher.449

MATCH (res:RESOURCE), (sbo:SBOOntology)

WHERE (res.URI =~ ".*SBO.*") AND (RIGHT(res.URI , 7) = RIGHT(sbo.id, 7))

CREATE res -[link:IS_ONTOLOGY_ENTRY]->sbo

RETURN count(link);

Query P1: Select and match and link the SBO annotations extracted from models with corresponding concepts from the
SBO.
Result P1: The number of created links.

450

The MATCH clause selects every node that is labeled with the term "RESOURCE" and "SBOOntology"451

into the variable res and sbo, respectively. The WHERE clause restricts the selection to only those nodes452

satisfying the following constraints. In this case, the attribute URI of a resource node must contain the string453

12http://www.neo4j.org/
13http://lucene.apache.org/core/
14http://owlapi.sourceforge.net/
15http://jfact.sourceforge.net/
16http://www.neo4j.org/learn/cypher
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"SBO" and the last seven digits must correspond to the last seven digits of a node id out of the selected454

SBO concepts. This pairs all SBO annotations used in a stored model with the corresponding entry within455

the SB-Ontology. For the selected pairs of nodes the CREATE clause adds a new directed edge to the graph456

connecting both nodes. The label of the selected edge is IS_ONTOLOGY_ENTRY. Finally, the RETURN clause457

counts the number of edges created by this command and returns it to the user. A similar procedure applies458

to other bio-ontologies.459

Supported types of queries460

The Cypher Query Language provides direct access to the data in our graph database. Cypher is the461

declarative language to pose queries against graph structures, similarly to SQL for relational databases.462

Our system supports standard queries such as data look-ups, �ltering and aggregation. In addition, more463

complex queries regarding the model's structure can be posed.464

Look-up and �ltering. Database look-ups and �ltering are shown in Query M1 and in Query M2. In465

these examples, the MATCH clause uses a build-in index to retrieve all nodes labeled as CellML model466

(Query M1) while the WHERE clause restricts the nodes to the ones matching the given name (Query M2).467

The result of the �rst query is a list of 841 stored CellML models, while the second query returns only the468

Tyson 1991 model.469

MATCH (m:CELLML_MODEL)

RETURN m

Query M1: Database look-up. Return all CellML models
Result M1: List of 841 models

MATCH (m:CELLML_MODEL)

WHERE m.NAME = 'tyson_1991 '

RETURN m

Query M2: Database look-up and �ltering. Return CellML models with the name `"tyson_1991"
Result M2: A model node containing the attribute NAME:"tyson_1991"

470

Graph matching. Query M3 shows how graph structures can be queried. In this example, all components471

from the Tyson 1991 model are selected. Eight component names are returned, as denoted in the RETURN472

clause.473

MATCH (m:CELLML_MODEL)-->(c:CELLMLCOMPONENT)

WHERE m.NAME = 'tyson_1991 '

RETURN c.NAME

Query M3: Database graph structure query. Select the aforementioned Tyson model and return all its components.
Result M3: The components YP, Y, M, pM, CP, C2, environment and reaction_constants.

474

Aggregation. In SQL, aggregation functions such as count() or sum() group values from multiple rows475

into a single value. Query M4, shows how to de�ne a query that counts the number of species for each476

model in the graph database. The MATCH clause selects the Tyson 1991 model, all connected components477

and variables. The RETURN clause counts and returns the number of variables for this model. Further478

examples of aggregation queries have been shown in Table 1 in the Results section.479

MATCH (m:CELLML_MODEL)-->(c:CELLMLCOMPONENT)-->(v:CELLMLVARIABLE)

WHERE m.NAME = 'tyson_1991 '

RETURN count(v)

Query M4: Database aggregation query. Count the number of variables contained by any component of the aforementioned
Tyson model
Result M4: This model has 68 variables.

480

Statistics We provide statistics as another type of queries. Query M5 returns the minimum, maximum481

and average for the number of variables attached to components in CellML models. To provide these statistic482
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values, elements (in this case the CellML components) are selected and bound to an aggregation value using483

the WITH clause.484

MATCH (m:CELLML_MODEL)-->(c:CELLMLCOMPONENT)-->(v:CELLMLVARIABLE)

WITH c as component , count(v) as NumOfVar

RETURN min(NumOfVar), max(NumOfVar), avg(NumOfVar), stdev(NumOfVar)

Query M5: Statistics query. Retrieve minimum, maximum average and standard derivation of for the number of variables
attached to a component.
Result M5: A minimum of one and a maximum of 431 variables are attached to a component of a CellML model. On
average each component has 9.64 variables attached with a standard derivation of almost 16.

485

Index support. Finally, Query M6 uses an index to retrieve nodes matching a given pattern. The486

indexed annotations are queried for the term "m-phase inducer phosphatase" using the START clause.487

START res=node:annotationIndex('RESOURCETEXT :(m-phase inducer phosphatase)')

RETURN res

Query M6: Database index query. Retrieve all annotations containing the phrase "m-phase inducer phosphatase"
Result M6: A set of seven resources (InterPro IPR000751; Enzyme Commission number 3.1.3.48; and UniProt: P30311,
P23748, P20483, P06652, P30304)

488

Database scaling489

Büchel et al (2013) describe how to build computational models from biochemical pathway maps. The490

path2models17 project resulted in more than 140.000 SBML models of a total size of 70GB. We used this491

data-set to challenge the database's performance on an average o�ce system (Intel Core 2 Quad @ 2.66 GHz492

CPU, 8 GB RAM, Windows 7 64 Bit). The database was created in 20 hours and 40 min, thus every model493

required 531 ms on average. While importing the path2models project, 45.5 million nodes and 492 million494

relationships where created; the database size is approximately 83GB, including the indices.495
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