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Abstract:

This paper reports an integrated solution, called BALSA, for the secondary analysis of
next generation sequencing data; it exploits the computational power of GPU and an
intricate memory management to give a fast and accurate analysis. From raw reads to
variants (including SNPs and Indels), BALSA, using just a single computing node with a
commodity GPU board, takes 5.5 hours to process 50-fold whole genome sequencing
(~750 million 100bp paired-end reads), or just 25 minutes for 210-fold whole exome
sequencing. BALSA’s speed is rooted at its parallel algorithms to effectively exploit a
GPU to speed up processes like alighment, realignment and statistical testing. BALSA
incorporates a 16-genotype model to support the calling of SNPs and Indels and
achieves competitive variant calling accuracy and sensitivity when compared to the
ensemble of six popular variant callers. BALSA also supports efficient identification of
somatic SNVs and CNVs; experiments showed that BALSA recovers all the previously
validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel detection.
BALSA outputs variants in VCF format. A pileup-like SNAPSHOT format, while
maintaining the same fidelity as BAM in variant calling, enables efficient storage and
indexing, and facilitates the App development of downstream analyses.

BALSA is available at: http://sourceforge.net/p/balsa

INTRODUCTION

With the advance in next generation sequencing (NGS) technologies, whole exome
sequencing (WES) and whole genome sequencing (WGS) have become compelling tools
for clinical diagnosis and genetic risk prediction. Sequencing data requires dedicated
analysis tools to produce a robust characterization before being used by scientists or
clinicians. To this end, analysis pipelines such as Baylor’s Mercury (Reid et al. 2014) and
those commercially available in DNAnexus and Seven Bridges Genomics have been
developed. These pipelines take an automated approach to integrate multiple well-
known open-source analysis components. Leave the cost aside, Mercury reported to
finish the analyses of a WES human sample in 15 hours using one computer node, and a
WGS human sample (NA12878) in approximately 32 hours using 8 computing nodes at
peak. These pipelines have been deployed on public cloud services such as Amazon Web
Services (AWS), which provides the hardware elasticity to analyze up to tens of
thousands of samples simultaneously.

The cost and speed of NGS have been improving much faster than those of computer
hardware. As recently announced by Illumina, sequencing cost is approaching the so-
called “mythical” rate of $1,000 per whole genome sequencing. Many laboratories and
hospitals nowadays routinely generate terabytes of NGS data daily; apart from
sequencing, computational resources for running the above-mentioned analysis
pipelines are indeed a major expenditure. The running cost, theoretically speaking,
increases linearly with the running time and number of computing nodes required. Yet,
in practice, the long running time of such pipelines often coupled with a lot of extra cost
to fix possible errors due to nodes failure or corruption of intermediate data between
the component tools, and to solve unexpected compatibility issues among component
tools . Thus a single tool that is well designed to embrace the functionalities of all
necessary components involved in NGS secondary analysis while being efficient even on
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72  asingle node is promptly needed. The tool shall take raw reads as input, and outputs
73  variants with sensitivity and accuracy competitive to or better than the prevalently
74  utilized combinations of short-read aligners and variant callers. The tool shall have the
75  extra capability to output the details of every single genome position in a space-efficient
76  manner to facilitate users from recurring the analysis and to co-analyze with copious
77  amount of samples. From the efficiency perspective, the tool shall be meticulously
78  designed to maximize the utilization of every subsystem of a computing node.
79
80  Our previous work on short-read alignment, SOAP3-dp (Luo et al. 2013), which fits the
81 problem of aligning individual reads with the massive parallelism provided by a
82  Graphics Processing Unit (GPU), successfully solves the problem by two to tens of times
83  faster than state-of-the-art short-read aligners, while maintaining the highest sensitivity
84  and accuracy with read length of 100bp and 150bp. However, the acceleration is
85 inadequate for the whole secondary analysis. For a typical WGS sample, SOAP3-dp can
86  shorten the alignment time to 2 to 4 hours, yet the follow-up analyses, which include
87  base-score recalibration, de-duplication, realignment and variant calling procedures,
88  still require tens of hours using a single computing node.
89
90 We have developed BALSA, a lightweight total solution for NGS secondary analysis that
91 takes full advantage of the computational power available on a computing node
92  equipped with a multi-core CPU and a GPU device. We have tested BALSA on a node
93  equipped with a 6-core Intel i7-3930k, 64GB 1333MHz memory and an Nvidia GTX680
94  GPU with 4GB memory, the end-to-end time to process a 50-fold WGS human dataset
95  (~150 Gigabases) from FASTQ files into a VCF file of recalibrated variants with a
96  “snapshot” of details per genome position is 5.5 hours and can be as fast as 3 hours on
97  newer and professional models of CPU and GPU. A 210-fold WES human dataset takes
98  24.65 minutes with the same setting.
99
100  BALSA outperforms existing pipelines when considering the sensitivity and accuracy of
101  detecting known variants in simulated data. It generates less SNP conflicts for a deeply
102  sequenced trio family. BALSA’s performance stems from using the 16-genotype model
103  thatincorporates both SNPs and Indels simultaneously in a diploid space, and its
104  proactive and exhaustive realignment that maximizes the local variant signal coherency.
105
106  Figure 1 gives an overview of BALSA. BALSA extends our aligner SOAP3-dp so that
107  while the GPU is aligning the reads, the CPU is processing the alignment results in the
108 memory in parallel. Furthermore, BALSA is able to utilize the GPU for different
109 computational intensive work, such as the exhaustive realignment of reads due to
110  different hypothetical Indels in the reference genome. The speed advantage of BALSA is
111  notentirely due to the GPU; BALSA has intricate memory management to minimize the
112  use of hard disk. In a typical WGS sample, the reads and their alignment results would
113  occupy hundreds of Gigabytes or even Terabytes. BALSA, with a succinct representation
114  of the alignment results, is able to process all the reads for the purpose of variant calling
115 almost entirely in the main memory. Processes like the removal of duplicate reads can
116  be done without sorting a large volume of data records on the hard disk. The details of
117  BALSA’s algorithms and implementations are given in the Supplementary. BALSA has
118  been optimized for Illumina platform, but the workflow can be adapted to other
119  platforms such as lon Proton.
120

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.373vl | CC-BY 4.0 Open Access | received: 25 Apr 2014, published: 25 Apr 2014




121 RESULTS

122

123  To demonstrate the performance of BALSA, we compare its speed and the quality of the
124  identified variants to other pipelines (Table 1), which typically comprise 1) an aligner,
125  2) post-processing tools, and 3) a variant caller. We also compare BALSA to a recently
126  published CPU-based integrated workflow named ISAAC (Raczy et al. 2013).

127

128 Speed for WGS - YH 50-fold 100bp paired-end reads

129

130  First of all, we compare the speed of BALSA, BWA+GATK (DePristo et al. 2011), SOAP3-

131  dp+GATK, and ISAAC on real data. In particular, 50-fold 100bp paired-end reads of the

132 YH sample (Luo et al. 2012) (EBI SRA Accession: ERP001652, Supplementary Appendix

133  1.1) were used (see Supplementary Appendix 2 for the settings and commands). For

134 BWAvO0.7.5a, both the ‘aln’ version (Li & Durbin 2009) and the new ‘mem’ version (Li

135 2013) (with improved speed and sensitivity) were tested, and for GATK, we used best

136  practice v4. The variant caller used is GATK UnifiedGenotyper. All experiments were

137  performed on a computing node with a 6-core CPU (Intel i7-3930k@3.2GHz), 64GB

138 memory, and an Nvidia GTX680 GPU. The time reported is the average time over two

139 repeated runs of each experiment.

140

141  In summary, from raw reads to variants (including SNPs and Indels), BALSA finished in

142 5.49 hours, whereas ISAAC finished in 11.92 hours, and GATK coupled with BWAaln,

143 BWAmem and SOAP3-dp in 88.00, 48.68 and 46.27 hours, respectively. See Figure 1 for

144  a comparison, and Table 2 for a breakdown of the running time. Although the overall

145  time used by BWAmem+GATK and SOAP3-dp+GATK is similar, the alignment time of

146  SOAP3-dp is indeed much shorter than BWAmem (4.12 hours versus 14.56 hours).

147  BWAaln is the longest (46.16 hours). SOAP3-dp’s ability to identify more Indel

148  candidatures causes GATK to run 8 more hours.

149

150  Alignment & variant calling statistics. BALSA (and SOAP3-dp) has the highest alignment

151  sensitivity. When measuring the number of read pairs that have both ends aligned and

152  paired, SOAP3-dp/BALSA reports 97.08%, BWAmem 95.74%, BWAaln 92.22% and

153 ISAAC91.42% (see table S1 for details). Table 3 shows the statistics of the variants

154  (SNPS and Indels) called by different pipelines. For BALSA and GATK, we are able to

155  count the raw SNPs called, as well as those SNPs that pass the VQSR filter with good

156  variant quality, and those passed the filter but with low variant quality. BALSA reports a

157  slightly higher number than GATK in each category (no matter GATK is coupled with

158 BWAaln, BWAmem or SOAP3-dp). The Ti/Tv ratio, Ref Hets, and percentage of overlap

159  with dbSNP are within normal ranges in all cases. The Indel calling statistics is relatively

160  more interesting. When counting Indels that can pass the VQSR filter (with good variant

161 quality), BALSA detected 16.5%, 9.2% and 7.6% more than GATK coupled with BWAaln,

162 BWAmem and SOAP3-dp, respectively. The increase over ISAAC is even more drastic.

163  Note that the statistics reported here do not conclude the accuracy. In the next section

164  we will use simulated data to study the accuracy and sensitivity of variant calling.

165

166 Itis worth-mentioning that BALSA comes with a Random Forest based filtration that

167  can be used to replace the VQSR filtration (method in Supplementary 8.3). The former

168  costs only ~15 minutes for a 50-fold WGS, while giving similar filtration power (in our
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experiment, 98.5% of the variants that pass the new filter (with probability 20.95) are
overlapping with those variants passing the VQSR filter. Figure 3 shows the correlation
between the variant classification probabilities generated by BALSA and the VQSLOD
value generated by GATK’s VQSR.

Sensitivity and Accuracy for WGS - Simulated data

To assess the accuracy and sensitivity of BALSA on variant calling, we used pIRS (Hu et
al. 2012) short-read simulator to obtain a set of 40-fold Illumina-style 100bp paired-end
reads with 500bp insert size, from a modified GRCh37 human reference genome with
2,859,141 known SNPs and 287,733 known Indels (Settings and commands elaborated
in Supplementary Appendix 1.2). We tested three different pipelines to process the
simulated reads for variant calling: 1) BALSA, 2) SOAP3-dp+GATK+"6 prevalently used
variant callers”! and 3) ISAAC. The results of the six variant callers were then combined
to improve the sensitivity and accuracy of individual callers (see the rules in
Supplementary Appendix 2.4) to form an Ensemble call set, referred to as Ensemble
below. Using one computing node (same configuration as above), BALSA and ISAAC
finished in 3.86 and 8.71 hours, respectively, whereas the Ensemble pipeline used more
than a week (the time was dominated by the individual callers, which used about 5
days).

To make a fair comparison, no filtration was applied to the variants called by the three
pipelines. Figure 4 compares the SNPs and Indels called by BALSA and Ensemble with
respect to the correct SNPs and Indels covered by the simulated reads (denoted Truth
below). Perhaps not surprisingly, Ensemble made more incorrect calls for SNPs and
Indels and has higher False Discovery Rate (FDR) than BALSA (SNP: 0.21% versus
0.11%; Indel: 1.04% versus 0.34%), while Ensemble achieves higher sensitivity than
BALSA, precisely, 0.04% and 0.76% higher in SNPs and Indels, respectively. Further
investigation into the variants exclusively detected by Ensemble (2,156 SNPs and 2,241
Indels) indicated that 74.77% and 71.62% of such SNPs and Indels are covered with
less than 10 reads generated from the simulation; and for the remainders supported by
>10 reads, 94.12% and 88.77% of the SNPs and Indels are with alternative allele
frequency (AAF) lower than 0.3. Hence we conclude that over 95% of the variants that
are exclusively detected by Ensemble are unreliable and would eventually be filtered.
Therefore, BALSA’s sensitivity and accuracy is competitive to the combination of 6
prevalently used variant callers.

Figure 5 shows the comparison between BALSA and ISAAC. BALSA clearly
outperformed ISAAC in terms of sensitivity (1.66% or 47,413 more SNPs, and 1.06% or
3,044 more Indels), and so did Ensemble. ISAAC’s performance is probably limited by
its alignment algorithm as its sensitivity is lower than all the other callers tested, where
3.67% less reads were aligned and 5.66% less reads were properly paired when

1 The variant callers tested include Atlas (Challis et al. 2012), Freebayes (Garrison &
Marth 2012), GATK HaplotypeCaller, GATL UnifiedGenotyper, Samtools (Li et al. 2009),
and Mutect (only SNP) (Cibulskis et al. 2013)/ Varscan (only Indel) (Koboldt et al.
2012). See Table 1. Note that in view of the results on real data, we have not tested
BWA-based pipelines.
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211  compared to BALSA/SOAP3-dp. Notably, ISAAC has a slightly lower FDR than BALSA
212 (0.10% and 0.12% lower for SNP and Indel, respectively).

213

214  In Figures S1 and S2, BALSA is further compared with each of the six individual caller
215 usedin Ensemble. BALSA, while outperformed the 6 individual callers in either

216  sensitivity or accuracy, achieved the best trade-off (SNP: Figure S1, Indel: Figure S2).
217

218 WAGS - Trio study

219

220  To further test the accuracy of BALSA, SNP trio conflict analysis was performed. We
221  used a trio from CEPH pedigree 1493, which consists of family members NA12877

222  (father, ERR091567-70, 54.59x), NA12878 (mother, ERR091571-74, 56.94x) and

223  NA12882 (child, ERR091575-78, 54.18x), with data from Illumina Platinum Genome
224  Project (Illumina). We measured the number of Mendelian SNP conflicts, each of which
225 isavariant called in the child that is inconsistent with the genotypes of the parents. We
226  run BALSA and BWAmem+GATK+UnifiedGenotyper on the three samples (settings and
227  commands elaborated in Supplementary Appendix 2.1). The results of the two pipelines
228  were transformed to gVCF format and analyzed by the trio conflict evaluation tool,

229  which available as a part of the gvcftools package . BALSA took less than 20 hours to
230 analyze the three samples by using just a single computing node (same configuration as
231  above), while the GATK pipeline use 266 hours.

232

233  Asexpected, BALSA reported more variants than BWA+GATK: 250k-400k more per
234  sample, and 229k more with respect to the union of all SNP sites of the three samples.
235  More interestingly, the number of SNP conflicts detected by BALSA is 27k less than that
236  of BWA+GATK; specifically, the conflict rate is 4.60% for BALSA and 5.47% for

237 BWA+GATK. This shows that BALSA provides higher sensitivity and accuracy than

238 BWA+GATK.

239

240 Production testing on WGS - 90 Chinese Individuals

241

242  To test BALSA with the workload of a population scale study, we analyzed whole

243  genome sequencing data of 45 CHB and 45 CHS samples from the 1000 genomes project
244  (Table S2). In total, we have 90 samples of 100bp paired-end reads with input size

245  varying from 51.61 to 84.77-fold per sample (64.68-fold on average).

246 A computer cluster of 8 machines with three different hardware settings were used: 1)
247 5 machines with a 6-core Intel i7-3730k@3.2GHz + Nvidia GTX680, 2) 2 machines with
248  a6-core Intel E5-2620@2GHz + Nvidia GTX680, 3) 1 machine with a 6-core Intel E5-
249  2620@2GHz + Nvidia Tesla K40. All 90 samples were analyzed by BALSA and with

250  variants filtered by GATK VQSR. It took 3.13 days for the cluster to process all 90

251 samples (Table S3 shows the time consumption of each sample). Limited by the

252 performance of the centralized storage for concurrent access by 8 machines, BALSA
253  consumed more time on loading reads and writing results. From the statistics of run
254  time on different hardware, we observed that a CPU with higher clock rate helps BALSA
255  to better utilize the power of GPU. In order to utilize the extra power of newer GPU

256  models, BALSA needs optimizations on the computation that utilizes CPU in the future.
257
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The VCF files of the 90 individuals are available at
http://www.bio8.cs.hku.hk/dataset/BALSA/90Chineseldv/VCFs/.

Somatic SNV and CNV detection on WGS - Leukemia

We analyzed a pair of normal-tumor WGS sample on Donor Cell Leukemia. A previous
study provides experimentally validated disease causing Somatic SNVs and CNVs on this
paired sample (Ho et al. 2012). BALSA finished in 4.52 and 4.54 hours for the normal
(44.32-fold) and tumor (42.93-fold) sample, respectively. Using the SNAPSHOTSs of the
paired sample as input, BALSA’s Somatic Mutation caller (Supplementary 9) finished in
16.47 minutes and generated 128,623 Somatic SNVs and 55,710 Somatic Indels passing
the filter (Commands elaborated in Supplementary Appendix 2.1.4). BALSA detected all
the 16 Sanger validated disease causing SNVs (Table S4).

For comparison, we ran “SOAP3-dp+GATK”, followed by two somatic mutation callers
Mutect and SomaticSniper, which finished in 7.32 hours and 1.14 hours, respectively.
When considering only functional changing mutations with types including “missense”,
“stop loss”, “stop gain” and “splice site”, BALSA, Mutect and SomaticSniper (Larson et al.
2012) identified 351, 2,945 and 8,963 somatic SNPs, respectively. Using the 16-
genotype probabilistic model (Supplementary 8), which considers the coexistence of
SNPs and Indels per site in a diploid space, BALSA effectively narrowed down the

candidates of somatic variants for further investigation.

Table S5 shows the comparison between the experimentally validated somatic CNVs
and the ones correspondingly detected by BALSA (Method in Supplementary 10).
BALSA authentically detected the somatic CNVs with a fine-grain boundary in the
validated regions (Table S6).

WES - a 210x TCGA lung adenocarcinoma sample

We analyzed a 209.53-fold whole-exome sequenced TCGA lung adenocarcinoma sample
(Cancer Genome Atlas Research 2012)(ID TCGA-44-7662) using BALSA. The pipeline
finished in 24.65 minutes, identified 97,640 SNPs and 6,614 Indels passing the variant
classification. Exome sequencing targets only tens of mega-bases of the genome; Where
BALSA stores the SNAPSHOT file on a per-base basis for WGS, it stores only the user
defined exome regions for WES in the purpose of storage saving (Supplementary 7).

DISCUSSION

BALSA, as an extension of our GPU-based aligner SOAP3-dp, can finish the analysis of
50-fold whole genome sequencing data in a few hours; it was designed to favor the fast
turn around time requirement for the clinical context. Unlike the traditional pipelines
and tools that need to read and write Terabytes of intermediate data to the hard disk,
BALSA performs the whole secondary analysis including quality control, alignment,
base score recalibration, de-duplication and realignment in memory on the fly. With a
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303 neatly designed data structure, the analysis of a human genome costs only about 45
304 gigabytes of memory, which makes BALSA applicable on most of the recent servers

305 equipped with a commodity GPU.

306

307 BALSA was designed with sensitivity and accuracy prioritized over speed, and there still
308 exists room for improving the speed of BALSA from an engineering perspective, such as
309 1) design a more efficient pipeline to overlap the CPU tasks and GPU tasks; 2) reduce
310 the data to be transmitted to and from GPU with better schema for reusing the data; 3)
311  utilize new GPU features such as Hyper-Q to overlap multiple kernels to gain an even
312  better hardware utilization. Better understandings on how the parameters affect the
313  behaviors of the operating system also helps to improve the performance of BALSA in a
314 longrun (See Supplementary 2.5 for OS optimization guide).

315

316  Given BALSA'’s high efficiency, large genome centers may consider re-processing their
317  historical sequencing data (say, thousands or even up to hundreds of thousands of

318 samples) using BALSA so as to come up with standardized results for larger-scale

319 genome analysis. Conventional thinking would suggest BALSA to store the alignment
320 results of individual reads in BAM format or even the recently released CRAM

321 (reference-based) format for later analysis. However, even if we just want to query a
322  certain genome position over all the samples, the overhead in processing the alignment
323  results in BAM or CRAM format is huge (the BAM format would demand a lot of time for
324  decompression, and the CRAM format would require both decompression and

325 recovering information from the reference). Suppose we have a hundred thousand

326  samples, we estimate that using BAM or CRAM format, it would require several hours
327  justto query a certain position of all the samples.

328

329  BALSA takes a different approach to store the alignment results for large-scale genome
330 analysis. [t stores a “SNAPSHOT” that records the per-base details with almost the same
331 fidelity of a pileup from a BAM file. It allows much more efficient retrieval of per-base
332 information, and it does not occupy much space, about 12 and 0.25 gigabytes in size
333  after LZ4 compression for a WGS and WES sample, respectively. BALSA’s caller was
334  designed to directly work on the “SNAPSHOT”. Users can easily write their own

335 downstream Apps utilizing SNAPSHOT, such as identifying SNPs and Indels from a

336 SNAPSHOT or identifying somatic variants from multiple SNAPSHOTSs (see

337  Supplementary 7 for design and details), say, one may want to query the genotype

338 frequency of ‘GT’ at a recurrent position in a tumor suppressor gene for those non-

339  smoking female samples with age ranging from 50-80.

340

341 BALSA primarily focuses on the secondary analysis and takes input in the form of reads
342  (FASTQ format). At present the process of preparing reads from a sequencer’s raw

343  signal, a.k.a. base-calling, relies almost exclusively upon vendor-provided software, such
344  aslllumina’s Bcl2FastQ (Illumina), which has been adopted by pipelines such as

345  Mercury and ISAAC as a pre-processing before secondary analysis. Notice that, when
346  compared with the time used by BALSA, the time consumed by such base calling

347  software would become a bottleneck. To tackle the problem, some vendors are also
348  using GPU to accelerate base calling; for example, in the Ion Proton platform (Gupta &
349  Siegel).

350
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351 BALSA can be easily integrated into existing workflows providing its simple interface.
352  For better automation, BALSA will be improved to integrate external metadata

353 resources and inputs such as a reference genome, sequence data locations, and a

354  capture design bed file and therefore requires interaction with (Laboratory Information
355 Management System) LIMS. To make BALSA portable, we will implement canonical APIs
356 for transferring data between BALSA and LIMS. These hooks are scripts that can be

357 modified to query data from any metadata resource. LIMS and actively invocate BALSA
358 when the sequencing data of a sample is ready. Examples of information served to

359  BALSA from LIMS are the reference genome and gene regions.

360

361 The current implementation of BALSA assumes a computing node with a 6-core CPU,
362 40+ GB of memory and a GPU board. Such a configuration is pretty affordable to even
363 small laboratories. Nevertheless, we have also considered how to make BALSA to run on
364  other configurations, in particular, those available in public clouds like AWS. Very often
365 cloud facilities may provide “computing instances”, some of which with a lot of memory
366  butno GPU, while others with too many GPUs but not enough memory. E.g., AWS

367 provides a GPU instance “cgl.4xlarge”, featuring 16 CPU cores, 22.5GB memory, two
368 Nvidia Tesla M2050 GPU devices, and 10 Gigabit inter-connectivity to other instances.
369 To this end, we will implement an offload mode for BALSA so that BALSA can be run on
370  two instances in parallel, one with sufficient memory but no GPU, plus one with two
371  GPUs but insufficient memory. We expect that with suitable adjustment, the throughput
372  of such implementation would be close to two copies of BALSA each running on a node
373  with sufficient memory and a GPU.
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451 Figures

452  Figure 1. BALSA, based on SOAP3-dp, performs the whole secondary analysis (raw
453  reads to variants) in memory with most of the modules accelerated with GPU.
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457  Figure 2: Time consumption comparison between pipelines analyzing YH 50-fold 100bp
458  paired-end WGS data.
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461  Figure 3. Correlation plot between the RandomForest Probability generated by BALSA
462  and the VQSLOD value generated by GATK’s VQSR on YH 50-fold 100bp paired-end WGS

n- 463 data.
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466  Figure 4. Venn graphs illustrating the overlaps between 1) BALSA, 2) the Ensemb]le call
467  set,and 3) the known variants on both SNP and Indel. AAF denotes “alternative allele
468 frequency”, i.e. percentage of reads supporting the alternative allele among all

469  simulated reads covering a variant. DP represents the number reads simulated covering
470  avariant. Qual means the variant score assigned by BALSA.
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m 473  Figure 5. Venn graphs illustrating the overlaps between 1) BALSA, 2) ISAAC, and 3) the
m 474  known variants on both SNP and Indel.
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477 Tables

478 Table 1. Aligners, post-processing tools, variant callers and integrated pipelines used for
479  comparison with BALSA.

Step Tool Citation
BWA-bwaaln Li et al., 2009
Aligner BWA-bwamem Lietal., 2013
SOAP3-dp Luo et al., 2013
. GATK DePristo et al., 2011
Post-processing - -
Picard picard.sourceforge.net
Atlas2 Challis et al., 2012
Freebayes Garrison et al., 2012
GATK HaplotypeCaller DePristo et al., 2011
Variant caller GATK UnifiedGenotyper DePristo et al., 2011
Samtools Li et al., 2009
Mutect Cibulskis et al., 2013
Varscan Koboldt et al., 2012
Pipeline ISAAC Raczy et al., 2013
. Mutect Cibulskis et al., 2013
Somatic Caller —
SomaticSniper Larson et al., 2011
480
481
482  Table 2. Time consumption of different pipelines. All number in hours.
BWAaln BWAmMem SOAP3-dp
Step GATK+Picard GATK+Picard GATK+Picard ISAAC BALSA
UnifiedGenotyper [ UnifiedGenotyper | UnifiedGenotyper
Alighment 46.16 14.56 4.12
Sort and Merge 1.40 1.70 1.74
Mark Duplicate 6.84 6.25 5.50
Realigner Target Creator 0.93 0.77 1.06 9.89 5.24
Indel Realigner 10.89 7.37 15.70
Base Score Recalibration 5.20 4.75 491
PrintReads 12.17 9.92 9.47
Variant Calling 4.41 3.37 3.77 2.03 0.24
483 Total 88.00 48.68 46.27 11.92 5.49
484
485
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486
487
488
489
490

491
492

493
494
495

496

Table 3. Statistics of variants called by different pipelines. "VQSR LowQual" means
variants passed GATK VQSR but with i) QUAL<50 for pipelines using UnifiedGenotyper
and ii) QUAL<30 for BALSA. "RandomForest LowQual" means variants with probability

> 0.95 using random forest classification but with QUAL<30 for BALSA. Please refer to
Supplementary 8.4.1 for the details of the variant QUAL profile of BALSA.
Variant BWAaln BWAmMem SOAP3-dp
Metric GATK+Picard GATK+Picard GATK+Picard ISAAC BALSA
Type UnifiedGenotyper |UnifiedGenotyper | UnifiedGenotyper
Raw 4,175,654 4,267,377 4,978,914 3,429,162 5,239,864
VQSR PASS 3,324,891 3,307,619 3,383,853 - 3,444,915
VQSR LowQual 151,933 136,392 308,321 877,964
SNP RandomForest PASS - - - 3,433,397
RandomForest LowQual - - - - 871,422
Ti/Tv 2.08 2.07 2.05 2.08 2.04
dbSNP v137 99.62% 99.47% 98.60% 99.29% 98.51%
Ref Hets 54.40% 54.40% 55.40% 57.20% 58.20%
Raw (Indel) 605,966 615,351 685,541 455,103 974,033
Indel VQSR PASS 576,889 615,351 624,629 - 671,914
RandomForest PASS - - - - 630,827
dbSNP v137 90.70% 90.49% 87.80% 93.38% 89.01%

Table 4. Run time, number of SNPs passing filter (with PASS tag), union of SNP sites and
total number of SNP conflicts of BALSA and BWA+GATK for the NA12877, NA12878 and
NA12882 family. Union is the SNP sites called in all samples or called in any sample.

Pipeline Sample |Time (Hour)| SNPs (PASS) Union | Conflicts |Conflict Rate
NA12877 6.98 3,522,647
BALSA NA12878 6.24 3,439,917 |4,556,818 | 209,552 4.60%
NA12882 6.65 3,428,070
NA12877 87.81 3,125,185
BWA+GATK | NA12878 91.42 3,158,382 |4,327,046 | 236,608 5.47%
NA12882 87.01 3,183,451
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