Clinical trials and Myokines

Hellsten Ylva

Background: Cardiovascular disease is a major cause of death in the western world. Regular physical activity is known to be highly beneficial for improving cardiovascular health status. **Methods:** The current abstract is based on the authors own data and a literature review. The authors own studies have all been accepted by the local ethics committee. In intervention studies the effect of physical training on cardiovascular risk parameters as well as on specific biochemical systems in the cardiovascular system have been studied. Changes in plasma myokine concentrations have been assessed in acute exercise and training interventions in different populations. **Results:** The conducted studies within the cardiovascular area clearly show that regular physical activity is highly beneficial for vascular function and for reducing blood pressure both in aged individuals and in individuals with lifestyle related disease. An ongoing study at The University of Copenhagen conducted in collaboration with Martin Daumer will show to what extent estrogen loss in connection with menopause in women can be replaced by physical activity and thereby retard the progressive risk for cardiovascular disease commonly seen in women after menopause. Many studies have documented that myokines are elevated in response to exercise but more systematic investigations of how specific myokines are altered in response to various types of intensities and duration of exercise and in different subsets of the population is required to more solidly assess their usefulness as markers of physical health status. **Discussion/conclusion:** Based on data from our own studies and studies in the literature, physical activity should be recommended for prevention of cardiovascular disease and should be a primary recommendation in treatment of patients with cardiovascular disease to improve overall cardiovascular health. Use of myokines as markers of health status may be useful but selection of the best markers should await further evidence from systematic studies. <!--[endif]-->
Clinical trials and Myokines

The study of cardiovascular function and health and the impact of physical activity

Can myokines be used as indicators of training/health status?

Ylva Hellsten, Department of Nutrition, Exercise and Sports, Copenhagen University, Denmark
Cardiovascular function and growth - why are we interested?

Sports performance

• The limits of endurance performance lies in the cardiovascular system

Health - hypertension

• 8 million people die every year in the world on as a consequence of elevated blood pressure

• Approximately 25-40% of the adult Danish population have elevated blood pressure

• Relation to physical activity: For every 2 mm of reduction in blood pressure it is estimated that the risk of death by stroke is reduced by 10% and the risk of death by ischemic cardiac disease reduced by 7%
Aspects of the cardiovascular system that we study in man

A heart pumps out > 200 million liters of blood in a lifetime

Red blood cells

Platelets

Oxygen

Heart

Arteries

Arterioles

Veins

Venules

Capillaries

Microcirculation
How we study blood flow regulation/vascular function in humans

- Infusion of compounds
- Blood sampling
- Knee extensor model
- Catheterization
- Blood flow measurements
- Microdialysis
- Pharmacological interventions
- Muscle biopsy
- Rodents
- Microscopy
- Cell culture
Muscle blood flow in relation to workload: a precise balance between metabolic demand and oxygen delivery

Leg blood flow

Exercise intensity

Saltin et al. 1998
In aging and cardiovascular disease vascular function in the arm is impaired

In aging vascular function in the leg is impaired

Femoral arterial acetylcholine infusion

Change in leg vascular conductance (ml min⁻¹ mmHg⁻¹)

Arterial acetylcholine infusion rate (μg min⁻¹ kg⁻¹)

<table>
<thead>
<tr>
<th>VO₂ max (ml/min/kg bw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young: 45±2</td>
</tr>
<tr>
<td>Aged utr: 26 ±1</td>
</tr>
<tr>
<td>Aged Tr: 46 ±3</td>
</tr>
</tbody>
</table>

Nyberg et al. 2012

Infusion of Ach
Blood sampling
Can you improve cardiovascular health by training in aged individuals— or is it too late?

Training of 27 healthy men 60-65 years of age
Spinning 2 x week + crossfit 1 x week for 8 weeks

Resveratrol supplementation
Eight weeks of physical activity increases maximal oxygen uptake in aged sedentary men
Eight weeks of physical activity lowers mean arterial blood pressure in aged sedentary men

And a number of other parameters related to cardiovascular health were improved by training
Conclusive remark

Training is highly effective in improving cardiovascular health, including in aging and cardiovascular disease

(but be careful with your supplements)
Copenhagen Women Study
Women’s health during the menopausal transition (45-55 years)
Background for study

Due to the effects of estrogen, women have a lower risk than men for cardiovascular disease before menopause.

After menopause the loss of estrogen
- increases the risk of cardiovascular disease
- increases loss of bone mass
- increases loss of muscle mass
- increases the risk of metabolic disease

Exercise affects similar molecular pathways as estrogen and has marked beneficial effects on health.
Hypotheses of study

Exercise training will limit the adverse effects of estrogen loss on:
- Vascular function and growth
- Cardiac structure and function
- Metabolic status and fat distribution
- Bone density
- Muscle mass

And will improve:
- the level of daily activity
- reduce depression and anxiety

Motivational coaching will have positive effects on adherence to physical activity.
Collaborative partners outside department:

- Henrik Larsson, Glostrup Hospital, **MR scanning**
- Charlotte Suetta, Glostrup Hospital, **DXA scanning**
- *Martin Daumer, The Human Motion Institute, Munich, Assessments of daily activities*
- Niklas Rye Jørgensen, Glostrup Hospital, **bone metabolism**,
- Ruth Frikke Schmidt, Rigshospitalet, **Genetics**
- Lars Bo Nielsen, Rigshospitalet **Cardiovascular markers**
- Lotte Enevoldsen, Rigshospitalet **Fat and glucose metabolism**
Overall experimental design

Healthy women 45-55 yrs

Post-menopausal

Spinning-Training N=30

Control N=30

Pre-menopausal

Spinning-Training N=30

Control N=30

Intervention for 10 months
Testing pre and at 3 and 10 months

N=15+15: Fat metabolism/insulin sensitivity

N=15+15 Vascular and cardiac function
Measured parameters in study

CHARACTERIZATION OF SUBJECTS

- \(\text{VO}_2 \text{ max} \)
- Body composition incl bone density
- Plasma lipid status
- Oral glucose tolerance test
- Food registration
- Questionnaires (Social and psychological aspects)
- Muscle and fat biopsies

SPECIFIC ASSESSMENTS

- Assessment of **vascular function** (with focus on prostaglandins)
- Assessment of **cardiac structure and function** (MR and echo doppler)
- Assessment of **angiogenic potential**
- Assessment of **daily activities**
- Assessment of **insulin sensitivity** by euglycemic hyperinsulemic clamp
- Assessment of **fat metabolism**
- Interviews (Sociology)
- Coaching (Psychology)
Could we use myokines or other compounds for motivational feedback and as markers for training and health status?
What factors do we associate with health improvements?

- Decreased blood pressure
- Improved vascular function
- Improved cardiac function
- Improved muscle function
- Improved fitness level
 (maximal oxygen uptake)
- Improved insulin sensitivity
 (Decreased BMI)
- *(Increased muscle/fat ratio)*

How can we assess these parameters? Or even better, can we find a single representative marker for these parameters?

Myokines?
What are myokines?

Muscles, exercise and obesity: skeletal muscle as a secretory organ

Bente K. Pedersen and Mark A. Febbraio
Qualities of a useful exercise/training marker:

- Similar behaviour in different people
- Not too variable by factors other than exercise
- Sufficiently large change in plasma with exercise/training
- Reliable time course
- Easy to conduct reliable measurements
- Should be a motivational marker
Myokines that increase in plasma after exercise

<table>
<thead>
<tr>
<th>Myokine</th>
<th>Enhanced serum level after exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGPTL4</td>
<td>✓ [75]</td>
</tr>
<tr>
<td>BDNF</td>
<td>✓ [63, 64]</td>
</tr>
<tr>
<td>FGF21</td>
<td>✓ [83]*</td>
</tr>
<tr>
<td>FSTL1</td>
<td>✓ [112]</td>
</tr>
<tr>
<td>IL-6</td>
<td>✓ [35]</td>
</tr>
<tr>
<td>IL-7</td>
<td>—</td>
</tr>
<tr>
<td>IL-8</td>
<td>—</td>
</tr>
<tr>
<td>IL-15</td>
<td>✓ [49–51]</td>
</tr>
<tr>
<td>Irisin</td>
<td>✓ [55, 57]</td>
</tr>
<tr>
<td>LIF</td>
<td>—</td>
</tr>
<tr>
<td>MCP-1</td>
<td>✓ [32, 69]</td>
</tr>
<tr>
<td>Myonectin</td>
<td>✓ [86]</td>
</tr>
<tr>
<td>Myostatin</td>
<td>✓ [88]*</td>
</tr>
<tr>
<td>PAI-1</td>
<td>✓ [173]*</td>
</tr>
<tr>
<td>PEDF</td>
<td>✓ [51]</td>
</tr>
</tbody>
</table>

✓: secretion, enhanced regulation of myokine has not been shown. *: Myok

Raschke & Eckel, Mediators of Inflammation, 2013
Plasma myokine/cytokine response to strenuous endurance exercise
Serum levels of IL-6 after 30 min of concentric or eccentric exercise

Proposed roles of IL-6 in exercise
- Glycogen censor
- Fat oxidation
- Lipolysis
- TNF-α suppressor

IL-6 transcription in response to exercise-relationship with glycogen levels

Figure 2. Biphasic transcription of IL-6 in isolated nuclei from muscle biopsies obtained before and during exercise.

Copyright Federation of American Societies for Experimental Biology (FASEB). Please see the journal’s copyright policies at www.fasebj.org to obtain permission to use this image.
Plasma IL-6 level in response to 3 h of exercise is similar before and after training.
Plasma Irisin in response to 45 min of exercise - effect of training

Proposed role of Irisin
- Browning of fat (leading to increased energy expenditure through dissipation of heat)

Norheim et al. FASEB J, 2014
Plasma IL-15 in response to 3 h of cycling exercise

Proposed roles of IL-15 in exercise
- Increased hypertrophy of muscle
- Decrease in fat mass

Muscle IL-15 mRNA in response to resistance exercise

Nielsen et al. JPhysiol 2007
Plasma levels of adiponectin, leptin, IL-6 and CRP before and after training in lean and obese persons

Proposed roles of adiponectin
- Insulin resistance
- Protection of endothelial dysfunction

Adiponectin

Proposed roles of Leptin
- Reduces hunger
- Increases energy expenditure

Leptin

Proposed role of CRP
- Pro-inflammatory

IL-6

CRP

Samjoo et al. 2013
Parametres associated with health improvements

- Decreased blood pressure
- Improved vascular function
- Improved cardiac function
- Improved muscle function
- Improved fitness level (maximal oxygen uptake)
- (Decreased BMI)
- Improved insulin sensitivity
- (Increased muscle/fat ratio)

Potential indicators

- Fasting blood glucose levels (Glucose)
- Plasma HDL/LDL ratio (HDL/LDL levels)
- Plasma markers of inflammation (Adipokines: leptin, TNFa, PAI-1, Resisitin)
- Plasma markers of atherosclerosis (CRP, VCAM-1, ICAM-1)
- Markers of vascular function (Endothelin-1, follistatin related protein-1)

Can any one of myokines or other markers be used?

- Resting heart rate
- Resting blood pressure
- Time trial (walking, running)
Acknowledgement

Group and collaborators
Bengt Saltin
Stefan Mortensen
Michael Nyberg
Jens Bangsbo
Lasse Jensen
Ane Hansen
Karina Olsen
Gemma Kroos
Jens Jung Nielsen
Ulrik Frandsen
Jan Lynge

Funding
Danish Council for Independent Research-Medical Sciences
Lundbeck Foundation
Novo Nordisk Foundation