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Abstract10

Long-lived marine megavertebrates (e.g. sharks, turtles, mammals, and seabirds)11

are inherently vulnerable to anthropogenic mortality. Although some mathematical12

models have been applied successfully to manage these animals, more detailed treat-13

ments are often needed to assess potential drivers of population dynamics. In partic-14

ular, factors such as age-structure, density-dependent feedbacks on reproduction, and15

demographic stochasticity are important for understanding population trends, but are16

often difficult to assess. Lemon sharks (Negaprion brevirostris) have a pelagic adult17

phase that makes them logistically difficult to study. However, juveniles use coastal18

nursery areas where their densities can be high. Thus, we use a stage-structured,19

Markov-chain stochastic model to describe lemon shark population dynamics from a20

17-year longitudinal dataset at a coastal nursery area at Bimini, Bahamas. We found21

that the interaction between delayed breeding and demographic stochasticity accounts22

for 33 to 49% of the variance. Demographic stochasticity contributed all random effects23

in this model, suggesting that the existence of unmodeled environmental factors may24

be driving the majority of interannual population fluctuations. In addition, we are able25
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to use our model to estimate the natural mortality rate of older age classes of lemon26

sharks that are difficult to study. Further, we use our model to examine what effect27

the length of a time series plays on deciphering ecological patterns. We find that—28

even with a relatively long time series—our sampling still misses important rare events.29

Our approach can be used more broadly to infer population dynamics of other large30

vertebrates in which age structure and demographic stochasticity are important.31

1 Introduction32

Many large marine megavertebrates (e.g. sharks, turtles, mammals, seabirds) are particu-33

larly vulnerable to anthropogenic mortality due to their complex life history characteristics,34

including long lifespans, delayed maturity, low fecundity, and extended migrations (Fujiwara35

and Caswell 2001; Baum et al. 2003; Lewison et al. 2004; Ward-Paige et al. 2012; Senko36

et al. 2014). These animals often act as ecological keystones, and their removal can lead to37

considerable ecosystem changes such as cascading ecological effects on lower trophic levels38

(Lewison et al. 2004; Myers et al. 2007; Heithaus et al. 2008; Wirsing et al. 2008; Baum and39

Worm 2009; Ferretti et al. 2010; Heithaus et al. 2010). For example, as predators, sharks not40

only regulate their own prey populations but also those of species deeper in the food web41

(Myers et al. 2007; Baum and Worm 2009; Ferretti et al. 2010; Heithaus et al. 2010) and see42

recent review by (Heupel et al. 2014). Given their importance to ecosystem stability and43

the multiple anthropogenic threats they face (Kyne et al. 2012; Worm et al. 2013), it is im-44

perative that we develop a better understanding of shark population dynamics, particularly45

to identify primary drivers of annual population variation.46

Physiologically structured population models (Crouse et al. 1987; Caswell 2001; Mor-47

ris and Doak 2002; Brauer and Castillo-Chávez 2012) that incorporate delayed breeding48

(Gourley and Kuang 2004; Wang et al. 2009), density-dependent mechanisms (Neubert and49

Caswell 2000; Caswell 2001), demographic stochasticity (Morris and Doak 2002; Ovaskainen50

and Meerson 2010; Jenouvrier et al. 2012; Mills 2012; McCarthy and Possingham 2012), or51

some combination of these processes, have been applied to many ecological systems to an-52

swer questions related to population dynamics, conservation, and management. In examining53
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shark populations, physiologically structured discrete demographic models have been used54

to study overfishing and population viability, calculate specific demographic parameters, and55

predict population dynamics (Hoenig and Gruber 1990; Cortés 1998; Gallucci et al. 2006;56

Gedamke et al. 2007; Mollet and Cailliet 2002; Knip et al. 2010; Cortés 2002; Beerkircher57

et al. 2002; Booth et al. 2011; Tsai et al. 2010; Forrest and Walters 2009; Dulvy and Forrest58

2010), also see review (Cortés 2007). Although these demographic models are useful, they59

typically have three key shortcomings (Cortés 2007): (1) they typically include assumptions60

that are biologically unrealistic, including density independent, deterministic mechanisms,61

which makes application of model outputs to real data difficult to accept; (2) given that62

these models are deterministic, they cannot capture demographic stochastic events, which63

are likely to be important drivers of interannual population fluctuations; and (3) parame-64

terization and validation of such models from data are often logistically difficult and require65

long-term field operations (Lewison et al. 2004; McCauley et al. 2012).66

The third challenge has been met by a longitudinal field study of lemon sharks (Negaprion67

brevirostris) at Bimini, Bahamas. Data from this study includes an annual population census68

of juvenile lemon sharks (ages 0-2 years) from 1996 to the present. The number of juveniles in69

our study population (see Methods) typically fluctuates between 50 and 100 sharks, although70

the complete range is estimated to be between about 35 and 150 (Fig. 1), which illustrates71

the significance of annual fluctuations in the juvenile age class of this lemon shark population.72

Also, fecundity and mortality rates have been estimated precisely using mark-recapture and73

genetic methods (Gruber et al. 2001; Feldheim et al. 2002 2004).74

The causes of annual variation in population size remain unclear for many species, and75

we are unaware of any previous studies that have assessed these causes in detail for lemon76

sharks. Furthermore, little is known regarding mortality rates of both the larger juveniles77

(ages 3-11), who leave the nursery site around age three, and the adults (ages 12+) who78

mature at approximately 12 years of age (Brown and Gruber 1988; Kessel 2010).79

Here we present a mathematical model detailing annual fluctuations in a juvenile lemon80

shark population at Bimini, Bahamas. The model is physiologically structured, with age class81

as the (discrete) structuring variable. Hoenig and Gruber (1990) also used a physiologically82

structured model in the form of a Leslie matrix. Unlike our model, their work only deals83
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with deterministic models. We make births and deaths stochastic, but fix environmental84

parameters. We parameterize the model using estimates of fecundity and juvenile mortality85

rate estimates obtained from the field study described above and apply inverse pattern-86

oriented techniques to fit the model to data (Wiegand et al. 2003; Grimm et al. 2005; Hartig87

et al. 2011; Anadón et al. 2012).88

We show that demographic stochasticity in the model predicts only 33% to 49% of the89

observed variance. Therefore, we predict that another source of stochasticity, probably90

environmental, accounts for at least half of the variance observed in annual population91

fluctuations in this population of lemon sharks. In addition, our use of inverse pattern-92

oriented modeling allows us to estimate the unknown mortality rates of subadults and adults,93

which illustrates the utility of this type of modeling. Further, such modeling can be used to94

study how sample size (length of the time series) affects estimated population parameters95

and dynamics. We find that time series with 15 consecutive years may be too short to96

capture critical, but rare, stochastic events.97

2 Methods98

2.1 Study Site and Field Data99

This study builds on field work conducted in Bimini Lagoon, Bimini, Bahamas (25o44N,100

79o16W). The Biminis are located approximately 86 km east of Miami, Florida and provide101

habitat for numerous species of fish, arthropods, birds, and mollusks (Jennings et al. 2012).102

Of the three lemon shark nursery sites (as defined by (Heupel et al. 2007)) in Bimini, our103

study focuses on the most northerly one, known as the North Sound. Between 1996 and104

2012, standardized gillnet methods were used to capture juvenile lemon sharks within 45105

days of parturition (Fig. 1). For a more detailed treatment of the gillnetting protocols and106

yearly censuses, see (Manire and Gruber 1993; Gruber et al. 2001; Feldheim et al. 2004);107

and (DiBattista et al. 2011).108

In addition to population censuses, genetic analyses from tissue samples were used to109

reconstruct family pedigrees (Feldheim et al. 2002 2004; DiBattista et al. 2011) from which110
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we estimate per-female annual fecundity in the Bimini population (Fig. 2). Reproductive-111

age female lemon sharks (ages 12+) show strong philopatry to their natal nursery sites, with112

about 45% returning to a given nursery area to reproduce every other year (Feldheim et al.113

2002). Newborn and juvenile sharks (ages 0-2 years old) stay in these protected, mangrove114

fringed nursery areas (Morrissey and Gruber 1993). In addition, there appears to be very115

little dispersal among nursery sites in this region, so the population of juvenile lemon sharks116

in the North Sound is essentially closed (Gruber et al. 2001). At about age 3, lemon sharks117

enter their subadult phase (ages 3-11), begin to leave the lagoon area and move to deeper118

waters (Morrissey and Gruber 1993; Franks 2007; Newman et al. 2010).119

Our model is constructed to capture this natural history in such a way that key model120

parameters, such as mortality rates of different age groups, can be estimated from field121

data. This allows us to use inverse pattern-oriented methods to estimate other life history122

parameters that are otherwise difficult or presently impossible to measure directly.123

2.2 Model124

We model the Bimini lemon shark population as an age-structured, Markov-chain stochastic125

process. We choose this formalism due to the complexity of the lemon shark’s life cycle—126

in particular the delay in breeding to the 12th year—and because breeding populations at127

nursery sites in any given year appear to be too small to be buffered from fluctuations due128

to demographic stochasticity. Since the maximum age for lemon sharks is thought to be 25129

years (Cortés 1998; Gedamke et al. 2007), we assume a maximum of 26 age classes (including130

the 0th age class).131

Let x(n) be the shark population vector at census time n; that is, its elements, xa(n), a ∈132

{0, 1, . . . , 25}, n ∈ {0, 1, 2, . . .}, represent the number of lemon sharks of age a in the North133

Sound population, including all animals born to and breeding in the North Sound nursery,134

whether they are in the nursery or open ocean at census n. Age class 0 represents sharks135

born the year of the census. To match the timing of the actual Bimini census, we assume136

that this census occurs just after reproduction (i.e., pups are born April/early May and are137

sampled late May/June).138
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2.2.1 Fecundity139

We assume an equal sex ratio and that females only reproduce every other year after their140

11th year of life (Feldheim et al. 2002). Let R be a random variable taking on values141

in {0, 1, 2, . . .} with probability density {p0, p1, p2, . . .}. We interpret R as the number of142

offspring born to a particular breeding female, and pi as the probability that a female gives143

birth to i pups. Let the number of breeding females in year n be denoted bn; that is,144

bn :=
1

4

25∑
a=12

xa(n); (1)

the coefficient of 1/4 follows from the assumptions of equal sex ratio and biennial breeding145

with the further assumption that, for each age class, the proportions of females breeding146

in even and odd numbered years are equal. We assume that all breeding females have the147

same reproductive potential regardless of age class, time or population density. Therefore,148

the set {Ri; i ∈ {1, 2, . . . , bn}} is a collection of independent, identically distributed random149

variables, and Ri is the reproductive output of the ith female in year n. Therefore,150

B(n) =
bn∑
i=1

Ri (2)

is the total reproductive output of the population in year n. Note that the dependence of B151

on n comes only through the number of breeding females in year n, not through R.152

The probability density, {p0, p1, p2, . . .}, for R can be obtained from a variety of assump-153

tions. We consider two possibilities. In some simulations, we obtain this density from data;154

in particular, each pi is set to the observed frequency of females producing i pups (Fig. 2),155

with the convention that pj = 0 for all j > 18. In the second case, we assume that all Ris156

are Poisson-distributed with fixed mean λ. In this case, the probability density for the total157

population fecundity in year n becomes158

Pr({B(n) = j}) = e−bnλ
(bnλ)j

j!
for all j ∈ {0, 1, 2, . . .}. (3)

A Poisson distribution is often assumed to be a good fit for a birth process. We explicitly159
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test that assumption here.160

2.2.2 Mortality161

We assume that the probability of mortality is evenly distributed across all individuals in a162

given age class; therefore, within an age class the number of sharks that die between censuses163

is distributed binomially. Generally speaking, the parameter of that distribution—the prob-164

ability that a given shark dies—could potentially depend on population size. However, in165

the case of lemon sharks, we only have evidence for density-dependent mortality in the first166

age class (Gruber et al. 2001; Gedamke et al. 2007). There is insufficient evidence to support167

either density-dependent or -independent mortality assumptions in other age classes; indeed,168

very little is known about lemon sharks once they leave their nursery area. Therefore, as169

a first approximation we chose density-independent mortality for all age-classes above the170

first.171

In this first age class, the probability that a shark pup dies between birth (age class 0)172

and its second census (i.e. dies in age class 1) is a generally increasing function of the size of173

its cohort (x0(n)) in the lagoon in that year (Gruber et al. 2001; Gedamke et al. 2007). This174

type of density-dependent mortality may be a result of reduced prey resources (although the175

population does not appear to be prey-limited in any way), predation from large barracudas,176

predation from other shark species, or cannibalism, which has been documented for this177

population (Morrissey and Gruber 1993; Guttridge et al. 2012). We model this cohort-density178

dependence with a generalized Michaelis-Menten function (equivalent to a Hill function):179

µ̂(x0(n)) =
x0(n)h

kh + x0(n)h
, (4)

with (constant) Hill and shape parameters h ≥ 1 and k > 0, respectively. Let M0(n) be a180

random variable representing the number of sharks born in year n that die between their181

first and second censuses. Then M0(n) has probability distribution182

Pr({M0(n) = m}) =

(
x0(n)

m

)
µ̂m(1− µ̂)x0−m, m ∈ {0, 1, . . . , x0(n)}, (5)
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where we suppress the dependence of µ̂ on x0(n) for clarity.183

As a first approximation, we assume that no age classes except the first have density184

dependent mortality. We further assume that the probability of mortality for any shark in185

age classes 1 or higher is invariant across individuals regardless of age (this assumption could186

be relaxed with our model structure). We denote this constant probability as µ and define187

Ma(n) to be a random variable representing number of deaths in age class a ∈ {1, 2, . . . , 25}.188

Then189

Pr({Ma(n) = m}) =

(
xa(n)

m

)
µm(1− µ)xa−m, m ∈ {0, 1, . . . , xa(n)}. (6)

It is important to note that many of these assumptions can be relaxed without altering190

the form of our model (see below). For example, here we assume no fishing mortality because191

there is no shark fishery in Bimini. One could easily incorporate such an assumption into µ,192

and even make µ age-class- and (or) density-dependent with fairly obvious alterations to the193

probability distribution for mortality equation (6) which have no effect on the overall model194

form.195

2.2.3 Model Form and Parameterization196

The development above generates a model with the following form:197



x0(n+ 1) = B(n),

xa(n+ 1) = 1−Ma−1(n), a ∈ {1, 2, . . . , 25},

x(0) = x0,

n ∈ {0, 1, . . .},

(7)

where x0 is the initial age distribution.198

Application of model (7) to the lemon shark population requires field estimates of fecun-199

dity and mortality. Starting with the former, as noted above we can estimate the probability200

distribution directly from data (Fig. 2), or we can assume that per-female reproductive201

output is Poisson-distributed with mean λ. Data from Bimini over the last 20 years suggests202

that λ ≈ 6.1 pups per female (Feldheim et al. 2002), although this value is somewhat lower203

than that used in previous modeling studies (perhaps because of the high mortality of pups204
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between birth and our sampling season; in this case the 6.1 pups per female simply repre-205

sents the number of sharks that make it past that interim period) (Hoenig and Gruber 1990;206

Gedamke et al. 2007).207

Less is known about mortality in this species. The first-year mortality function, equation208

(4), requires two parameters: the Hill parameter (h) and the shape parameter (k), whereas209

non-first-year mortality only requires an estimate of mean per-shark probability of mortality,210

µ. Because of the lack of data, we compare model output to population data from the Bimini211

study to define a range of potential values for these parameters using a sensitivity analysis212

similar to that in (Hartig et al. 2011). We describe this method in the next section.213

2.3 Simulations and analysis214

For clarity of exposition we will refer to sharks from ages 0 to 2 as juveniles, from ages 3 to 11215

as subadults and above age 12 as adults. We partition the traditionally-defined juvenile class216

into two groups to make connections with the Bimini study—“juveniles” as defined above217

are the animals actually caught each year in the Bimini nursery census. In particular, we218

evaluate the model by comparing its behavior to the Bimini nursery census data. Model (7)219

was implemented and all analyses were conducted using the open-source computing language220

R (R Development Core Team 2011).221

We used an inverse pattern-oriented technique to quantitatively compare simulations and222

data (Wiegand et al. 2003; Grimm et al. 2005; Hartig et al. 2011; Anadón et al. 2012). In223

this approach, one compares actual means and variances from data with the distribution of224

means and variances predicted by model simulations. We explored 9000 distinct parameter225

combinations (λ: range 1-15; k: range 0-200; µ: range 0-0.35; h fixed at 1). Note that,226

although λ is known from Fig. 2, it is still of interest to examine a range of values for λ to227

evaluate the type of compensatory responses generated by variations in λ. We fixed h = 1228

in equation (4) because this gave the best fit (least sum of a squares) to the relationship be-229

tween mortality and density obtained by (Gedamke et al. 2007). Likewise, we also limited k230

below 200 because larger values produce a linear mortality rate that greatly underestimates231

that measured by (Gedamke et al. 2007) and (Gruber et al. 2001). For each of the 9000232

combinations, model simulations were repeated 100 times with the same initial conditions.233
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Simulations were run for 300 time steps (in “years”) or until the population went extinct.234

Among-year mean and variance for juveniles were recorded for each of the 100 simulations,235

which provided an estimate of parametric distributions of simulation means and variances.236

To assess how well any given parameter combination represented the field data, we deter-237

mined if both the mean and variance of the field data set fell within the middle 95 percent238

of the distribution of means and variances generated from the simulations of a particular239

parameter combination. The fit between model and data was deemed “good” if (i) mean size240

of the juvenile population size from the data fell within the middle 95% of the distribution of241

mean juvenile population sizes from the simulations; (ii) variance in juvenile population size242

from the data fell within the middle 95% of its distribution from the simulations; and (iii)243

the population remained extant after 300 years in each of the 100 runs. By eliminating pa-244

rameter combinations that fail to satisfy any of these three criteria, we effectively constrain245

possible values for the unknown parameters (see Fig. 3).246

2.3.1 Testing the effect of sampling length247

We generated the mean and variance distributions by drawing random 17-year-long samples248

out of each of the 100 trials; that is, we sampled a randomly-chosen sequence of 17 con-249

secutive years—after initial transient dynamics have settled down—from each simulation as250

an analogue to the 17 consecutive years of field data at hand. However, a question arises251

regarding how well a 17 year data set represents centuries of ecological dynamics. To assess252

this, we compare data to various sized samples from simulations, including complete (300253

year) simulations, and find that interannual variance in population size is strongly affected254

by the duration of sample run.255

3 Results256

The Bimini nursery data suggest that on average about 77 juvenile sharks inhabit the lagoon257

at census time, on average, with interannual variance, s2, of 498 (Fig. 1). With default258

parameters (λ = 6.1, µ = 0.15, k = 100) we can match mean juvenile population sizes from259

the simulation to the actual mean; however, at default the mean of variances from simulation260
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runs, denoted s2sim, is 176 (n = 100 trials), which represents only 35 percent of s2 in the261

actual data set.262

We compared field estimates of annual mean and variance of population size to annual263

mean and variance of simulated population sizes generated by each of the 9000 parame-264

ter combinations. By the methods described in the simulations and analysis section, we265

determined that most of the 9000 parameter combinations were a poor fit to actual data.266

Therefore, the volume of the possible parameter space that admits dynamics having any267

chance of representing the actual Bimini population is greatly constrained (Fig. 3), even268

when λ is allowed to vary from 1-15. Note that in Fig. 3, lemon shark births were Possion269

distributed according to equation (3). Using the observed distribution of births per female270

(Fig. 2) further tightens our constraints on k and µ (Fig. 4).271

Our model also places tight constraints on adult mortality (µ = 0.14− 0.17). Values for272

µ greater than 0.17 drive the population to extinction. This range for µ also tends to agree273

with the indirect methods for estimating mortality given by (Pauly 1980; Hoenig 1983) and274

(Jensen 1996) and summarized in Table 2. These indirect methods place the mortality rate275

between 0.086-0.179. Interestingly, the half-saturation value (k) is much less constrained;276

good fits can be obtained for any k > 100 (Fig. 4).277

It is important to note that even for parameter combinations that qualified as good fits,278

all greatly underestimated annual variance observed in the actual data.279

In general, our model dynamics were robust with respect to the two assumed distribu-280

tions of per-female fecundity. Specifically, both produced very similar regions of parameter281

combinations that matched Bimini (Fig. 4), with the nuanced exceptions noted above. In ad-282

dition, however, the actual distribution of litter sizes consistently generated a higher variance283

in annual population size than did the Poisson distribution. Therefore, although the Poisson284

distribution is a reasonable choice to use when the actual distribution is not available, one285

needs to be aware that it tends to underestimate variance.286

To test the effect of sample size on characterization of population dynamics from real287

data, we compared sequences of years of various lengths as described in the methods (Fig.288

5). We find that variance is a generally increasing function of sample length and appears289

to approach an asymptote which represents our estimate of the parametric variance. This290
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asymptote is considerably higher than the variance typically obtained using 17-year sample291

runs (vertical red line in Fig. 5). Nevertheless, this estimated parametric variance is still292

well below the observed variance of 498 sharks2 (horizontal green line in Fig. 5).293

4 Discussion294

Lemon sharks have complex life histories—they delay breeding for over a decade, mature295

in an environment (nursery lagoons at the Bimini site) vastly different from their adult296

habitat (open ocean) and when mature breed every other year. Also, nursery populations are297

typically not large enough (order 102 at most) to buffer demographic stochasticity; indeed,298

demographic stochasticity can dominate dynamics in patchy systems with sizes orders of299

magnitude larger than this one (McKane and Newman 2004 2005; McKane et al. 2007).300

Therefore, generalized, deterministic population models can hope to elucidate only the301

broadest outlines of lemon shark population dynamics and should be interpreted only in302

the “ensemble average” sense (McKane and Newman 2004; van Kampen 1992). That is,303

deterministic models at best provide an expectation or mean behavior for an infinite number304

of Bimini’s lemon shark populations. Although this abstract notion of an ensemble mean305

is sensible and provides some insight about expected behavior of the population, under a306

suitable definition of “expected,” that insight is limited because such models provide no307

measure of the fluctuations about this ensemble average one can expect to see in any real308

instance (Ovaskainen and Meerson 2010)).309

We addressed this shortcoming by developing a model of the lemon shark population at310

Bimini incorporating both demographic stochasticity and age structure. Despite the added311

realism, the model remains relatively simple. Parameters requiring estimates include the312

probability distribution for the number of pups born to breeding females in a give year, or just313

the mean number of pups per female if one assumes a Poisson distribution, two parameters314

characterizing density-dependent mortality in the first age class, and the probability(-ies) of315

mortality for all individuals in all other age classes, which here we assume to be invariant316

across individuals. We obtain the reproductive parameters directly from a field study of the317

Bimini lemon shark nursery (Fig. 2), and we use an exhaustive parameter search to obtain318
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bounds on the other parameters.319

4.1 Fecundity assumptions320

As far as we know, this is the first elasmobranch study to use actual litter sizes derived321

from genetic data to parameterize a mathematical or computational model’s birth function.322

Typically such studies rely on an assumed distribution, of which Poisson is usually thought323

to be a good first estimate. Since we have a data-driven, realistic estimate of the distribution324

of litter sizes, we can explore the consequences of making the Poisson assumption, and we325

find that, in this instance, the Poisson assumption appears reasonable. If researchers only326

have mean number of pups per female, which is often the case without genetic maternity327

data, the Poisson distribution approximates the actual distribution remarkably well (Fig.328

2). Also, the regions of viability within the parameter space for both actual and Poisson329

distributions are comparable (Fig. 4). However, the simulations we ran using the Poisson330

assumption consistently exhibited lower interannual variance than did simulations using the331

actual reproductive data. Therefore, although the Poisson assumption generates estimates332

of adult mortality that are essentially identical to those produced using the data, it should333

be used with care when modeling to assess population viability and fluctuations.334

4.2 Mortality assumptions335

In the present study we model density-dependent mortality in the first age class as a non-336

stationary Bernoulli process; that is, the probability of mortality is a generally increasing337

function of the number of sharks in this age class. This assumption is justified based on338

field data (Gruber et al. 2001; Gedamke et al. 2007). We represented this density-dependent339

mortality using a Hill function (equivalently a Michaelis-Menten form) from phenomenologi-340

cal considerations only—we hypothesize a monotonically increasing function, which the Hill341

function exhibits, with the added benefits of relative simplicity and plasticity. Nevertheless,342

the parameters of this function have biological meaning. In particular, the shape parameter,343

k, measures how sensitive sharks are to competition from same-age conspecifics. As such,344

although it quantifies an important biological response, in general it will be very difficult to345
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estimate accurately in the field. Importantly, this model demonstrates that practical esti-346

mates need not be very precise. The model matches data for a wide range of this parameter’s347

values; in fact, for k > 100 or so, the model fit is largely unaffected (Fig. 4). Therefore, this348

model is robust for parameterizations of k.349

The bounds we found for subsdult and adult mortality rates are remarkably narrow350

(Figs. 3 & 4). In fact, a key prediction from this model is that the probability of mortality351

for any individual in any age class, after the first, lies between 0.14 and 0.17. Indeed,352

above 0.17, populations invariably die out very rapidly. These mortality estimates compare353

favorably to estimates obtained using the techniques in Table 2. We emphasize that the354

technique applied here, known as inverse pattern-orientated modeling, has seldom been used355

to estimate parameters for any shark population. If subadult and adult mortality were to356

increase by only a few percentage points, the model predicts rapid extinction. Therefore,357

we suggest that any added fishing pressure (there is currently no fishing pressures for lemon358

sharks at Bimini) to this population would threaten its sustainability. This result agrees with359

others in suggesting that long-lived species with low fecundity, like lemon sharks, would not360

be able to handle added fishing mortality in adult age classes (Ward-Paige et al. 2012).361

One difficulty this model faces is a lack of information about mortality in subadults and362

adults. As a first approximation, we assume a fixed probability of mortality in all age classes363

after the first. However, we recognize the tentative nature of this assumption. In particular,364

it is challenging to relate age to mortality rate of untagged adult sharks. (Peterson and365

Wroblewski 1984) suggested that one method to overcome this problem is to construct a366

function that maps shark mortality rate to mass. In this case age can then be related367

to mass with conversion methods such as those used in (Beerkircher et al. 2002). This368

method needs modifications in situations where mortality is density-dependent, and it relies369

on assumptions of von Bertalanffy growth and reliable estimate of mass, length, and age from370

catch data. However, where applicable, this technique may only be needed for the first few371

age classes, or at least until the age at which individual sharks are large enough avoid being372

preyed upon by natural predators (Cortés 1998). However, in this study such a technique373

is unavailable because size data of adult sharks is limited to length only; length-to-weight374

standards exist only for juvenile age classes (Gruber, unpublished data).375
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4.3 Effect of sampling length376

As one might expect, we found that longer sampling lengths (i.e. longer time series or377

more years sampled) from simulated populations represent the entire simulation better than378

smaller samples do. The quality of the representation, as measured by a comparison of379

sample variance to variance in the entire simulation, appears to approach some parametric380

value asymptotically. In this study, that asymptotic approach requires samples measured381

in units of centuries (Fig. 5). Apparently, random walks to exceptionally large or small382

population sizes, caused only by demographic stochasticity, occur on time scales on the order383

of hundreds of years. This observation further supports our prediction that environmental384

stochasticity generates much of the variance observed in the 17-year dataset we study here. It385

also calls into question the generality of conclusions about demographic stochasticity drawn386

from samples even decades long. If such forces strongly influence population dynamics of387

species with similar life histories, modeling will be required to correctly characterize the388

dynamics; studies relying solely on statistical assessments of data at hand are likely to miss389

significant dynamical processes.390

4.4 Environmental stochasticity391

Our primary method for comparing simulation output to data focuses on matching means392

and variances. Within the portion of parameter space that admitted reasonable fits to the393

data, our simulations consistently matched the mean population size in the Bimini nursery394

(Fig. 1); however, simulations regularly generated variances distinctly lower than that seen395

in the actual data set, even when data variance fell with the middle 95% of the distribution396

of simulation variance. Specifically, simulations on average account for approximately 33-397

49% of the data variance. The variance in our models is generated entirely by demographic398

stochasticity and any instabilities caused by delayed breeding and age structure. What, then,399

caused the missing variance? We postulate it may have been a combination of variations in400

prey abundance, environmental stochasticity, including weather patterns and global climate401

change, habitat loss, and effects of fishing.402

Whatever this environmental stochasticity is, we predict that its effects are relatively403
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sparse, even though we underestimate the actual variance by a considerable amount. This404

prediction follows from a close inspection of the data from North Sound (Fig. 1). It appears405

that the high and low points in this time series (2005 and 2008, respectively) may be outliers.406

Removing these points from the data set reduces s2 to 164.12 but leaves the mean at 75.13,407

both of which are in almost exact agreement with simulation mean and variance at default408

parameter settings. Therefore, the discrepancy between our simulations and the data appear409

to be driven by only two events in the 17-year data run.410

The next step with this model is to incorporate environmental stochasticity so that more411

accurate assessments of population viability can be made (Ovaskainen and Meerson 2010).412

However, such modifications will be difficult because stochastic environmental effects include413

an enormous array of possibilities. In addition, predator-prey dynamics, including juveniles414

as prey for both conspecifics and other species, should be modeled. Cannibalism, which has415

been documented in this species (Morrissey and Gruber 1993; Guttridge et al. 2012), needs416

careful attention because it can have very drastic effects on population dynamics (Dennis417

et al. 2001; Ziemba et al. 2000).418

4.5 Implications of model419

Our modeling approach is applicable to other shark populations as well as other megaver-420

tebrates. The age structure and stochastic birth and death rates can be easily altered to421

fit a different population. This type of model is also useful when applied to species that422

exhibit distinct stages in their lifecycle that can then be ordered into specific physiological423

classes (Crouse et al. 1987; Caswell 2001). The lemon shark life cycle is naturally broken424

into three primary stages, but this structuring can be relaxed to fit life cycles in many other425

species. In addition, this model is ideally suited to study populations where basic data on426

annual population size is available; all the technique requires are estimates from the data427

of mean population size and interannual variance from at least some age class or classes.428

However, even this requirement can be relaxed. Any measurement made in the field that429

can be mapped to a variable in the model could be used to determine which combinations of430

parameters are a good fit (Hartig et al. 2011). For example, if the only field data available431

is an estimate of subadult mortality, researchers can match distributions of that variable to432
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the field data and thereby constrain the biologically relevant parameter space using the same433

techniques we employ here. The ability of this technique to predict bounds for parameters434

that are not easily estimated in the field has important implications for management and435

conservation, generating as it does predictions about which parameters and life cycle stages436

may be most sensitive to anthropogenic impacts such as overfishing or bycatch. For lemon437

sharks at Bimini, we show it is essential to include density-dependent mortality in the first438

age class and to incorporate delayed breeding to predict even basic population dynamics. We439

also show that adult lemon sharks must have a mortality rate below 0.17 in order for the pop-440

ulation to remain viable. Although we have a relatively long data set (17 consecutive years),441

longer time series may be required to capture important, rare stochastic events. These types442

of events, whether they be environmental or demographic, seem to be the primary factor in443

driving the fluctuations in the population size of juvenile sharks in Bimini.444
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Table 1. Notation and interpretations of model parameters, their default values, ranges and
sources for the lemon shark (Negaprion brevirostris).

Parameter Meaning Default Range Source

λ Pups born per female 6.1 1-18 (Feldheim et al. 2002 2004)
h Juvenile mortality Hill

parameter
1 NA This paper

k Juvenile mortality
shape parameter

100 0-200 This paper

tmax Maximum age for adult 25 20-35 (Cortés 2002; Hoenig and
Gruber 1990)

xm Age at maturity 12 NA (Cortés 2002; Hoenig and
Gruber 1990)

µ Mortality rate for all
animals above age one

0.15 0.05-0.30 This paper
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Table 2. Indirect methods used to calculate mortality rates. Here M and Z represent
natural and total mortality, respectively. Similar analysis as (Heupel and Simpfendorfer
2002) and (Knip et al. 2012).

Method Relationship Value

Hoenig (1983) (fish) ln(Z) = 1.46− 1.01 ln(tmax) 0.167
Hoenig (1983) (cetacean) ln(Z) = 0.941− 0.873 ln(tmax) 0.154
Hoenig (1983) (combined) ln(Z) = 1.44− 0.982 ln(tmax) 0.179
Pauly (1980) log(M) = −0.0066 − 0.279 log(L∞) +

0.6543 log(K) + 0.4634 log(T )
0.140

Jensen (1996) (age) M = 1.65/xm 0.138
Jensen (1996) (growth) M = 1.5K 0.086
Jensen (1996) (Pauly) M = 1.6K 0.091

Note:

Life history parameters are based on (Brown and Gruber 1988). K, body growth parameter
(0.057); L∞, maximum theoretical length (317.65 cm); xm, age at maturity (12 years); tmax,
maximum age (25); T, mean temperature (27.1 ◦C, (Newman et al. 2007))
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7 Figures650
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Figure 1: Juvenile population data from the past 17 censuses in the North Sound of Bimini.
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Figure 2: Distribution of litter size per female lemon shark in North Bimini. Grey bars: data
from (Feldheim et al. 2002 2004), from 1996 to 2010 (n=264). Red curve: discrete Poisson

distribution, Pr{N = i} = e−λ λ
i

i!
, with λ equal to the mean of the litter size distribution

depicted by the grey bars.
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Figure 3: Region of parameter space in which simulations exhibited a “good” fit to the data
of the lemon shark population based on criteria described in the main text. Each filled
circle represents one of the 9000 parameter combinations that met the criteria of a good
representation. The change in color represents degree of half saturation value, with red
indicating smaller values of k.
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Figure 4: Left: Half-saturation value versus the mortality rate for subadults and adults for
series of combinations utilizing the actual distribution of litter sizes for fecundity rate. Right:
Same as left but uses a Poisson distribution for fecundity rates. Both pictures represent cases
when λ was set at 6.1 for the Poisson distribution which is equivalent to the average of the
actual distribution of litter sizes.
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Figure 5: Simulation variance as a function of sample size. The sample at Bimini is a total
of 17 years (indicated by the vertical red line). The green line represents the variance in the
actual population size (s2=498).
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