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1 Abstract

We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+,
and its implementation in the GAMESS program. The method combines the DFT-D3 disper-
sion correction by Grimme et al with a modified version of the H+ hydrogen bond correction by
Korth. Overall, the interaction energy of PM6-D3H+ is very similar to the similar corrections
PM6-DH2 and PM6-DH+ found in MOPAC, with RMSD and MAD values within 0.02 kcal/-
mol of one another. The main difference is that the geometry optimizations of 88 complexes
result in 82, 6, 0, and 0 geometries with 0, 1, 2, and ≥ 3 imaginary frequencies using PM6-
D3H+ implemented in GAMESS, while the corresponding numbers for PM6-DH+ implemented
in MOPAC are 54, 17, 15, and 2. The PM6-D3H+ method as implemented in GAMESS offers
an attractive alternative to PM6-DH+ in MOPAC in cases where the LBFGS optimizer must be
used and a vibrational analysis is needed, e.g. when computing vibrational free energies. While
the GAMESS implementation is up to 10 times slower for geometry optimizations of proteins
in bulk solvent, compared to MOPAC, it is sufficiently fast to make geometry optimizations of
small proteins practically feasible.
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2 Introduction

Dispersion and hydrogen bonded corrections to the PM6 method[1] such as PM6-DH2[2] and
PM6-DH+[3] yield interaction energies that rival those computed with Density Functional The-
ory (DFT)[4, 5]. The computational efficiency of the underlying PM6 method allows for cal-
culations that are not practically possible with DFT or Hatree-Fock (HF), such as geometry
optimizations of proteins or vibrational analyses of large systems. For example, recent studies
by Gilson[6] and Grimme[7] have used dispersion and hydrogen bonded PM6 (PM6-DH+ and
PM6-D3H respectively) to compute the vibrational free energy contribution to the standard
binding free energy for host-guest systems and have demonstrated that the added contributions
make a crucial contribution.

However, computing this vibrational free energy contribution can be complicated by the pres-
ence of one or more imaginary frequencies in the vibrational analyse[8]. The source of these
imaginary frequencies are usually numerical errors amplified by a flat potential energy surface
and the imaginary frequencies often correspond to low lying frequencies that make a significant
contribution to the vibrational entropy. Thus, these numerical problems can introduce a signif-
icant error in the binding free energy.

Preliminary calculations suggested that one of the sources of the imaginary frequencies in PM6-
DH+ calculations using MOPAC could be solved by using different geometry optimization al-
gorithms. To test this we implemented a new variant of PM6-DH+, called PM6-D3H+, in the
GAMESS program.[9] PM6-D3H+ differs from PM6-DH+ in that the dispersion term is the
third generation dispersion model developed by Grimme et al[10] rather than the Jurecka-type
model developed by Jurecka et al[11]. In that respect, PM6-D3H+ is identical to the PM6-D3H
model developed by Grimme[7] which has not yet been incorporated into a quantum chem-
istry program. This dispersion model was mainly chosen for convenience (as it was already
implemented in GAMESS) and has little effect on the average accuracy compared to PM6-DH+
(although the maximum errors observed for the training set decrease). However, we show that
PM6-D3H+ implemented in GAMESS results in vibrational analyses with significantly fewer
imaginary frequencies than PM6-DH+ implemented in MOPAC[12, 13], due mainly to differ-
ences in geometry optimization algorithms and convergence criteria.

3 Theory

The energy model PM6-D3H+ has three contributions

E(PM6-D3H+) = E(PM6) +E(D3) + E(H+). (1)

Here, each contribution is a standalone semi-empirical module in GAMESS. These are discussed
below.

3.1 PM6 implementation in GAMESS

E(PM6) is the molecular PM6[1] energy, which is taken as the gas phase energy unless otherwise
noted. As part of this work we implemented the PM6 method in the GAMESS program for
elements up to neon. The PM6 method also involves d-orbitals for elements past neon but
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the associated integral code has not yet been implemented. Physical constants in the semi-
empirical part of the GAMESS source code were updated, to match those in the current version
of MOPAC. All semi-empirical methods in GAMESS uses a finite difference scheme for gradient
evaluation.

3.2 Dispersion correction E(D3)

E(D3) is the third generation dispersion correction developed by Grimme et al, DFT-D3[10],
and implemented in GAMESS by Peverati et al.[14] Unless otherwise noted E(D3) refers to the
pair-wise additive dispersion correction as proposed in reference [10]. Only the zero-damping
version was used, with dispersion order 6 and 8. The fitting parameters are those obtained by
Grimme for PM6[7]. As described by Grimme, the parameter s6 is set to unity, α was set to its
default value. s8 and the scaling parameter sr,6 of the atomic cut-off radii used in the dispersion
damping function are fitted parameters as in standard DFT-D3 (see Table 1 for parameters).
Thus only s8 and sr,6 are optimized by Grimme for PM6-D3H, which is also used for PM6-
D3H+. The gradient of the dispersion correction is evaluated numerically, by using a centered
finite difference scheme.

3.3 Hydrogen bond Correction E(H+)

E(H+) is a slightly modified version of the third-generation hydrogen bonding correction, H+,
by Korth[3], which is given by:

E(H+) =
∑

AB

CA + CB

2r2
AB

· fgeom · fbond · fdamp (2)

where the sum runs over all hydrogen bonds involving N and O atoms. rAB is the donor-acceptor
distance for the given hydrogen bond geometry, with A and B being the two possible acceptor/-
donor electronegative atoms, either oxygen or nitrogen. CA and CB are adjustable parameters
and refer to either CN and CO. CN and CO are re-parametrized as part of this work as described
below.

The geometrical correction fgeom is defined as

fgeom = cos2 θ · cos2 φA · cos2 ψA · cos2 φB · cos2 ψB (3)

where θ is the angle defined by atom A, atom B and the hydrogen (see Figures 1 and 2). The
angle φ, and torsion angle ψ are both defined by the hydrogen bonding geometry. The angles φ
are calculated from the difference between the target angle φtarget and the present bond angle
in the complex ΦX. The target angle φtarget is the optimum angle for hydrogen bonds. Tar-
get angles are defined in a complicated heuristic fashion, please see the source code posted on
GitHub for more details[15]. The torsion angles ψ are defined similarly and calculated as the
difference between target dihedral angle and the structural angle Ψ. Where ΨX is the dihedral
angle between R1R2X· · ·H, which is used for both the donor and acceptor as seen in Figure 1
and 2. Here R1 is defined as the Rx closest to the hydrogen.

The bond damping function fbond is defined as:

fbond = 1 −
1

1 + exp[−60 · (rXH/1.2 − 1)]
(4)
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Figure 1: Illustrating the angles of the H+ model. Θ is the angle between atoms A and B. ΦX is the
angle between the hydrogen and the R1 atom, H··X-R1. ΨX is the dihedral angle between R1R2X· · ·H.

Figure 2: Illustrating the angles of the H+ model. Θ is the angle between atoms A and B. ΦX is the
angle between the hydrogen and the R1 atom, H· · ·X-R1. ΨX is the dihedral angle between R1R2X· · ·H.

where rXH is the distance between the hydrogen atom and the donor atom, which is defined as
the shorter one of the distances rAH and rBH. The damping function fdamp is defined as:

fdamp =

(

1

1 + exp[−100 · (rAB/2.4 − 1)]

) (

1 −
1

1 + exp[−10 · (rAB/7.0 − 1)]

)

(5)

where rAB is the distance between the two electronegative atoms A and B.

The E(H+) implementation differs slightly from the one originally proposed by Korth[3]. Changes
were made to avoid problems with optimization of hydrogen bond complexes involving particu-
lar configurations, including especially ketone (C=O) groups interacting with amide-like (NR3)
groups. In the original implementation, optimization problems can originate from target angle
estimation based on the torsion angle of the NR3 group. The model was updated with new
target angles for tetragonal NR3 configuration case, and the estimation of target angles for NR3
groups now based on the hydrogen bonding configuration (with a double bond indicating a pla-
nar structure).

The analytical gradient is done using internal coordinates from the energy model (angles and
distances in eq. 2), and an algorithm for converting the gradient to the Cartesian atomic
coordinates.
Source code for the H+ module, including gradient code, is available on GitHub[15]. The PM6-
D3H+ will be made available in the official version of GAMESS as soon as possible.

4 Method

All PM6-D3H+ calculations were done with a locally modified version of GAMESS. To bench-
mark and test our implementation, we performed various calculations on the S22[16] and S66[17]
complexes from the Benchmark Energy and Geometry Database (BEGDB)[18]. The BEGDB
database contains structures and corresponding interaction energies calculated at the MP2/cc-
pVTZ and CCSD(T)/CBS level of theory, respectively. We use double displacement for the
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Hessian calculations (NVIB=2 in $force group in the GAMESS input file).

Geometry optimizations of the complexes in S22 and S66 were done with a variety of convergence
criteria which will be discussed in detail in Section 4.3. Geometry optimizations of Chignolin
(PDB: 1UAO) and the Tryptophan-cage (PDB: 1L2Y) using PM6-D3H+ were also carried out.
We used the first structure available in each of the downloaded structures. For comparison,
we performed two-body Fragment Molecular Orbital (FMO)[19] geometry optimizations using
RHF/6-31G(d)[20, 21, 22, 23] and the D3 dispersion correction[10, 14].

Calculations were performed in either in the gas phase or in bulk solvent using a polarizable
continuum to model the solvent.[24] For solvated PM6-D3H+ calculations, we used a recent C-
PCM implementation[25]. For the FMO calculations, we used the resent completely analytical
RHF/C-PCM gradient.[26] All PCM calculations were done using the FIXPVA[27] tesselation
scheme with 60 tesserae per sphere. All geometry optimizations used a convergence criteria of
5.0 × 10−4 Hartree/Bohr.

All MOPAC calculations were done with MOPAC2012[12, 13]. Geometry optimizations were
done with the LBFGS optimizer for reasons described in Section 4.3, unless noted otherwise.
The COSMO model[28] was used to model bulk solvation for the protein calculations.

Timings was carried out on either a 8 core Intel(R) Xeon(R) CPU X5560 @ 2.80GHz or 24 core
AMD Opteron(tm) Processor 6172 @ 2.1 GHz machine.
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5 Results and Discussion

5.1 Parameterization of Correction Terms

Because we use a different dispersion energy function than in the previous DH+ model and make
modification to the original hydrogen bonding correction model, it is necessary to determine new
optimum values for the CN and CO. The parameters for H+ are parametetrized to minimize the
root-mean-square deviation (RMSD) between the interaction energies for PM6 with dispersion
correction only (PM6-D3) for a subset of structures from the S22 and S66 data sets (1-7 and
1-23, respectively), plus the H+ term and the CCSD/CBS reference interaction energy. The CN

and CO parameters are then scanned in ranges from -0.2 to 0.0, around the original optimum.
A global optimum was found at CN = -0.11 and CO = -0.12, with a RMSD of 1.11 kcal/mol, as
seen in Figure 3 and Table 2

This was done using both two and three-body dispersion, but including three-body dispersion
did not make any substantial difference in the resulting optimum, and the default was set to
two-body for PM6-D3H+, because of the extra computational time associated with three-body.
The computational cost becomes a time consuming issue for protein-sized molecules. The final
set of parameters for both dispersion and hydrogen bond correction terms can be seen in Table
1.

Figure 3: Scan of the two parameters for the H+ correction term, nitrogen (CN) and oxygen (CO) in the
hydrogen bond dominant complexes of the S22 and S66 noncovalent complexes. A optimum was found
at CN = −0.11 and CO = −0.12.
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Table 1: The final parameters for the dispersion and hydrogen bond correction terms of PM6-D3H+.

H+
CN -0.110
CO -0.120

D3
α 14.000
s6 1.000
sr,6 1.560
s8 1.009
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5.2 Interaction Energies

Table 2 shows results of PM6, PM6-DH+ and PM6-D3H+ for the full, dispersion and hydrogen
bond dominant complexes sets of the S22 and S66 from BEGDB. Root-mean-square deviation
(RMSD), mean absolute deviation (MAD) and maximum error span (Max) with respect to the
benchmark CCSD(T)/CBS interaction energies are given in kcal/mol. The PM6-D3H+ method
was tested using both two and three-body dispersion.

Overall, the accuracy of PM6-D3H+ is very similar to PM6-DH2 and PM6-DH+, with RMSD
and MAD values within 0.02 kcal/mol of one another. The main difference is that the maximum
error for PM6-D3H+ is 1.42 and 0.36 kcal/mol smaller than for PM6-DH2 and PM6-DH+, re-
spectively. The differences in RMSD and MAD between methods are slightly larger (up to 0.13
kcal/mol) for subsets where dispersion and hydrogen-bonding dominate. Including three-body
dispersion correction had no substantial effect on accuracy, but might play a role for large sys-
tems.

Next, we test PM6-DH3+ on two sets of molecules not in the training set. Table 3 lists computed
interaction energies for formamide dimer, pentamer-monomer, and trimer-trimer computed with
various methods. Compared to MP2/TZVP PM6-DH2 performs best for this particular system,
while PM6-DH+ and PM6-D3H+ appear to perform roughly similarly, with mean absolute de-
viations (MAD) of 0.8 and 1.3 kcal/mol, respectively. However, it is interesting to note that
PM6-DH+ underestimates the decrease in interaction energy on going from the dimer to the
pentamer-trimer more than other methods. This decrease comes primarily from cooperative po-
larization effects that are accounted for by the underlying PM6 method, and PM6, PM6-DH2,
and PM6-D3H+ all predict similar decreases. It is not clear why the DH+ terms leads to an
underestimation of the cooperative effect.

Table 4 contains RMSD, MAD, mean-deviation (MD) and maximum deviation relative to CC-
SCD(T)/CBS// MP2/pVTZ interaction energies computed for 12 hydrogen bonded base pair
complexes (Table S5) from the JSCH-2005[29] set from BEGDB. For this set all three correc-
tions offer very significant increases in accuracy (e.g. a ca 8 kcal/mol decrease in the MAD)
compared to PM6. As for the training set (Table 2) the accuracy of PM6-DH2, PM6-DH+, and
PM6-D3H+ are very similar, with MADs between 0.7 and 1.1 kcal/mol.
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Table 2: Root-mean-square deviation (RMSD), mean absolute deviation (MAD), as well as the maximum
error (Max) with respect to the CCSD(T)/CBS interaction energies from the S22 and S66 sets are
presented. Hydrogen bond and dispersion subsets are complexes from S22 and S66 with a dominant
factor of the interaction energy being hydrogen bond or dispersion interaction. All values are in kcal/mol.

a,bPM6 bDH2 bDH+ a,cD3H+ a,dD3H+

Full set

RMSD 3.35 0.83 0.80 0.82 0.83
MAD 2.85 0.58 0.61 0.60 0.61
Max 7.99 3.53 2.47 2.11 2.09

Dispersion subset

RMSD 3.15 0.49 0.49 0.48 0.54
MAD 2.79 0.42 0.42 0.36 0.39
Max 7.29 0.92 0.92 1.11 1.43

Hydrogen bond subset

RMSD 4.29 1.05 0.98 1.11 1.11
MAD 3.65 0.70 0.80 0.92 0.91
Max 7.99 3.53 2.10 1.85 1.84

a The calculations have been done using the GAMESS
software.

b The calculations have been done using the MOPAC
software.

c The calculation has been done using two-body dis-
persion.

d The calculation has been done using three-body dis-
persion.

Table 3: Hydrogen bond interaction energies, with various methods, from formamide dimer, pentamer-
monomer, and trimer-trimer, as well as MP2/TZVP reference data. All values are in kcal/mol.

PM6a,b DH2b DH+b D3H+a MP2/TZVPd

dimer -5.36 -6.71 -7.81 -8.12 -6.65
pentamer-monomer -7.17 -8.82 -9.56 -10.06 -8.66
trimer-trimer -9.27 -11.33 -11.45 -12.23 -11.26

a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
d From ref [30, 31].
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Table 4: Root-mean-square deviation (RMSD), mean absolute deviation (MAD), mean deviation (MD),
as well as the maximum error (Max) with respect to the CCSD(T)/CBS interaction energies from selected
complexes from JSCH-2005 dataset.

Method RMSD MAD MD Max

PM6a,b 8.24 7.98 7.98 10.71
PM6-DH2b 1.45 1.09 0.21 3.97
PM6-DH+b 0.94 0.69 0.46 1.90
PM6-D3H+a 1.18 0.95 0.37 2.45

a The calculations have been done using
the GAMESS software.

b The calculations have been done using
the MOPAC software.
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5.3 Geometry Optimization

All structures from the S22 and S66 data sets were optimized with PM6, and PM6-DH+ using
MOPAC or PM6 and PM6-D3H+ using GAMESS to test how well the methods reproduce the
reference MP2/cc-pVTZ geometries and to compare the optimization algorithms in GAMESS
and MOPAC.

For the GAMESS optimizations we used the default (quasi Newton-Raphson) geometry opti-
mizer and defined convergence as having a maximum gradient component less than 5 × 10−4

Hartree/Bohr and an RMS gradient less than 5/3 × 10−4 Hartree/Bohr. These convergence cri-
teria are five times higher than the default and are chosen because we have found that for large
systems these criteria can lead to significantly faster convergence without affecting the structure
or final energy significantly. See supporting information for GAMESS examples of input files.
For complex 58 in the S66 set it was necessary to re-compute the Hessian every 20 steps to obtain
convergence and in the case of complex 22, 51, and 58 it was necessary to skip the projection of
translational and rotational degrees of freedom from the gradient to obtain convergence, which
was done by settings the keyword PROJCT=.F. in $Force. For 11 of the complexes (see Table
S1) it was necessary to decrease convergence criteria to 10−4 Hartree/Bohr in order to remove
imaginary frequencies. In the case of complex 4 and 5 from S22 PM6-D3H+ predicted that
the minimum has C1 symmetry rather than Cs as predicted by MP2, and a deviation in the
planarity structure of 0.1 Å was needed (added to the first atom). This is not the case for PM6
and thus a result of the D3H+ energy correction.

For the MOPAC optimization we used the LBFGS geometry optimizer because we found that
this is the only optimization algorithm that can be practically applied to optimization of large
systems. Using eigenvector following leads to trust radius issues. Based on the output the con-
vergence criterion for the LFBGS optimizer appears to be a change heat of formation of less
than ca. 0.1 kcal/mol during several consecutive optimization steps. For PM6, this conver-
gence test was not passed after 200 geometry optimization steps for complex 10 and 17 from the
S22 set and 29, 53, and 54 from the S66 set. For PM6-DH+, this convergence failed after 140
geometry optimization steps for complex 11 from the S22 set and 53, 54 and 60 from the S66 set.

The results are summarized in Table 5. The average RMSD between the MP2/cc-pVTZ and
semi-empirical structures are below 0.28 Å for all methods and a factor of two lower for the
GAMESS optimizations. The RMSD was calculated using the Kabsch algorithm[32], for all the
atoms, including hydrogens. For the hydrogen bonding subset RMSD was calculated for the
hydrogen bond lengths, which are much lower with GAMESS, and with PM6-D3H+ being the
lowest with a RMSD of 0.08 Å. The GAMESS optimizations converge, on average, in 30 steps,
while the MOPAC optimization takes 10 times more steps.

Furthermore, MOPAC optimized geometries tend to have a significantly larger RMS gradient,
compared to GAMESS. This leads to significantly more imaginary frequencies in a subsequent
vibrational analyses compared to those obtained with GAMESS. In the case of MOPAC 54, 17,
15, and 2 geometries result in 0, 1, 2, and ≥ 3 imaginary frequencies, while the corresponding
numbers for GAMESS are 82, 6, 0, and 0 (Table S2 - S4). Using the (default) eigenvector
following algorithm in MOPAC for comparison results in 60, 19, 5, and 4 geometries with 0, 1,
2, and ≥ 3 imaginary frequencies, respectively, with complexes 1 and 3 from S22 and 1 and 20
from S66 failing the optimization.
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For four of the six cases where a GAMESS optimization leads to a structure with a single imag-
inary frequency an convergence criteria of 10−4 Hartree/Bohr is used, but lowering the conver-
gence criteria further does not remove the imaginary frequencies. In the sixth case, complex 16
in the S66 set (water hydrogen bonded to an amide group - Figure 4), the optimization stalls,
when setting convergence criteria to 10−4 Hartree/Bohr, with the maximum gradient oscillating
between 3 × 10−4 and 2 × 10−4 Hartree/Bohr. This is due to the dihedral angle ψ (Eq. 3) which
is defined as R1R2X · · ·H (cf. Figures 1 and 2), where R1 is defined as the atom closest to the
H atom. In the case of the amide-water hydrogen bond, R1 and R2 are the two water H atoms,
which are approximately equidistant from the amide proton. The oscillation in the maximum
gradient is caused by the oscillation between two different definitions of ψ, which has an effect
on the gradient direction. The normal mode associated with the imaginary frequency for the
structure converged with an convergence criteria of 5 × 10−4 corresponds to a motion between
these two structures, so this is likely the explanation for the imaginary frequency. Similarly, in
the case of the complex 1 in the S22 set (ammonia dimer), we believe the imaginary frequency is
due to highly symmetric hydrogen configuration, with switching torsion angles (atomic definition
of ψ). Since this only affects structures with highly symmetric hydrogen bonds it is unlikely to
cause problems in most applications. We note that the PM6-DH+ method has the same problem.

In the remaining four cases where a GAMESS optimization leads to a structure with an imag-
inary frequency the cause it most likely an extremely flat potential energy surface for the cor-
responding degrees of freedom: all imaginary frequencies are < 31i cm−1. Similarly, the lowest
real frequencies for these five cases are all < 40 cm−1.

In summary, the PM6-D3H+ method as implemented in GAMESS offers an attractive alter-
native to PM6-DH+ in MOPAC in cases where the LBFGS optimizer must be used and a
vibrational analysis is needed e.g. when computing vibrational free energies.

Table 5: Geometry optimization of equilibrium conformations of the S22 and S66 datasets in gas phase.
Root-mean-square-deviation was calculated between the optimized structures and the original structure
from S22 and S66, as well as the hydrogen bond lengths. The average number of steps (N̄S), average of the
final root-mean-squared gradient (RMS) in Hartree/Bohr, and average number of imaginary frequencies
(N̄i) was noted for the different methods.

avg. RMSD [Å] HB RMSD [Å] N̄S avg. Gradient RMS N̄i (max)

PM6a 0.11 0.13 30 1.0×10−4 0.02 (1)
PM6-D3H+a 0.12 0.08 31 1.0×10−4 0.07 (1)
PM6b,c 0.28 0.24 229 1.4×10−3 0.71 (6)
PM6-DH+b,d 0.21 0.24 376 2.3×10−3 0.79 (9)

a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
c Averages computed without complexes 10 and 17 from S22 and 29, 53 and 54 from

S66, as they did not converge.
d Averages computed without complexes 11 from S22 and 53, 54, 60 and 63 from S66,

as they did not converge.
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Figure 4: Hydrogen bond configuration of complex 16 of the S66 set. This figure was made with
Jmol.[33]
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5.4 Application to Protein Structure Refinement

In this section we test the applicability of the PM6-D3H+ method, combined with the PCM for
bulk solvation as implemented in GAMESS, to geometry optimization of large systems such as
proteins and compare to corresponding calculations performed using MOPAC.

We optimize the proteins Chignolin (1UAO) and Trp-Cage (1L2Y), which are two small pro-
teins with 138 and 304 atoms, respectively. We optimize the structures using PM6-DH+ in
MOPAC[12], and PM6-D3H+ in GAMESS[9], with and without implicit solvent models.
The optimized semi-empirical structures are compared to the reference structure optimized at
the RHF/6-31G(d) level of theory using dispersion correction (DFTD3) and two-body Frag-
ment Molecular Method (FMO2). Previous calculations by Nagata et al.[26] have shown that
this level of theory yields protein structures in good agreement with corresponding MP2 calcu-
lations. Optimized reference structures are available on GitHub[34].

The results are summarized in Table 6. The RMSD values are about 1 Å in the gas phase for
both methods, with PM6-DH+ being slightly smaller. The RMSD values for the structures in
solution are slightly larger compared to the corresponding gas phase values for PM6-DH+, and
slightly smaller for PM6-D3H+. The structural overlap between PM6-D3H+/PCM optimization
and the reference structure can been seen in Figure 5 and 6. For Trp-cage both methods con-
verge in about half the number of steps compared to gas phase. MOPAC requires significantly
more optimization steps, but significantly less CPU time, than GAMESS to converge, but the
overall time for optimization of the structures is by far faster than GAMESS. The difference in
CPU time is significantly larger for optimization in bulk solvent, which indicates that it is the
difference in the COSMO and PCM interfaces that differ most in terms of CPU requirements.
Despite being significantly slower than PM6-DH+/COSMO, the PM6-D3H+/PCM implementa-
tion in GAMESS is sufficiently fast to make geometry optimizations of small proteins practically
feasible.

Table 6: Optimized proteins Chignolin with 138 atoms and Trp-Cage with 304 atoms, in gasphase
and implicit solvent, using PM6-DH+ and PM6-D3H+ with COSMO and PCM respectively for solvent
polarization. RMSD (in Å) are calculated with reference to the protein structures optimized at FMO2-
RHF-D3/6-31G(d) level of theory and FMO2-RHF-D3/6-31G(d)/PCM level for solvent effects. Time in
hours and number of optimization steps were noted. Calculations was run on a single core.

PM6-DH+b PM6-D3H+a

System PDB RMSD [Å] Time [h] Steps RMSD [Å] Time [h] Steps

Chignolin 1UAO 0.90 0.1 739 0.98 0.2 204
Trp-Cage 1L2Y 1.89 1.1 1774 1.61 5.4 481

Chignolinc 1UAO 1.14 0.1 941 0.56 0.6 128
Trp-Cagec 1L2Y 1.23 0.6 882 0.83 5.2 174

a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
c Calculations was done using implicit solvent models. PCM for GAMESS,

COSMO for MOPAC.

The relative speedup from running in parallel in solvent is shown on Figure 7, where no im-

14

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.353v1 | CC-BY 4.0 Open Access | received: 4 Apr 2014, published: 4 Apr 2014

P
re
P
ri
n
ts



provement is observed beyond 4 cores for all methods. The timings were done on 24 core AMD
Opteron(tm) Processor 6172 @ 2.1 GHz machine for GAMESS and 8 core Intel(R) Xeon(R)
CPU X5560 @ 2.80GHz for MOPAC, because we were unable to get MOPAC running on the
AMD ones. Using the dispersion correction and hydrogen bond correction on the PM6 method
in GAMESS reduces the relative speedup from 4 to about 2. The correction terms to the PM6
energy only runs in serial, and a modest speedup could be gained by parallelising them. Here we
note that the poor scaling of run times with regards to the number of CPUs used is an inherent
problem for semi-empirical since the matrix diagonalization in the SCF procedure cannot be
efficiently parallelized[13].

Figure 5: Trp-cage (1L2Y) optimized with FMO2-RHF-D3/6-31G(d)/PCM (black), compared to (A)
PM6-D3H+/PCM (blue) and (B) PM6-DH+/COSMO (green). This figure was made with PyMol[35].

Figure 6: Chignolin (1UOA) optimized with FMO2-RHF-D3/6-31G(d)/PCM (black), compared to (A)
PM6-D3H+/PCM (blue) and (B) PM6-DH+/COSMO (green). This figure was made with PyMol[35].
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Figure 7: Speedup by using multiple cores with PCM enabled for single point energy and gradient
evaluation of the proteins Trp-Cage (1L2Y) with 304 atoms and Chignolin (1UAO) with 138 atoms,
using (A) PM6 and (B) PM6-D3H+ in GAMESS and (C) PM6 and (D) PM6-DH+ in MOPAC. The
evaluation was done using implicit solvent models COSMO and PCM for respectively MOPAC and
GAMESS. a The calculations have been done using the GAMESS software. b The calculations have been
done using the MOPAC software.
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6 Conclusions

Recent studies by Gilson[6] and Grimme[7] and co-workers have used dispersion and hydrogen
bonded corrected PM6 to compute the vibrational free energy contribution to the standard
binding free energy for host-guest systems. However, computing this vibrational free energy
contribution can be complicated by the presence of one or more imaginary frequencies in the
vibrational analysis, and these numerical problems can introduce a significant error in the bind-
ing free energy.

In this paper we address this problem by developing the PM6-D3H+ method and implementing
it in the GAMESS program. The method combines the D3 dispersion correction devloped by
Grimme and co-workers with a modified version of the H+ hydrogen bond correction developed
by Korth and co-workers. Overall, the accuracy of PM6-D3H+ is very similar to PM6-DH2
and PM6-DH+, with RMSD and MAD values within 0.02 kcal/mol of one another. The main
difference is that the maximum error for PM6-D3H+ is 1.42 and 0.36 kcal/mol smaller than for
PM6-DH2 and PM6-DH+, respectively.

Geometry optimizations of 88 complexes result in 82, 6, 0, and 0 geometries with 0, 1, 2, and ≥

3 imaginary frequencies using PM6-D3H+ implemented in GAMESS, while the corresponding
numbers for PM6-DH+ implemented in MOPAC are 54, 17, 15, and 2 (Table S2 - S4).

Furthermore, the numerical stability of the method could be increased by changing the definition
of some of the dihedral angles used in the hydrogen bond correction term. However, this appears
only to be an issue for very symmetric systems which is unlikely to occur in large heterogenous
systems such as proteins.

The PM6-D3H+ method as implemented in GAMESS offers an attractive alternative to PM6-
DH+ in MOPAC in cases where the LBFGS optimizer must be used and a vibrational analysis
is needed, e.g. when computing vibrational free energies.
While the GAMESS implementation is up to 10 times slower for geometry optimizations of
proteins in bulk solvent, it is sufficiently fast to make geometry optimizations of small proteins
practically feasible.
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Supplementary Information

• S.1 S22 and S66 Complexes optimized with OPTTOL = 0.0001

• S.2 S22 and S66 Complexes with imaginary frequencies

• S.3 GAMESS Header examples
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S.1 S22 and S66 Complexes optimized with OPTTOL = 0.0001

Table S1

Set ID Name

s22 08 Methanedimer
s22 12 Pyrazinedimer
s22 18 Benzeneammoniacomplex
s66 04 WaterPeptide
s66 23 AcNH2Uracila

s66 33 PyridineEthene
s66 37 CyclopentaneNeopentane
s66 38 CyclopentaneCyclopentane
s66 57 BenzenePeptideNHpi
s66 65 PyridineEthynea

s66 66 MeNH2Pyridine

a Necessary to also set ihrep to 20.
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S.2 S22 and S66 Complexes with imaginary frequencies

Table S2

Set ID Name No. i-freq

PM6a

s66 30 BenzeneEthene 1
s66 65 PyridineEthyne 1

PM6-D3H+a

s22 01 Ammoniadimer 1
s22 15 Adeninethyminecomplexstack 1
s22 20 BenzenedimerTshaped 1
s66 16 PeptideWater 1
s66 30 BenzeneEthene 1
s66 42 UracilCyclopentane 1

a The calculations have been done using the GAMESS
software.

b The calculations have been done using the MOPAC
software.
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Table S3

Set ID Name No. i-freq

PM6b

s22 01 Ammoniadimer 2
s22 04 Formamidedimer 2
s22 05 Uracildimerhbonded 2
s22 06 2pyridoxine2aminopyridinecomplex 3
s22 07 AdeninethymineWatsonCrickcomplex 2
s22 11 Benzenedimerparalleldisplaced 1
s22 14 Indolebenzenecomplexstack 1
s22 19 BenzeneHCNcomplex 2
s22 20 BenzenedimerTshaped 3
s66 04 WaterPeptide 1
s66 05 MeOHMeOH 1
s66 06 MeOHMeNH2 1
s66 08 MeOHWater 1
s66 09 MeNH2MeOH 1
s66 10 MeNH2MeNH2 1
s66 14 PeptideMeNH2 2
s66 16 PeptideWater 1
s66 17 UracilUracilBP 2
s66 18 WaterPyridine 1
s66 20 AcOHAcOH 1
s66 22 AcOHUracil 1
s66 23 AcNH2Uracil 2
s66 25 PyridinePyridinepipi 1
s66 28 BenzeneUracilpipi 1
s66 35 NeopentanePentane 1
s66 36 NeopentaneNeopentane 6
s66 37 CyclopentaneNeopentane 1
s66 39 BenzeneCyclopentane 1
s66 41 UracilPentane 1
s66 42 UracilCyclopentane 2
s66 44 EthenePentane 1
s66 47 BenzeneBenzeneTS 2
s66 48 PyridinePyridineTS 1
s66 49 BenzenePyridineTS 1
s66 59 EthyneWaterCHO 2
s66 63 BenzeneAcOH 1
s66 66 MeNH2Pyridine 3

a The calculations have been done using the GAMESS soft-
ware.

b The calculations have been done using the MOPAC software.
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Table S4

Set ID Name No. i-freq

PM6-DH+b

s22 01 Ammoniadimer 2
s22 05 Uracildimerhbonded 1
s22 06 2pyridoxine2aminopyridinecomplex 2
s22 07 AdeninethymineWatsonCrickcomplex 1
s22 10 BenzeneMethanecomplex 3
s22 18 Benzeneammoniacomplex 2
s22 19 BenzeneHCNcomplex 2
s22 20 BenzenedimerTshaped 2
s22 21 IndolebenzeneTshapecomplex 1
s66 08 MeOHWater 2
s66 10 MeNH2MeNH2 1
s66 12 MeNH2Water 1
s66 13 PeptideMeOH 1
s66 14 PeptideMeNH2 1
s66 15 PeptidePeptide 1
s66 16 PeptideWater 2
s66 17 UracilUracilBP 2
s66 19 MeOHPyridine 1
s66 20 AcOHAcOH 2
s66 22 AcOHUracil 1
s66 23 AcNH2Uracil 2
s66 24 BenzeneBenzenepipi 1
s66 25 PyridinePyridinepipi 2
s66 36 NeopentaneNeopentane 9
s66 42 UracilCyclopentane 2
s66 45 EthynePentane 1
s66 46 PeptidePentane 1
s66 47 BenzeneBenzeneTS 1
s66 48 PyridinePyridineTS 1
s66 49 BenzenePyridineTS 2
s66 52 BenzeneAcOHOHpi 2
s66 55 BenzeneMeOHOHpi 1
s66 66 MeNH2Pyridine 1

a The calculations have been done using the GAMESS soft-
ware.

b The calculations have been done using the MOPAC software.
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S.3 GAMESS Header examples

PM6-D3H+ Optimization and vibrational analysis

$ba s i s
gba s i s=PM6−D3H+ ! Use the PM6 method w/ D3 and H+ c o r r e c t i o n

$end

$ c o n t r l
s c f t y p=RHF ! Use Re s t r i c t ed Hartree−f ock
i cha rg=0 ! Total molecule charge
runtyp=opt imize ! Do a geometry opt imiza t i on

$end

$ s c f
npunch=1 ! l e s s output during SCF i t e r a t i o n s

$end

$s ta tp t
o p t t o l =5.0e−4 ! convergence c r i t r i a
nstep=500 ! Maximum no . o f s t ep s

hssend =.T. ! do he s s i an c a l c u l a t i o n a f t e r opt imiza t i on
$end

$ f o r c e
nvib=2 ! f o r c e c a l c u l a t i o n us ing centered f i n i t e d i f f e r e n c e scheme
method=seminum ! Use semi−numerica l scheme f o r f o r c e c a l c u l a t i o n

$end
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PM6-D3H+/PCM Optimization and vibrational analysis

$ba s i s
gba s i s=PM6−D3H+ ! Use the PM6 method w/ D3 and H+ c o r r e c t i o n

$end

$ c o n t r l
s c f t y p=RHF ! Use Re s t r i c t ed Hartree−f ock
i cha rg=0 ! Total molecule charge
runtyp=opt imize ! Do a geometry opt imiza t i on

$end

$ s c f
npunch=1 ! l e s s output during SCF i t e r a t i o n s

$end

$s ta tp t
o p t t o l =5.0e−4 ! convergence c r i t r i a
nstep=500 ! Maximum no . o f s t ep s

hssend =.T. ! do he s s i an c a l c u l a t i o n a f t e r opt imiza t i on
$end

$ f o r c e
nvib=2 ! f o r c e c a l c u l a t i o n us ing centered f i n i t e d i f f e r e n c e scheme
method=seminum ! Use semi−numerica l scheme f o r f o r c e c a l c u l a t i o n

$end

! So lvent s e t t i n g s
$pcm

so lvn t=WATER
mxts=15000 ! The maximum number o f t e s s e r a e

$end

$tescav
mthal l=4 ! Use the FIXPVA scheme
n t s a l l =60 ! The dens i ty o f t e s s e r a e

$end
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PM6-D3H+/PCM Optimization GAMESS header w/ convergence help

$ba s i s
gba s i s=PM6−D3H+ ! Use the PM6 method w/ D3 and H+ c o r r e c t i o n

$end

$ c o n t r l
s c f t y p=RHF ! Use Re s t r i c t ed Hartree−f ock
i cha rg=0 ! Total molecule charge
runtyp=opt imize ! Do a geometry opt imiza t i on

$end

$ s c f
npunch=1 ! l e s s output during SCF i t e r a t i o n s

$end

$s ta tp t
o p t t o l =1.0e−4 ! convergence c r i t r i a
nstep=500 ! Maximum no . o f s t ep s

hssend =.T. ! do he s s i an c a l c u l a t i o n a f t e r opt imiza t i on

ihrep=20 ! Update Hess ian every nth step
p r o j c t =.F . ! f l a g to e l im ina t e t r a n s l a t i o n and r o t a t i o n a l deg r e s s o f fr

$end

$ f o r c e
nvib=2 ! f o r c e c a l c u l a t i o n us ing centered f i n i t e d i f f e r e n c e scheme
method=seminum ! Use semi−numerica l scheme f o r f o r c e c a l c u l a t i o n

$end

! So lvent s e t t i n g s
$pcm

so lvn t=WATER
mxts=15000 ! The maximum number o f t e s s e r a e

$end

$tescav
mthal l=4 ! Use the FIXPVA scheme
n t s a l l =60 ! The dens i ty o f t e s s e r a e

$end
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S.4 Selected Complexes from JSCH-2005

Table S5

BEGDB ID Name

1018 G...U wobble
1017 I...C WC
1020 U...U
1021 U...U pl
1084 A...T S1
1014 A...T WC
1082 G...C S
1012 G...C WC(1)
1015 mA...mT H
1085 mA...mT S
1083 mG...mC S
1013 mG...mC WC
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