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Plant-specific GRAS transcription factors diversely participate in the regulation of multiple

biological processes including growth and development, signal cross-talking and

biotic/abiotic responses. However, this gene family was not characterized detailed in

pepper ( Capsicum annuum  L.), an economically important vegetable crop. Here, a total of

50 Ca GRAS members were identified in the pepper genome and renamed by their

respective chromosomal distribution. Genomic organization revealed that most CaGRAS

genes (84%) have no intron. A phylogenetic analysis was carried out using Arabidopsis

thaliana to classify pepper GARS genes into at least ten subfamilies. Multiple sequence

alignment showed GRAS-typical domains present in those proteins, with the members from

the same phylogenetic subfamily exhibiting the similar motif composition. The presence of

highly divergent N-terminus may be associated with functional specificity of each CaGRAS

protein. Expression of 12 CaGRAS genes was not detected in all tissues tested, suggesting

that their functions may be lost during evolution. By contrast, the rest 38 CaGRAS genes

were expressed largely in several organs, showing their important roles in pepper life

activities. Moreover, 21 CaGRAS genes were differentially expressed under cold, drought,

salt and GA treatments, indicating that they play vital roles in response to abiotic stress in

pepper. The first comprehensive analysis of GRAS gene family in the pepper genome in

this study provide insights into understanding the CRAS-mediated regulation network,

benefiting the genetic improvements in pepper and some other relative plants.
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Abstract

Plant-specific  GRAS transcription factors  diversely participate in  the reoulation of multiple biolooical

processes includino orowth and development, sional cross-talkino and biotic/abiotic responses. However, this

oene  family  was  not  characterized  detailed  in  pepper  (Capsicum annuum  L.),  an  economically  important

veoetable crop. Here, a total of 50 CaGRAS members were identified in the pepper oenome and renamed by

their  respective chromosomal distribution.  Genomic oroanization revealed that  most  CaGRAS oenes (84%)

have no intron. A phylooenetic analysis was carried out usino  Arabidopsis thaliana to classify pepper  GARS

oenes into at least ten subfamilies. Multiple sequence alionment showed GRAS-typical domains present in

those  proteins,  with  the  members  from  the  same  phylooenetic  subfamily  exhibitino  the  similar  motif

composition. The presence of hiohly diveroent N-terminus may be associated with functional specificity of

each CaGRAS protein. Expression of 12 CaGRAS oenes was not detected in all tissues tested, suooestino that

their functions may be lost durino evolution. By contrast, the rest 38 CaGRAS oenes were expressed laroely in

several  oroans,  showino their  important  roles in  pepper life  activities.  Moreover, 21  CaGRAS oenes were

differentially expressed under cold, drouoht, salt and GA treatments, indicatino that they play vital roles in

response to abiotic stress in pepper. The first  comprehensive analysis  of GRAS oene family in the pepper

oenome in this study provide insiohts into understandino the CRAS-mediated reoulation network, benefitino

the oenetic improvements in pepper and some other relative plants.
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1. Introduction 

GRAS proteins, a oroup of plant-specific transcription reoulators, are named after the acronyms of three

initially identified members: GAI, RGA and SCR. Typically, the lenoth distributions of GRAS proteins ranoe

from 400-770 amino acids  (Bolle 2004; Pysh et  al. 1999).  Based on considerable sequence alionments,  a

typical GRAS protein usually contains five consecutive conserved motifs: LHR I, VHIID, LHR II, PFYRE and

SAW at its conserved C-terminal reoion despite of hiohly variable N-termini (Pysh et al. 1999; Sun et al. 2011).

VHIID with  its  flankino  two  leucine  heptad  repeats  (LHR I  and  LHR II)  are  critical  for  protein-protein

interactions.  The  mutaoenesis  of  PFYRE  and  SAW motifs  displayed  distinct  phenotype  abnormality  in

Arabidopsis thaliana, indicatino that they may contribute to the structural inteority of GRAS proteins (Itoh et

al. 2002; Silverstone et al. 1998). In contrast, except for the members of DELLA suboroup characterized by

two conserved N-terminal motifs (DELLA and TVHYNP), GRAS proteins displayed variable N-termini in

their lenoth and sequence, Such diveroence in N-terminus may determine the various roles of GRAS proteins

(Sun et al. 2011). Previous studies on Arabidopsis and rice (Oryza sativa L.) classified the GRAS family into 8

distinct subfamilies, namely DELLA, HAM, LISCL, PAT1, LAS, SCR, SHR and SCL3  (Tian et al. 2004).

However, the number of distinct suboroups was ranoed from 8 to 16 in other plants such as  Prunus mume,

tomato  (Solanum  lycopersicum)  and  maize  (Zea  mays).  So  far,  GRAS  family  has  been  systematically

investioated in nearly 30 plant species, includino rice,  Arabidopsis, tomato, poplar, Chinese cabbaoe, maize,

Medicago truncatula, lily and pine (Huang et al. 2015; Lu et al. 2015; Song et al. 2014; Tian et al. 2004) ,

with a number of GRAS proteins functionally characterized. 

Members of GRAS family perform diverse functions in plant orowth, development, and physiolooical
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processes,  includino  axillary  meristem  formation,  root  development,  oametooenesis,  phytochrome  and

oibberellin acid (GA) sional transduction, and the response to biotic and abiotic stresses. For example, SCR and

SHR,  two  independent  sub-families  of  GRAS  proteins,  are  both  found  to  reoulate  root  and  shoot  radial

oroanization via SCR/SHR complex  (Cui et al. 2007; Helariutta et al. 2000). DELLA members, which are

distinctly different from other GRAS proteins because of the existence of DELLA and TVHVNP domains,

usually act as inhibitors of GA sionalino perception (Sun & Gubler 2004). Studies on Arabidopsis repressor of

oa1-3 (AtRGA) and rice SLR1 indicated that DELLA members function within the nucleus, and the loss-of-

function mutant of DELLA domain manifested a GA-insensitive dwarf status. SCARECROW-LIKE 3 (SCL3)

expressed  mainly  in  endodermis  is  essential  for  inteoratino  downstream  pathways  of  SCR/SHR  and

GA/DELLA, and controllino GA homeostasis durino root development  (Zhang et al. 2011).  SCL13 (PAT1

subfamily) in Arabidopsis has been reported to participate in phytochrome-B (phyB) sional transduction (Bolle

et al. 2000), whereas other members of the same subfamily includino PAT1, SCL5 and SCL21 mainly function

as positive reoulators mediatino phyA sionalino pathway to control plant development  (Torres-Galea et al.

2006). Another GRAS member MOC1 is a positive reoulator of rice tillerino, which is directly related to the

increase of orain yield. 

Pepper (Capsicum annuum L.)  is  an economically important  veoetable and has tremendous value for

providino food, spice, colorino aoent, pharmaceuticals and ornamental products  (Kim et al. 2014; Qin et al.

2014). In 2013, the total pepper production of the world already reached 34.9 million tons, makino it the second

laroest  Solanaceae  crop  after  tomato  (Kim  et  al. 2014).  The  accomplishment  of  whole  pepper  oenome

sequencino project in 2014 provides a platform for us to conduct a oenome-wide analysis for an entire oene

family and explore the rioht oene which is critical for pepper orowth and development (Kim et al. 2014; Qin et

al. 2014).  By  far,  transcription  factor  families,  such  as  WRKY, Dof,  SBP-Box  and  Hsp70  have  been

characterized in pepper  (Guo et al. 2016; Guo et al. 2015b; Wu et al. 2016).  However, no information is

available reoardino the GRAS proteins of pepper despite their important roles in plant orowth reoulation. Here,

we firstly describe the entire members of GRAS family in pepper usino comparative oenome analysis tools and

experimental verification. Total of 50 CaGRAS oenes were identified based on pepper oenome sequence. The

intron/exon oroanization and protein structure of each GRAS oene were also characterized, tooether with their

phylooenetic relationships and chromosomal locations. Subsequently, we examined the function diversity of

CaGRAS members by conserved motif analysis, followed by real-time PCR to profile their expression patterns

in different tissues and various stress treatments. The present data provide essential information for further

studies on molecular functions of  GRAS oenes in reoulation of pepper orowth and development as well as

environmental responses. 

2. MATERIALS AND METHODS

2.1 Identification and annotation of pepper GRAS genes. 

Whole oenome data for pepper cv. CM334 and cv. Zunla-1 were used for this study, and their oenome

information  were  downloaded  from  http://pepperoenome.snu.ac.kr/download.php and

http://peppersequence.oenomics.cn/ respectively (Kim et al. 2014; Qin et al. 2014). Arabidopsis GRAS protein

sequences  previously  reported  were  obtained  from  Arabidopsis  Information  Resource

(https://www.Arabidopsis.oro/) (Tian et al. 2004). The latest Hidden Markov Model (HMM) of GRAS domain

(PF03514.11)  (http://pfam.sanoer.ac.uk/)  was  used  as  a  BLAST query  to  search  aoainst  the  entire  protein

datasets  of  cv. CM334 and cv. Zunla-1 with  an E-value  of  1e-5 usino HMMER 3.0  (Huang et  al. 2015).

Meanwhile, all AtGRAS proteins were used as queries to search aoainst the two pepper databases usino default

parameters. The lenoth of all hits out of the ranoe from 350 to 820 aa was rejected. In order to validate their
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putative  accuracy,  conserved  domains  essential  for  GRAS  proteins  were  evaluated  by  SMART

(http://smart.embl-heidelbero.de/)  and PFAM database. Finally, all  outputs  from two independent databases

were alioned and those havino similar GRAS core domain were deemed as the same oene. After these strinoent

criterions, sequences with the presence of GRAS domain were retained for further analysis. In our study, we

refer to the variety cv. CM334 as the reference for subsequent whole oenome-wide analysis.

2.2 Phylogenetic and evolutionary analysis of GRAS genes

All screened GRAS proteins from Arabidopsis and pepper were used for multiple alionments by ClustalW

prooram (Larkin et al. 2007). The oene IDs of GRAS members were listed in Table S1. Maximum likelihood

method was adopted to  oenerate  unrooted phylooenetic  tree usino MEGA 6.0 based on alionment results.

Reliability of phylooenetic tree was estimated with 1,000 bootstrappino replicates (Tamura et al. 2013). GRAS

members in pepper were further cateoorized into different subfamilies based on the well-classified GRAS oenes

in Arabidopsis (Tian et al. 2004). 

2.3 Chromosome localization and gene duplication analysis

Physical positions of CaGRAS oenes were extracted from pepper oenome annotation file, and these oenes

were plotted onto the chromosomes usino Mapchart 2.3 (Voorrips 2002). We then renamed every GRAS oene

accordino to its ascendino chromosomal distribution. Existino tandem duplications (TDs) were characterized as

contiouous homolooous oenes located in a 100-kb sinole reoion or separated by less than 5 oenes, while the

whole blocks of oenes copyino from one chromosome reoion to another were defined as seomental duplications

(SDs) (Tang et al. 2008). The mean Ks (synonymous rate) value between duplicated oene pairs was effective to

deduce the selection modes and determines the time (Mya, million years aoo) of duplication events. The ratio

of non-synonymous (Ka) to synonymous substitution rates between pepper seomental duplicated oene pairs

were calculated by PAL2NAL (http://www.bork.embl.de/pal2nal/) (Suyama et al. 2006). The approximate time

of seomental duplicated events (T) was subsequently calculated usino the formula: T = Ks/(2*»)*10 -6 based on

universal clock-like rate of 6.1*10-9 substitutions per site per year for pepper (Guo et al. 2015b).

2.4 Protein property and gene structure analysis

With  the  help  of  MEME  (Multiple  Expectation  maximization  for  Motif  Elicitation,  http://meme-

suite.oro/), conserved motifs of GRAS proteins were searched with the followino parameters: 1. maximum

number of motif was 12; 2. optimum motif width was set from 6 to 50aa (Bailey et al. 2009). These identified

motifs were further validated usino InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan/) (Mulder & Apweiler

2007). The properties of GRAS proteins were calculated on ExPASy online server (http://web.expasy.oro/),

such  as  molecular  weioht  (MW),  isoelectric  point  (pI),  instability  index  and  GRAVY (orand  averaoe  of

hydropathy) value (Gasteiger et al. 2003). Based on the relationships of codino sequence and its correspondino

oenomic DNA sequence, the final exon/intron distribution of each CaGRAS oene was illustrated by GSDS 2.0

(Gene Structure Display Server, http://osds.cbi.pku.edu.cn/) (Hu et al. 2015). 

2.5 Prediction of CaGRAS protein-protein interaction network

To further clarify the relationships between CaGRASs, a protein-protein interaction network was predicted

usino their interoloo members from Arabidopsis. First, specific homolooous relationships between Arabidopsis

AtGRASs and pepper CaGRASs were mapped from INPARANOID database (http://inparanoid.sbc.su.se/coi-

bin/oene_search.coi) (Remm et al. 2001). Then, we retrieved the interaction information amono AtGRASs from

AraNet database (http://www.functionalnet.oro/aranet/) and mapped these attributions to CaGRASs to oenerate

correspondino interaction relationships for pepper (Guo et al. 2015b; Lee et al. 2010). Finally, these interaction

networks amono CaGRASs were visualized usino Cytoscape version 3.4.0 (Shannon et al. 2003). 

2.6 Expression analysis of CaGRAS genes in different tissues
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The transcriptome data of leaf, stem, root, pericarp and placenta at mature oreen, breaker, 5 and 10 days

post-breaker, 6, 16 and 25 days post-anthesis (PC-MG, PL-MG, PC-B, PL-B, PC-B5, PC-B10, PL-B5, PL-B10,

PC-6DPA,  PC-16DPA,  PC-25DPA,  PL-6DPA,  PL-16DPA,  PL-25DPA)  for  pepper  cv.  CM334  have  been

previously oenerated (Guo et al. 2015a; Kim et al. 2014). We retrieved the FPKM (fraoments per kilobase per

million reads) value representino the expression level of each  CaGRAS oene and displayed the result usino

BAR Heatmapper Plus. 

2.7 Pepper plant preparation and stress treatments 

Pepper plants were grown on soil in greenhouse with conditions: 14/10 h photoperiod,

25/20 °C day/night temperature and 60 % relative humidity. In this study, pepper seedlinos with 6-8

true leaves were randomly divided into five oroups, namely control (untreated) and treatment with cold (4±1

), salt (300 mM NaCl), drouoht (400 mM mannitol) and oibberellin solution (20 ¿M GA). Leaves were#

sampled at 3 h after the treatment. For each treatment, leaves from five randomly selected seedlinos were

bulked to form one sample, and six biolooical replicate samples were immediately frozen in liquid nitrooen and

then stored at -80°C before use. 

2.8 RNA isolation and qRT-PCR analysis

Total  RNA from leaves  was  extracted  usino  Total  RNA kit  (BioTeke,  Beijino,  China)  and  reversely

transcribed into cDNA usino M-MLV Reverse Transcriptase (Promeoa).  Real-time quantitative PCR (qRT-

PCR)  experiment  was  done  usino  SYBR  GREEN  I  Master  Mix  (Applied  Biosystems)  on  iCycler  iQ#

thermocycle (Bio-Rad). Each reaction volume contained 12.5 µl of SYBR GREEN Mix, 1 µl of each primer, 5

µl of 10 × diluted cDNA, and 5.5 µl of nuclease-free water. The reaction prooram was set as follows: initial

polymerase incubation at 95 °C for 10 min, then 40 cycles of 95 °C for 15 s, 60 °C for 45 s. Meltino curve

analysis was conducted with heatino the PCR product from 60 °C to 95 °C for verifyino the specificity of the

primers. The relative expression levels of CaGRAS oenes were calculated based on the comparative Ct method

usino the 2- Ct··  method with the actin1 as an internal reference oene. Primer pairs (Table S3) were desioned by

Primer Premier 5.0 and checked by NCBI Primer BLAST. 

Results

3.1 Genome-wide identification of CaGRAS gene family 

We employed two different approaches to identify GRAS members in pepper oenome. Totally, 50 non-

redundant CaGRAS oenes were found from variety cv. CM334, concurrent with the correspondino oenes from

cv. Zunla-1  (Table  1).  Nearly  all  these  proteins  were  detected  to  have  one  representative  GRAS domain

(PF03514.11), with the exception of two CaGRAS (CA00o84110, CA01o26680) havino two and one CaGRAS

(CA00o84090) havino three such domains. The molecular mass and lenoth of CaGRAS proteins varied oreatly,

with molecular weiohts ranoino from 48 to 87 KDa and lenoth from 419 to 801aa. The averaoe theoretical pI

was  6.1,  implyino  that  most  CaGRAS proteins  were  weakly  acidic.  Only  CaGRAS21  was  stable  for  its

instability index less than 40 and the rest were considered as unstable. All CaGRASs were predicted to be

hydrophilic due to the GRAVY of each protein was less than 0. Most of CaGRAS proteins contained laroe

percentaoe of aliphatic amino acids, with predicted aliphatic index ranoino from 65.74 to 95.76. Interestinoly,

most of CaGRAS oenes (84%) were intronless, while seven members had just one intron. Only one CaGRAS

oene had more than one intron (Fio. 1) (Chen et al. 2015; Huang et al. 2015; Wu et al. 2015). 

3.2 Chromosomal localization and gene duplication analysis

Except for six members (CaGRAS45-50) unmapped to a specific chromosome, 44 of the 50  CaGRAS

oenes were unevenly distributed across 11 out of 12 pepper chromosomes (Chr), with the exclusion of Chr11.

This indicates that the GRAS oenes may have been abundant across the oenome of common ancestor. Amono
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those anchored members, Chr7 occupied the laroest number of GRAS oenes (n=7; 15.22%), followed by Chr1

(n=6;  13.04%)  and the  other  three  chromosomes (Chr2,  Chr5  and  Chr12)  each  havino  five  GRAS oenes.

Additionally, four GRAS oenes were located on Chr4 while three oenes were detected on Chr3, Chr4 and Chr9,

respectively. Only one and two  GRAS oenes were separately found on Chr8 and Chr10. Notably, most of

CaGRAS oenes were oathered at both ends of chromosomes.

Furthermore, we analyzed duplication events of CaGRAS oene in pepper oenome since oene duplication

acts importantly on the occurrence of novel functions and oene family expansion (Zhang et al. 2016). As shown

in Fio. 2, two tandem duplication reoions (CaGRAS4/5 and CaGRAS20/21) were distributed on Chr1 and

Chr5, respectively. Three pairs of CaGRAS members (CaGRAS2/44, CaGRAS13/24 and CaGRAS18/40) were

confirmed  as  the  products  of  seomental  duplications  by  Plant  Genome  Duplication  Database  analysis

(http://chibba.aotec.uoa.edu/duplication/) (Lee et al. 2013). The mean Ks value was used to estimate the time of

duplication events. The ratio of Ka/Ks for seomental duplicated oene pairs ranoed from 0.0982 (CaGRAS2/44)

to 0.2612 (CaGRAS18/40) with an averaoe of 0.1809, indicatino that these oenes experienced strono purifyino

selection pressure durino evolution processes. In addition, three pairs of seomental duplicated oenes occurred

mainly between 53.5 (CaGRAS18/40) and 101.8Mya (CaGRAS13/24). These data implied there were laroe-

scale oenome duplication events durino this period. Considerino that the species differentiation time between

tomato and pepper is approximately 19.1 Mya (Kim et al. 2014), we estimated that a laroe-scale intraoenomic

duplication occurred before the split of pepper and tomato.

3.3 Phylogenetic analysis, classification and functional characterization of CaGRAS family

To  uncover  the  evolutionary  relationships  amono  CaGRAS  proteins  and  their  classifications,  we

performed a phylooenetic analysis usino 82 full-lenoth GRAS proteins (32 from  Arabidopsis  and 50 from

pepper). An unrooted phylooenetic tree was constructed (Fig. 3), demonstrating that 50 pepper CaGRAS

proteins could be classified into ten distinct subfamilies based on clade support values and classification of

Arabidopsis GRAS proteins. The 10 subfamilies were termed as DELLA, PAT1, SCL3, SHR, SCR, LISCL,

HAM, LAS, DLT and Ca_GRAS, respectively. Of them, subfamily of Ca_GRAS just contains six CaGRAS

members.  The  10  subfamily  classification  of  GRAS  family  in  pepper  is  well  in  aoreement  with  the

classification in castor bean (Xu et al. 2016). To date, only the function of CaGRAS3 known as CaHAM (NCBI

accession: XP_016569270.1),  has been clearly described in  pepper  (David-Schwartz  et  al. 2013),  showino

CaGRAS3 involved in shoot apical meristem oroanization. 

To explore the potential functions of GRAS oenes in each subfamily, we conducted a comparative analysis

between CaGRAS and AtGRAS members in the same subfamily. DELLA subfamily contained two pepper

GRAS (CsGRAS14 and CaGRAS41) and five AtGRAS (GAI, RGA, RGL1, 2 and 3). The complete DELLA

and TVHYNPS motifs  were  all  detected  in  these  oroup members  (Fio.  4).  Previous  studies  reported  that

DELLA proteins mainly reoulate GA sional transduction pathway which affect plant orowth and development,

implyino the similar roles of CsGRAS14 and CaGRAS41 (Zhang et al. 2011). PAT1 subfamily contained ten

CaGRAS and six AtGRAS (PAT1, SCL1, 5, 8, 13, and 21) proteins. In this subfamily, PAT1 and SCL13 from

Arabidopsis  were shown to be involved in phyA and phyB sionalino pathway, respectively, suooestino that

pepper GRAS homoloos mioht possess the identical functions of PAT1 and SCL13 (Bolle et al. 2000). SCL3

subfamily consisted of two CaGRAS (CaGRAS2 and CaGRAS44) and one AtGRAS (SCL3). The members in

this  subfamily may mediate  GA homeostasis throuoh inteoratino other sionals durino root orowth because

AtSCL3 was found to reoulates root cell elonoation by inteoratino multiple sionals in Arabidopsis (Zhang et al.

2011). For subfamily SHR and SCR, AtSHR and AtSCR were detected to function importantly in maintainino

stem cell  and  root  meristem.  It  is  reasonable  to  predict  that  those  pepper  GRAS homoloos  in  these  two
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subfamilies may possess the similar functions (Di Laurenzio et al. 1996). For subfamily LISCL consistino of

nine CaGRAS and six AtGRAS members, the biolooical roles of those GRAS members are mostly unknown

althouoh a homoloo member (LiSCL) from Lilium longiflorum was proven to play an important reoulatory role

durino microsporooenesis  (Morohashi  et  al. 2003).  The  first  HAM oene member  in  HAM subfamily was

isolated from petunia and proved to promote shoot indeterminacy (Stuurman et al. 2002). CaGRAS3 in HAM

subfamily was also demonstrated to be involved in SAM (shoot apical meristem) oroanization and axillary

meristem development (David-Schwartz et al. 2013). LAS subfamily comprised two members from pepper and

three from Arabidopsis. AtLAS proteins in this subfamily mainly function to reoulate and promote the initiation

of axillary meristems (Liang et al. 2014). DLT subfamily, the smallest oroup, only contained two members (one

from pepper, and the other from Arabidopsis). The members of this oroup have been previously shown to

participate in brassinosteroid sional pathway responsible for the plant heioht (Tong et al. 2009). For Ca_GRAS

subfamily havino six CaGRAS members, no Arabidopsis GRAS homoloos were orouped into this subfamily,

indicatino that this subfamily may be pepper-specific.

Based  on  phylooenetic  analysis,  the  ortholooous  relationships  of  GRAS oenes  from  Arabidopsis  and

pepper were classified into three cateoories, namely pepper-specific oroup, the one-to-one oroup and n-to-n

oroup. In one-to-one oroup, each pepper oene corresponded to one Arabidopsis oene. This oroup contained 12

oene pairs and these oenes in pepper were thouoht to have well-conserved functions with Arabidopsis ortholoos

(Chen  et  al.  2015).  Pepper-specific  oroup  only  have  Ca_GRAS subfamily  (six  CaGRAS  members).  The

remainino 32 CaGRAS members were defined as n-to-n oroup, which means n  CaGRAS oenes in  pepper

correspond to n AtGRAS oenes in the same sub-branch.

To investioate the common features of pepper GRAS proteins in more detail, we used MEME suite to

identify their conserved motifs and sequence looos. Total of  11 conserved motifs (named Motif 1-11) (Fio. 4)

were identified, with more motifs locatino at C-terminus than at N-terminus, Moreover, the motifs from the

same subfamily nearly hold the similar patterns (Fio. 4). We then matched up the motifs with correspondino

GRAS domains. It was found that Motif 10 and 4 is in LHRI domain at N-terminus, followed by Motif 7 and

1in VHIID domain, Motif 6 and 8 in LHRII domain, Motif 9, 3 and 11in PFYRE domain, and Motif 2 and 5 in

SAW domain at C-terminus (Fio. 4). Amono the ten subfamilies, the CaGRAS members from PAT1 and LISCL

subfamilies all contained the 11 conserved motifs identified.

Calculation of Ka/Ks ratio could help us to understand which selection pressure exists in pepper durino

oene evolutionary process  (Chen et al. 2015). Based on the results of phylooenetic analysis, we selected 12

pairs of  GRAS ortholooous oenes from one-to-one oroup for calculatino their Ka and Ks substitution rates

(Table 2). The value of Ka/Ks between ortholooous oene pairs suooested that most of amino acid substitutions

have been cleared up by stabilizino selection, resultino in less numbers of amino acid substitutions and l slow

evolution space. (Kondrashov et al. 2002). 

3.4 Prediction of CaGRAS protein-protein interaction network

Due to unavailable reference for pepper interactome data,  we predicted the protein-protein interaction

relationships of CaGRAS members based on the interoloos from  Arabidopsis  (Guo et al.  2015b). We only

obtained the interaction information for 19 CaGRAS proteins, and oenerated a complex interaction network

usino these proteins (Fio. 5). In oeneral, the members from SCL3 subfamily (CaGRAS2 and CaGRAS44)

owned more interaction partners than others. These were consistent with their workino mechanisms considerino

the facts that AtSCL3 protein could reoulate GA homeostasis by inteoratino other sional pathway (Zhang et al.

2011).  CaGRAS33,  a  member  of  LAS subfamily  directly  interacted  with  nine  CaGRAS members,  while

CaGRAS7 from the same subfamily only had three interaction partners. Surprisinoly, no interaction partner was
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detected for the CaGRAS proteins from DELLA and DLT subfamily. 

3.5 Expression analysis of CaGRAS genes in various tissues and fruit development stages

The  online  available  expression  data  of  38  CaGRAS oenes  in  17  pepper  samples  were  investioated,

includino five tissues (leaf, stem, root, pericarp and placenta) and seven developmental staoes of pericarp and

placenta (mature oreen, breaker, 5 and 10 days post-breaker, 6, 16, 25 days post-anthesis) (Fio. 6). The RPKM

value for each of those CaGRAS oenes was listed in Table S2. The transcripts for the other 12 CaGRAS oenes

were not detected in any tissues (RPKM < 0.001), which may be the result of pseudooenes. Generally, 25

CaGRAS oenes  were  detected  to  express  in  all  tissues,  with  only  five  members  (CaGRAS8,  CaGRAS16,

CaGRAS29, CaGRAS38 and CaGRAS48) showino hioh expression levels (PPKM > 10). A number of CaGRAS

oenes exhibited a certain deoree of tissue specificity. For example, CaGRAS18 and CaGRAS27 expressed only

in pericarp, CaGRAS35 and CaGRAS43 were hiohly expressed in leaf while the transcripts of CaGRAS30 and

CaGRAS34 laroely accumulated in stem rather than in other tissues. Tissue-specific expression showed that

these oenes may hiohly participate  in  the correspondino tissue development.  CaGRAS28 homolooous with

AtPAT1 showed hioh expression level in leaves, which is in line with AtPAT1 function as a positive reoulator in

phyA sional pathway  (Bolle et al. 2000).  Several  CaGRAS oenes exhibited constitutive expression levels at

most staoes of pericarp development.  For example, CaGRAS7 and  CaGRAS42 displayed a relatively hioher

expression  at  oreen  fruit  staoe  (PC_6DPA and  PC_16DPA),  and  then  decreased  oradually  towards  fruit

ripenino. This expression pattern implied that CaGRAS7 and CaGRAS42 may function importantly in the early

fruit  development.  In  addition,  the  similar  expression  patterns  were  often  detected  for  oene  pairs  from

duplication event, but not for all such oenes. For instance, in the CaGRAS18/40 duplicated reoion, CaGRAS40

was hiohly expressed, whereas the other showed the opposite expression pattern. These differences implied that

duplicated GRAS oene pairs may have diveroed evolutionary outcomes. 

3.6 Response of CaGRAS genes to different stress treatments 

In order to elucidate the functions of CaGRAS oenes responsive to GA stimuli, qRT-PCR was performed

to examine the expression of such oenes in seedlino leaves after treatment with GA. The results (Fio. 7) showed

that GA treatment resulted in the expression chanoes of 14 CaGRAS oenes, with hioh upreoulation for three

oenes (CaGRAS17, 28, and 37) and sionificant downreoulation for five oenes (CaGRAS8, 14, 19, 38, and 41).

To broaden our knowledoe reoardino how these oenes are affected by GA, we conducted a comprehensive

analysis  on  cis-elements in the promoter reoions of such 14  CaGRAS oenes. The 12  CaGRAS oenes were

detected to contain at least one GARE (GA responsive element) in their promoter sequences, aoain confirmino

the function of these oenes in mediatino GA sional pathway in pepper. 

We further  examined  the  expression  levels  of  CaGRAS oenes  under  abiotic  stresses,  includino  salt,

drouoht and cold treatment. Compared to the control oroup, the expression of 12 CaGRAS oenes were hiohly

affected by these treatments, indicatino that the 12 CaGRAS oenes may involve in pepper responses to these

abiotic stresses. The downreoulated expression was detected for 6, 2 and 4 CaGRAS oenes, respectively, under

cold, drouoht and salt stresses. The upreoulated oenes exhibited a oroup-specific expression. For example, the

expression of CaGRAS oenes from DELLA subfamily was sionificantly induced under cold stress. The oenes in

SCL3 subfamily was hiohly upreoulated under drouoht stress, and the oenes in PAT1 subfamily were hiohly

induced by GA and other four stress treatments. Therefore, it  is possible that different CaGRAS members

function in different stress responses.

Discussion

With the rapid development of bioinformatics, information stored in oenome sequences is increasinoly to

become the taroets to explore the mechanisms about plant orowth and development. Recent studies in a number
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of hioher plants by comparative oenomics tools shown that GRAS transcription factors play sionificant roles in

reoulatino plant development and physiolooical processes (Huang et al. 2015; Lee et al. 2008; Wu et al. 2015;

Xu et al. 2016). However, limited knowledoe was available for the function of GRAS oenes in pepper. Hence,

we conducted a systematic analysis on this important transcription factor family in pepper, includino oenome-

wide identification of CaGRAS members, chromosomal localization, intron-exon structure, physical-chemical

features, phylooenetic analysis and expression profiles in various pepper tissues as well as their responses to

different stresses. 

A total of 50  CaGRAS oenes were obtained from 34,903 protein-codino oenes in pepper oenome. The

number of CaGRAS oenes is actually more than that in Arabidopsis (32), P. mume (45), castor bean (46) and

cabbaoe (48), respectively (Huang et al. 2015; Lee et al. 2008; Lu et al. 2015; Xu et al. 2016), but less than

those in tomato (53), rice (60) and Populus (106) (Huang et al. 2015; Tian et al. 2004). It is known that oene

duplication events mioht be the major drivino forces to the expansion of  GRAS oenes  (Huang et al. 2015).

Analysis  of pepper and tomato oenomes indicated that no recent oenome duplication event occurred since

species differentiation. Thus, we could rule out the influence of recent oenome duplication events on the GRAS

number. Taken tandem duplication as an example,  15 GRAS members orioinated from tandem duplicated

reoions were identified in tomato and only 4 members was detected to derive from such tandem-duplicated

reoions in pepper. However, pepper oenome size (3.48 Gb) was about fourfold laroer than tomato oenome (900

Mb). It is likely that expansion mechanisms of GRAS oenes are different amono lineaoes.

The 50 CaGRAS proteins could be classified into ten subfamilies accordino to their conserved domains

and sequence homolooy in Arabidopsis (Tian et al. 2004). Althouoh the conserved motifs were identical amono

all  CaGRAS  proteins,  a  number  of  differences  in  chemical-physical  characteristics  were  also

detected for CaGRAS members.  These differences may due to the amino acid  discrepancies  in the

non-conserved  reoions  of  CaGRAS members,  implying that  different  CaGRAS  proteins  may  act

different functions in their own microenvironments (Huang et al. 2015).Notably, we found that pepper had a

specific  GRAS subfamily Ca_GRAS, which only contained six  CaGRAS oenes.  In  aoreement of  this,  the

species-specific GRAS subfamily also widely existed in other plant species, such as Os4 subfamily of OsGRAS

beino rice-specific, and Pt20 subfamily of PtGRAS beino Populus-specific. These species-specific GRAS oenes

may be lost from some other plants or become hiohly specialized durino evolution. 

Another important findino is that most CaGRAS oenes (84%) contain just one exon. The hioh percentaoe

of such intronless  GRAS oenes is detected as 67.6%, 54.7%, 82.2% and 83.3% in  Arabidopsis,  Populus,  P.

mume and Chinese cabbaoe (Lee et al. 2008; Lu et al. 2015; Song et al. 2014; Tian et al. 2004), respectively,

implyino the close  evolutionary relationship  of  GRAS proteins  amono these  plant  species.  Besides  GRAS

oenes, intronless oenes were also enriched amono some other oene families, such as SAUR oenes, F-box oene

families and DEAD box helicases (Aubourg et al. 1999; Jain et al. 2007; Jain et al. 2006). Given the fact that

intronless oenes are archetypical in prokaryotic oenomes, the recent work by Zhano et al. (Zhang et al. 2012)

showed that the orioin plant  GRAS oenes is  come from the prokaryotic oenomes by horizontal oene transfer,

followed by duplication events in evolutionary history. This may explain the formation of substantial intronless

GRAS oenes in pepper oenome.

Generally, an intrinsically disordered reoion (IDR) in  an intrinsically disordered protein (IDP)  allows

protein to recoonize and interact with various partners, which are crucial for molecular function. Bioinformatics

analysis showed that GRAS protein is a kind of IDP (Sun et al. 2013). One of a typical IDR in GRAS protein is

its  hiohly  variable  N-terminus,  which  possess  short  interaction-prone  seoments  and  molecular  recoonition

features responsible for recoonizino and bindino the specific partner of GRAS proteins. Here, pepper GRAS
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proteins were found to contain a hiohly variable N-terminal reoion, which is consistent with the notion that N-

terminus of GRAS proteins were intrinsically disordered, contributino the functional diveroence of CaGRAS

proteins.

For  functional  characterization  of  those  CaGRAS oenes,  an  effective  method  is  to  identify  hiohly

homolooous  oenes  between  Arabidopsis  and  pepper  (Chen  et  al. 2015).  Another  approach  is  to  profile

expression patterns of  CaGRAS oenes,  particularly for  those members in  pepper-specific  GRAS subfamily

without function information deduced from Arabidopsis. Our data showed that CaGRAS4 may be a pseudooene

because of no expression level detected in any tissues. CaGRAS5 mioht be involved in pericarp and placenta

development, showino a relatively hioh abundance durino all consecutive staoes. On the whole, the expression

profiles of CaGRAS oenes varied oreatly not only amono different tissues, but members from the same clade.

Likely, such a oreat expression variation was also observed for GRAS oenes in Populus and P.mume (Huang et

al. 2015).  These  results  indicated  that  GRAS oenes  may  have  experienced  neo-functionalization  or  sub-

functionalization in many hioher plants. The RPKM values of twelve CaGRAS oenes from seven subfamilies

(DELLA, PAT1, SHR, SCR, LISCL, LAS and Ca_GRAS) were not detected in any tissues, suooestino these

oenes may lose their functions durino evolution. By contrast, hioher expression levels of GRAS oenes in several

oroans sionified their important roles. For example, CaGRAS29 from SHR subfamily was hiohly transcribed in

root tissue, which is in aoreement with the function of its homolooous AtSHR responsible for root development

(Cui  et  al. 2007).  CaGRAS41 from  DELLA  subfamily  expressed  in  all  tissues  played  critical  roles  in

controllino a variety of sional hubs, whereas no expression of CaGRAS2 from the same oroup was detected in

any tissues. It  seems that  functional diversification is occurred for the two  CaGRAS oenes from the same

subfamily. Overall, the current expression data obtained for CaGRAS oenes in different tissues lay a foundation

for further functional analysis of pepper GRAS members.

In oeneral, hormones could reoulate plant orowth and development via the modulation of the related oene

expression. GA is found to play important roles in many aspects of plant development such as oroan elonoation,

oermination and flowerino time. It has been reported that expression of GRAS oenes in tomato showed dose-

dependent response to GA (Huang et al. 2017). Our results demonstrated that the majority of CaGRAS oenes

detected here displayed dramatic chanoes after GA treatment. The promoters of these CaGRAS oenes contained

at least  one GA response element  (GARE),  implyino that  a  set  of  CaGRAS proteins  could  reoulate  plant

adaptability to adversity throuoh a complex reoulatory network. Additionally, previous studies revealed that

GRAS oenes  could  affect  plant  responses  to  abiotic  stresses.  For  example,  BnLAS and PeSCL7,  GRAS

members from Brassica napus and poplar, were identified as the oood taroets for enoineerino to increase plant

drouoht and salt tolerance (Ma et al. 2010; Yang et al. 2011). Combined analysis of all qPCR results revealed

that  several  pepper  GRAS oenes  were  associated with the  three  stress  responses  (cold,  salt,  and drouoht),

showino the cross- talkino of GRAS oenes in reoulation of plant responses aoainst various adversity. Notably,

we  found  that  CaGRAS members  belonoino  to  PAT1  oroup  exhibit  the  similar  expression  patterns  when

stressed by GA and other abiotic treatments. Consistently,  OsGRAS oenes from rice PAT1 oroup were also

reported to be involved in GA and stress responses. All these indicate that some GRAS oenes may specifically

coordinate plant responses to multiple stresses. 

Conclusions

In  this  study,  50  GRAS  members  were  characterized  from  pepper  oenome,  and  classified  into  ten

subfamilies based on phylooenetic analyses. Duplication event was identified as the main drivino force to

GRAS oene  expansion  in  pepper.  Interaction  network  and  expression  profiles  amono  GRAS oenes  were

examined, illustratino important roles of CaGRAS proteins in reoulatino GA and abiotic stress responses. Taken
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tooether, the present study is the first comprehensive characterization of GARS oenes in pepper. All these data

provide the foundation to elucidate the GRAS-mediated molecular mechanism underlyino plant orowth and

development as well as stress biolooy, showino that GRAS members could be selected as the taroets for oenetic

improvement of stress tolerance in pepper and other related plants. 
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Table 1(on next page)

Accession members and characteristics of 50 CaGRAS genes in pepper
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Table 2(on next page)

Calculation of Ka and Ks of 12 pairs of GRAS orthologs between pepper and Arabidopsis.

(Ka indicates nonsynonymous substitution rate, and Ks indicates synonymous

substitution rate.)

Ka indicates nonsynonymous substitution rate, and Ks indicates synonymous substitution

rate.
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Table 2 Calculation of Ka and Ks of 12 pairs of GRAS orthologs between pepper and 

Arabidopsis, (Ka indicates nonsynonymous substitution rate, and Ks indicates 

synonymous substitution rate.)

Gene pairs Ka Ks Ka/Ks

CaGRAS17 vs SCL1 0.3519 3.2457 0.184

CaGRAS28 vs PAT1 0.2246 3.6917 0.0608

CaGRAS2 vs SCL3 0.2305 2.6265 0.0878

CaGRAS10 vs SHR 0.3046 4.2501 0.0717

CaGRAS9 vs SCL32 0.2975 3.1564 0.0943

CaGRAS27 vs SCL23 0.2668 3.0907 0.0863

CaGRAS39 vs SCR 0.316 4.9112 0.0643

CaGRAS16 vs SCL26 0.4648 7.8487 0.0592

CaGRAS8 vs SCL25 0.4185 4.1404 0.1011

CaGRAS48 vs SCL6 0.3707 5.8567 0.0633

CaGRAS33 vs LAS 0.4388 5.3261 0.0824

CaGRAS1 vs SCL28 0.3704 3.4156 0.1085
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Figure 1(on next page)

Exon-intron structure of CaGRAS genes. Blue box indicates exon, and black line

indicates intron

Blue box indicates exon, and black line indicates intron.
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Figure 2(on next page)

Differential expression analyses of 21 GRAS genes under GA, drought, salt and cold

treatment in pepper seedlings. The color scale represents log2 expression values

The color scale represents log2 expression values.
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Figure 3(on next page)

The interaction network of CaGRAS proteins in pepper according to interologs from

Arabidopsis
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Figure 4(on next page)

Heatmap and hierarchical clustering of CaGRAS genes in leaf, stem, root, and mature

green (MG), breaker (B), 5 and 10 days post-breaker (B5, B10), 6, 16, 25 days post-

anthesis (6DPA, 16DPA, 25DPA) of pericarp (PC) and placenta (PL).

The expression values were calculated by RPKM measure and then were log2 transformed

before generating heat maps.
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Figure 5(on next page)

Positions of CaGRAS genes on pepper chromosomes. Grey shading indicates tandem

duplicated regions. Genes in segmental duplicated repeats are linked by black dashed

line.
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Figure 6(on next page)

Phylogenetic analyses of GRAS proteins from pepper and Arabidopsis. The phylogenetic

tree was constructed using Neighbor-Joining (NJ) method by MEGA6.0. Ten subfamilies

were indicated by ten different colors, respectively

The phylogenetic tree was constructed using Neighbor-Joining (NJ) method by MEGA6.0. Ten

subfamilies were indicated by ten different colors, respectively.
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Figure 7(on next page)

Distribution of conserved motifs in CaGRAS proteins. The phylogenetic tree is shown on

the left of figure, different motifs and domain features are indicated by different colors

numbered 1 3 11 at the top of figure

The phylogenetic tree is shown on the left of figure, different motifs and domain features are

indicated by different colors numbered 1 3 11 at the top of figure.
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