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Abstract

Background: Unlike full reading, ’skim-reading’ involves the process of looking quickly

over information in an attempt to cover more material whilst still being able to retain a

superficial view of the underlying content. Within this work, we specifically emulate this

natural human activity by providing a dynamic graph-based view of entities automatically

extracted from text. For the extraction, we use shallow parsing, co-occurrence analysis and

semantic similarity computation techniques. Our main motivation is to assist biomedical

researchers and clinicians in coping with increasingly large amounts of potentially relevant

articles that are being published ongoingly in life sciences.

Methods: To construct the high-level network overview of articles, we extract weighted

binary statements from the text. We consider two types of these statements, co-occurrence

and similarity, both organised in the same distributional representation (i.e., in a vector-

space model). For the co-occurrence weights, we use point-wise mutual information that

indicates the degree of non-random association between two co-occurring entities. For

computing the similarity statement weights, we use cosine distance based on the relevant

co-occurrence vectors. These statements are used to build fuzzy indices of terms, state-

ments and provenance article identifiers, which support fuzzy querying and subsequent

result ranking. These indexing and querying processes are then used to construct a graph-

based interface for searching and browsing entity networks extracted from articles, as well

as articles relevant to the networks being browsed. Last but not least, we describe a method-

ology for automated experimental evaluation of the presented approach. The method uses

formal comparison of the graphs generated by our tool to relevant gold standards based on

manually curated PubMed, TREC challenge and MeSH data.

Results: We provide a web-based prototype (called ‘SKIMMR’) that generates a network

of inter-related entities from a set of documents which a user may explore through our

interface. When a particular area of the entity network looks interesting to a user, the

tool displays the documents that are the most relevant to those entities of interest currently

shown in the network. We present this as a methodology for browsing a collection of

research articles. To illustrate the practical applicability of SKIMMR, we present examples

of its use in the domains of Spinal Muscular Atrophy and Parkinson’s Disease. Finally, we
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report on the results of experimental evaluation using the two domains and one additional

dataset based on the TREC challenge. The results show that the presented method for

machine-aided skim reading outperforms tools like PubMed regarding focused browsing

and informativeness of the browsing context.

Conclusions: Both conceptually and practically, the SKIMMR methodology instantiates

the notion of ‘skim reading’ within software. In preliminary trials, sample users find new,

interesting and non-trivial facts with the tool. A comprehensive experimental evaluation of

the SKIMMR prototype using simulations of various types of browsing behaviour shows a

high potential of the proposed notion of skim reading for facilitating knowledge discovery

in life sciences.

Keywords: Machine Reading, Skim Reading, Publication Search, Text Mining, Information

Visualisation

1 Introduction

In recent years, knowledge workers in life sciences are increasingly overwhelmed by an ever-

growing quantity of information. PubMed1 contained more than 23 million abstracts as of

November 2013, with a new entry being added every minute. The current textual content

available online as PubMed abstracts amounts to over 2 billion words (based on estimates de-

rived from a random sample of about 7000 records). Information retrieval technology helps

researchers pinpoint individual papers of interest within the overall mass of documents, but

how can scientists use that to acquire a sense of the overall organization of the field? How can

users discover new knowledge within the literature when they might not know what they are

looking for ahead of time?

Strategic reading aided by computerised solutions may soon become essential for scientists

[Renear and Palmer, 2009]. Our goal is to provide a system that can assist readers to explore

large numbers of documents efficiently. We present ‘machine-aided skim-reading’ as a way

to extend the traditional paradigm of searching and browsing a text collection (in this case,

PubMed abstracts) through the use of a search tool. Instead of issuing a series of queries to

reveal lists of ranked documents that may contain elements of interest, we let the user search

and browse a network of entities and relations that are explicitly or implicitly present in the

texts. This provides a simplified and high-level overview of the domain covered by the text, and

allows users to identify and focus on items of interest without having to read any text directly.

1The central US repository of published papers in the life sciences since the 1950s, see http://www.

ncbi.nlm.nih.gov/pubmed.
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Upon discovering an entity of interest, the user may transition from our ‘skimming’ approach

to read the relevant texts as needed.

This article is organised as follows. Section 2 describes methods used in SKIMMR for: (1) ex-

traction of biomedical entities from data; (2) computation of the co-occurrence and similarity

relationships between the entities; (3) indexing and querying of the resulting knowledge base;

(4) evaluating the knowledge base using automated simulations. Each of the methods is ex-

plained using examples. Section 3 presents the SKIMMR prototype and explains typical usage

of the tool in examples based on user interactions. We also describe evaluation experiments

performed with three different instances of the tool. In Section 4 we discuss the results, give

an overview of related work and outline our future directions. There is also Appendix A that

provides details on some of the more complex formulae introduced in the main text.

The main contributions of the presented work are: (1) machine-aided skim-reading as a new

approach to semi-automated knowledge discovery; (2) fuzzy indexing and querying method for

efficient on-demand construction and presentation of the high-level graph-based article sum-

maries; (3) detailed examples that explain the applied methods in a step-by-step fashion even to

people with little or no computer science background; (4) an open-source prototype implement-

ing the described method, readily available for processing custom data, and also in the form

of two pre-computed instances deployed on Spinal Muscular Atrophy and Parkinson’s Disease

data; (5) an evaluation methodology based on simulations and formally defined measures of se-

mantic coherence, information content and complexity that can be used not only for evaluating

SKIMMR (as we did in the article), but also for assessment of other tools and data sets utilising

graph structures.

2 Methods

This section describes how the knowledge base supporting the process of machine-aided skim

reading is generated from the input data (i.e., biomedical articles and data)2. Firstly we de-

scribe extraction of entities and basic co-occurrence relationships between them (Section 2.1).

Section 2.2 is about how we compute more general, corpus-wide relationships from the basic

extracted co-occurrence statements. Section 2.3 explains how the processed content can be in-

dexed and queried in order to generate the graph-based summaries with links to the original

documents. Finally, Section 2.4 introduces a method for a simulation-based evaluation of the

generated content in the context of machine-aided skim reading.

2Note that for the research reported in this article, we have received an exemption notice from an IRB review

by the USC UPIRB, under approval number UP-12-00414.
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2.1 Extracting Basic Co-Occurrence Statements from Texts

We process the abstracts by a biomedical text-mining tool3 in order to extract named enti-

ties (e.g., drugs, genes, diseases or cells) from the text. For each abstract with a PubMed

ID PMID, we produce a set of (ex, ey, cooc((ex, ey), PubMedPMID), PubMedPMID) tuples,

where ex, ey range over all pairs of named entities in the abstract with the PMID identifier,

and cooc((ex, ey), PubMedPMID) is a co-occurrence score of the two entities computed using

the formula (1) detailed in Appendix A.1. The computation of the score is illustrated in the

following example.

Example 1 Imagine we want to investigate the co-occurrence of the parkinsonism and

DRD (dopamine-responsive dystopia) concepts in a data set of PubMed abstracts concerned

with clinical aspects of Parkinson’s Disease4. There are two articles in the data set where the

corresponding terms co-occur:

• Jeon BS, et al. Dopamine transporter density measured by 123Ibeta-CIT single-photon

emission computed tomography is normal in dopa-responsive dystonia (PubMed ID:

9629849).

• Snow, BJ, et al. Positron emission tomographic studies of dopa-responsive dystonia and

early-onset idiopathic parkinsonism (PubMed ID: 8239569).

The relevant portions of the first abstract (PubMed ID: 9629849) are summarised in the follow-

ing table (split into sentences numbered from the beginning of the text):

. . . . . .

12 Therefore, we performed 123Ibeta-CIT single-photon emission computed tomography

(123Ibeta-CIT SPECT) in clinically diagnosed DRD, PD, and JPD, and examined whether

DAT imaging can differentiate DRD from PD and JPD.

. . . . . .

14 Five females (4 from two families, and 1 sporadic) were diagnosed as DRD based on early-

onset foot dystonia and progressive parkinsonism beginning at ages 7 to 12.

. . . . . .

17 123Ibeta-CIT striatal binding was normal in DRD, whereas it was markedly decreased in

PD and JPD.

. . . . . .

22 A normal striatal DAT in a parkinsonian patient is evidence for a nondegenerative cause of

parkinsonism and differentiates DRD from JPD.

23 Finding a new mutation in one family and failure to demonstrate mutations in the putative

gene in other cases supports the usefulness of DAT imaging in diagnosing DRD.

3A part of the LingPipe suite, see http://alias-i.com/lingpipe/ for details.
4Which we have processed in one of the pre-computed instances of SKIMMR, see Section 3.2.2 for details.
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Based on the sentence numbers in the excerpt, we can compute the co-occurrence score of the

(parkinsonism,DRD) tuple as:

cooc((parkinsonism, DRD), PubMed9629849) = (1 +
1

4
+

1

3
+

1

3
) + (1 +

1

2
) = 3.416̄

Similarly to the above, the portions relevant to the (parkinsonism,DRD) co-occurrence

according to the second abstract (PubMed ID: 8239569) are as follows:

1 There are two major syndromes presenting in the early decades of life with dystonia and

parkinsonism: dopa-responsive dystonia (DRD) and early-onset idiopathic parkinson-

ism (EOIP).

2 DRD presents predominantly in childhood with prominent dystonia and lesser degrees of

parkinsonism.

. . . . . .

5 Some have suggested, however, that DRD is a form of EOIP.

. . . . . .

The co-occurrence score is then:

cooc((parkinsonism, DRD), PubMed8239569) = (1 +
1

2
+ 1 +

1

2
) +

1

4
= 3.25

Therefore the basic co-occurrence tuples produced from the two articles are:

(parkinsonism,DRD,3.416̄,PubMed9629849),
(parkinsonism,DRD,3.25,PubMed8239569)

2.2 Computing a Knowledge Base from the Extracted Statements

From the basic co-occurrence statements, we compute a knowledge base, which is a comprehen-

sive network of interlinked entities. This network supports the process of navigating a skeletal

structure of the knowledge represented by the corpus of the input PubMed articles (i.e., the ac-

tual skim reading). The knowledge base consists of two types of statements: (1) corpus-wide

co-occurrence and (2) similarity. The way to compute the particular types of statements in the

knowledge base is described in the following two sections.

2.2.1 Corpus-Wide Co-Occurrence

The basic co-occurrence tuples extracted from the PubMed abstracts only express the co-oc-

currence scores at the level of particular documents. We need to aggregate these scores to
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examine co-occurrence across the whole corpus. For that, we use point-wise mutual informa-

tion [Manning et al., 2008], which determines how much two co-occurring terms are associated

or disassociated, comparing their joint and individual distributions over a data set. We multiply

the point-wise mutual information value by the absolute frequency of the co-occurrence in the

corpus to prioritise more frequent phenomena. Finally, we filter and normalise values so that

the results contain only scores in the [0, 1] range. The scores are computed using the formulae

(2-5) in Appendix A.1.

The aggregated co-occurrence statements that are added to the knowledge base are in the form

of (x, cooc, y, ν(fpmi(x, y), P ))triples, where x, y range through all terms in the basic co-

occurrence statements, the scores are computed across all the documents where x, y co-occur,

and the cooc expression indicates co-occurrence as the actual type of the relation between

x, y. Note that the co-occurrence relation is symmetric, meaning that if (x, cooc, y, w1) and

(y, cooc, x, w2) are in the knowledge base, w1 must be equal to w2.

Example 2 Assuming our corpus consists only of the two articles from Example 1, the point-

wise mutual information score of the (parkinsonism,DRD) tuple can be computed using

the following data:

• p(parkinsonism, DRD) – joint distribution of the (parkinsonism,DRD) tuple within

all the tuples extracted from the PubMed abstracts with IDs 9629849 and 8239569,

which equals 3.416̄ + 3.25 = 6.6̄ (sum across all the (parkinsonism,DRD) basic

co-occurrence tuples);

• p(parkinsonism), p(DRD) – individual distributions of the parkinsonism, DRD ar-

guments within all extracted tuples, which equal 28.987 and 220.354, respectively (sums

of the weights in all basic co-occurrence statements that contain parkinsonism or

DRD as one of the arguments, respectively);

• F (parkinsonism, DRD), |T | – the absolute frequency of the parkinsonism, DRD co-

occurrence and the number of all basic co-occurrence statements extracted from the ab-

stracts, which equals to 2 and 1, 414, respectively;

• P – the percentile for the normalisation, equal to 95, which results in the normalisation

constant 2.061 (a non-normalised score such that only 5% of the scores are higher than

that).

The whole formula is then:

npmi(parkinsonism, DRD) = ν(fpmi(parkinsonism, DRD), P ) =
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= ν(F (parkinsonism, DRD) · log2
p(parkinsonism, DRD)

p(parkinsonism)p(DRD)
, 95)

.
=

.
=

2 · log2
6.6̄

28.987·220.354

2.061
.
= 0.545

Thus the aggregated co-occurrence statement that is included in the knowledge base is

(parkinsonism,cooc,DRD,0.545)

2.2.2 Similarity

After having computed the aggregated and filtered co-occurrence statements, we add one more

type of relationship – similarity. Many other authors have suggested ways for computing se-

mantic similarity (see [d’Amato, 2007] for a comprehensive overview). We base our approach

on cosine similarity, which has become one of the most commonly used approaches in infor-

mation retrieval applications [Singhal, 2001, Manning et al., 2008]. The similarity and related

notions are described in detail in Appendix A.2, formulae (6-7).

Similarity indicates a higher-level type of relationship between entities that may not be covered

by mere co-occurrence (entities not occurring in the same article may still be similar). This adds

another perspective to the network of connections between entities extracted from literature,

therefore it is useful to make similarity statements also a part of the SKIMMR knowledge base.

To do so, we compute the similarity values between all combinations of entities x, y and include

the statements (x, sim, y, sim(x, y))into the knowledge base whenever the similarity value is

above a pre-defined threshold (0.25 is used in the current implementation)5.

A worked example of how to compute similarity between two entities in the sample knowledge

base is given below.

Example 3 Let us use ‘parkinsonisms’, ‘mrpi values’ as sample entities a, b. In

a full version of Parkinson’s disease knowledge base (that contains the data used in the pre-

vious examples, but also hundreds of thousands of other statements), there are 19 shared en-

tities among the ones related to a, b (for purposes of brevity, each item is linked to a short

identifier to be used later on): (1) msa-p ∼ t0, (2) clinically unclassifiable

parkinsonism∼ t1, (3) cup∼ t2, (4) vertical ocular slowness∼ t3, (5) base-

line clinical evaluation ∼ t4, (6) mr ∼ t5, (7) parkinsonian disorders ∼

5Similarly to the co-occurrence statements described before, the sim expression refers to the type of the relation

between x, y, i.e., similarity.
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t6, (8) psp phenotypes∼ t7, (9) duration∼ t8, (10) patients∼ t9, (11) clinical

diagnostic criteria ∼ t10, (12) abnormal mrpi values ∼ t11, (13) pd ∼ t12,

(14) magnetic resonance parkinsonism index ∼ t13, (15) parkinson dise-

ase∼ t14, (16) mri∼ t15, (17) parkinson’s disease∼ t16, (18) psp∼ t17, (19) nor-

mal mrpi values ∼ t18.

The co-occurrence complements a, b of the parkinsonisms, mrpi values entities (i.e.,

associated co-occurrence context vectors) are summarised in the following table:

t0 t1 t2 t3 t4 t5 t6 t7 t8 t10 t11 t13 t14 t15 t17 t18

a 0.14 0.39 1.0 0.08 0.26 0.06 0.18 0.4 0.07 0.27 0.09 0.7 0.03 0.14 0.33 0.25
b 0.26 0.57 1.0 0.3 0.82 0.2 0.33 0.26 0.39 0.43 0.36 0.41 0.06 0.34 1.0 1.0

Note that the elements t9, t12, t16 are omitted since their weight in at least one of the com-

plements is <0.01 and thus does not contribute significantly to the result. The sizes of the

co-occurrence complement vectors are 3.048, 2.491 for parkinsonisms, mrpi values,

respectively, while their dot product is 2.773. Therefore their similarity is equal to 2.773
3.048·2.491

.
=

0.365 and the new statement to be added to the knowledge base is

(parkinsonisms,sim,mrpi values,0.365).

2.3 Indexing and Querying the Knowledge Base

The main purpose of SKIMMR is to allow users to efficiently search and navigate in the

SKIMMR knowledge bases, and retrieve articles related to the content discovered in the high-

level entity networks. To support that, we maintain several indices of the knowledge base

contents. The way how the indices are built and used in querying SKIMMR is described in the

following two sections.

2.3.1 Knowledge Base Indices

In order to expose the SKIMMR knowledge bases, we maintain three main indices: (1) a term

index – a mapping from entity terms to other terms that are associated with them by a relation-

ship (like co-occurrence or similarity); (2) a statement index – a mapping that determines which

statements the particular terms occur in; (3) a source index – a mapping from statements to their

sources, i.e., the texts from which the statements have been computed. In addition to the main
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SKIMMR: Machine-Aided Skim Reading 9

indices, we use a full-text index that maps spelling alternatives and synonyms to the terms in

the term index.

The main indices are implemented as matrices that reflect the weights in the SKIMMR knowl-

edge base:

T1 T2 . . . Tn

T1 t1,1 t1,2 . . . t1,n
T2 t2,1 t2,2 . . . t2,n
...

...
...

. . .
...

Tn tn,1 tn,2 . . . tn,n

S1 S2 . . . Sm

T1 s1,1 s1,2 . . . s1,m
T2 s2,1 s2,2 . . . s2,m
...

...
...

. . .
...

Tn sn,1 sn,2 . . . sn,m

P1 P2 . . . Pq

S1 p1,1 p1,2 . . . p1,q
S2 p2,1 p2,2 . . . p2,q
...

...
...

. . .
...

Sm pm,1 pm,2 . . . pm,q

where:

• T1, . . . , Tn are identifiers of all entity terms in the knowledge base and ti,j ∈ [0, 1] is the

maximum weight among the statements of all types existing between entities Ti, Tj in the

knowledge base (0 if there is no such statement);

• S1, . . . , Sm are identifiers of all statements present in the knowledge base and si,j ∈ {0, 1}
determines whether an entity Ti occurs in a statement Sj or not;

• P1, . . . , Pq are identifiers of all input textual resources, and pi,j ∈ [0, 1] is the weight of

the statement Si if Pj was used in order to compute it, or zero otherwise.

Example 4 To illustrate the notion of the knowledge base indices, let us consider a simple

knowledge base with only two statements from Examples 1 and 3: S1 ∼ (parkinsonism,

cooc,DRD,0.545), S2 ∼ (parkinsonisms,sim,mrpi values,0.365). Furthermore,

let us assume that: (i) the statement S1 has been computed from the articles with PubMed

identifiers 9629849, 8239569 (being referred to by the P1, P2 provenance identifiers respec-

tively); (ii) the statement S2 has been computed from articles with PubMed identifiers 9629849,

21832222, 22076870 (being referred to by the P1, P3, P4 provenance identifiers, respectively6).

This corresponds to the following indices:

term index parkinsonism DRD parkinsonisms mrpi values

parkinsonism 0.0 0.545 0.0 0.0
DRD 0.545 0.0 0.0 0.0

parkinsonisms 0.0 0.0 0.0 0.365
mrpi values 0.0 0.0 0.365 0.0

6In reality, the number of source article used for computing these statements in Parkinson’s disease knowledge

base is much larger, but here we take into account only few of them to simplify the example.
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SKIMMR: Machine-Aided Skim Reading 10

statement index S1 S2

parkinsonism 1.0 0.0
DRD 1.0 0.0

parkinsonisms 0.0 1.0
mrpi values 0.0 1.0

provenance index P1 P2 P3 P4

S1 0.545 0.545 0.0 0.0
S2 0.0 0.0 0.365 0.365

2.3.2 Querying

The indices are used to efficiently query for the content of SKIMMR knowledge bases. We

currently support atomic queries with one variable, and possibly nested combinations of atomic

queries and propositional operators of conjunction (AND), disjunction (OR) and negation (NOT).

An atomic query is defined as ? ↔ T, where ? refers to the query variable and T is a full-text

query term7. The intended purpose of the atomic query is to retrieve all entities related by any

relation to the expressions corresponding to the term T . For instance, the ? ↔ parkinsonism

query is supposed to retrieve all entities co-occurring-with or similar-to parkinsonism.

Combinations consisting of multiple atomic queries linked by logical operators are evaluated

using the following algorithm:

1. Parse the query and generate a corresponding ‘query tree’ (where each leaf is an atomic

query and each node is a logical operator; the levels and branches of this tree reflect the

nested structure of the query).

2. Evaluate the atomic queries in the nodes by a look-up in the term index, fetching the term

index rows that correspond to the query term in the atomic query.

3. The result of each term look-up is a fuzzy set [Hájek, 1998] of terms related to the atomic

query term, with membership degrees given by listed weights. One can then naturally

combine atomic results by applying fuzzy set operations corresponding to the logical

operators in the parsed query tree nodes (where conjunction, disjunction and negation

correspond to fuzzy intersection, union and complement, respectively).

4. The result is a fuzzy set of terms RT = {(T1, w
T
1 ), (T2, w

T
2 ), . . . , (Tn, w

T
n )}, with their

membership degrees reflecting their relevance as results of the query.

The term result set RT can then be used to generate sets of relevant statements (RS) and prove-

nances (RP ) using look-ups in the corresponding indices as follows: (a) RS = {(S1, w
S
1 ), (S2,

7One can expand the coverage of their queries using the advanced full-text search features like wildcards or

boolean operators for the term look-up. Detailed syntax of the full-text query language we use is provided at

http://pythonhosted.org/Whoosh/querylang.html.
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SKIMMR: Machine-Aided Skim Reading 11

wS
2 ), . . . , (Sm, w

S
m)}, where wS

i = νs
∑n

j=1 w
T
j cj,i, (b) RP = {(P1, w

P
1 ), (P2, w

P
2 ), . . . , (Pq,

wP
q )}, where wP

i = νp
∑m

j=1 w
S
j wj,i. νs, νp are normalisation constants for weights. The weight

for a statement Si in the result set RS is computed as a normalised a dot product (i.e., sum of the

element-wise products) of the vectors given by: (a) the membership degrees in the term result

set RT , and (b) the column in the statement index that corresponds to Si. Similarly, the weight

for a provenance Pi in the result set RP is a normalised dot product of the vectors given by the

ST membership degrees and the column in the provenance index corresponding to Pi.

The fuzzy membership degrees in the term, statement and provenance result sets can be used

for ranking and visualisation, prioritising the most important results when presenting them to

the user. The following example outlines how a specific query is evaluated.

Example 5 Let us assume we want to query the full SKIMMR knowledge base about Parkin-

son’s Disease for the following:

? ↔ parkinsonism AND (? ↔ mrpi OR ? ↔ magnetic resonance parkinsonism index)

This aims to find all statements (and corresponding documents) that are related to par-

kinsonism and either magnetic resonance parkinsonism index or its mrpi

abbreviation. First of all, the full-text index is queried, retrieving two different terms conform-

ing to the first atomic part of the query due to its stemming features: parkinsonism and

parkinsonisms. The other two atomic parts of the initial query are resolved as is. Af-

ter the look-up in the term index, four fuzzy sets are retrieved: 1. Tparkinsonism (3, 714 results),

2. Tparkinsonisms (151 results), 3. Tmrpi (39 results). 4. Tmagnetic resonance parkinsonism index (29 re-

sults). The set of terms conforming to the query is then computed as

(Tparkinsonism ∪ Tparkinsonisms) ∩ (Tmrpi ∪ Tmagnetic resonance parkinsonism index)

When using maximum and minimum as t-conorm and t-norm for computing the fuzzy union

and intersection [Hájek, 1998], respectively, the resulting set has 29 elements with non-zero

membership degrees. The top five of them are

(1) cup, (2) mrpi, (3) magnetic resonance parkinsonism index, (4) cli-

nically unclassifiable parkinsonism, (5) clinical evolution

with membership degrees 1.0, 1.0, 0.704, 0.39, 0.34, respectively. According to the statement

index, there are 138 statements corresponding to the top five term results of the initial query,

composed of 136 co-occurrences and 2 similarities. The top five co-occurrence statements and

the two similarity statements are:
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Type Entity1 Entity2 Membership degree

cooc mrpi cup 1.0
cooc mrpi magnetic resonance parkinsonism index 0.852
cooc cup magnetic resonance parkinsonism index 0.852
cooc mrpi clinically unclassifiable parkinsonism 0.695
cooc cup clinically unclassifiable parkinsonism 0.695
sim psp patients magnetic resonance parkinsonism index 0.167
sim parkinsonism clinical evolution 0.069

where the membership degrees are computed from the combination of the term weights as de-

scribed before the example, using an arithmetic mean for the aggregation. Finally, a look-up

in the source index for publications corresponding to the top seven result statements retrieves

8 relevant PubMed identifiers (PMID). The top five of them correspond to the following list of

articles:

PMID Title Authors Weight

21832222 The diagnosis of neurodegenerative disorders based on

clinical and pathological findings using an MRI approach

Watanabe H et al. 1.0

21287599 MRI measurements predict PSP in unclassifiable parkin-

sonisms: a cohort study

Morelli M et al. 0.132

22277395 Accuracy of magnetic resonance parkinsonism index for

differentiation of progressive supranuclear palsy from

probable or possible Parkinson disease

Morelli M et al. 0.005

15207208 Utility of dopamine transporter imaging (123-I Ioflupane

SPECT) in the assessment of movement disorders

Garcia Vicente AM et

al.

0.003

8397761 Alzheimer’s disease and idiopathic Parkinson’s disease

coexistence

Rajput AH et al. 0.002

where the weights have been computed by summing up the statement set membership degrees

multiplied by the source index weights and then normalising the values by their maximum.

2.4 Evaluation Methodology

In addition to proposing specific methods for creating knowledge bases that support skim read-

ing, we have also come up with a specific methodology for evaluating the generated knowledge

bases. An ideal method for evaluating the proposed approach, implemented as a SKIMMR tool,

would be to record and analyse user feedback and behaviour via SKIMMR instances used by

large numbers of human experts. We do have such means for evaluating SKIMMR implemented

in the user interface8. However, we have not yet managed to collect sufficiently large sample

8See for instance the SMA SKIMMR instance at http://www.skimmr.org:8008/data/html/

trial.tmp for details.
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of user data due to the early stage of the prototype deployment. Therefore we implemented an

indirect methodology for automated quantitative evaluation of SKIMMR instances using pub-

licly available manually curated data. The methodology is primarily based on simulation of

various types of human behaviour when browsing the entity networks generated by SKIMMR.

We formally define certain properties of the simulations and measure their values in order to

determine the utility of the entity networks for the purposes of skim reading. Details are given

in the following sections.

2.4.1 Overview of the Evaluation Methods

The proposed methods intend to simulate human behaviour when using the data generated by

SKIMMR. We apply the same simulations also to base-line data that can serve for the same or

similar purpose as SKIMMR (i.e., discovery of new knowledge by navigating entity networks).

Each simulation is associated with specific measures of performance, which can be used to

compare the utility of SKIMMR with respect to the base-line.

The primary evaluation method is based on random walks [Lovász, 1993] in an undirected entity

graph corresponding to the SKIMMR knowledge base. For the baseline, we use a network

of MeSH terms assigned by human curators to the PubMed abstracts that have been used to

create the SKIMMR knowledge base9. This represents a very similar type of content, i.e.,

entities associated with PubMed articles. It is also based on expert manual annotations and thus

supposed to be a reliable gold standard (or at least a decent approximation thereof due to some

level of transformation necessary to generate the entity network from the annotations).

Example 6 Returning to the knowledge base statement from Example 2 in Section 2.2.1: (par-

kinsonism,cooc,DRD,0.545). In the SKIMMR entity graph, this corresponds to two

nodes (parkinsonism, DRD) and one edge between them with weight 0.545. We do not

distinguish between the types of the edges (i.e., co-occurrence or similarity), since it is not of

significant importance for the SKIMMR users according to our experience so far (they are more

interested in navigating the connections between nodes regardless the connection type).

A baseline entity graph is generated from the PubMed annotations with MeSH terms. For all

entities X, Y associated with an abstract A, we construct an edge connecting the nodes X
and Y in the entity graph. The weight is implicitly assumed to be 1.0 for all such edges. To

explain this using concrete data, let us consider the two PubMed IDs from Example 1, 9629849
and 8239569. Selected terms from the corresponding MeSH annotations are { Parkinson

9MeSH (Medical Subject Headings) is a comprehensive, manually curated and regularly updated controlled

vocabulary and taxonomy of biomedical terms. It is frequently used as a standard for annotation of biomedical

resources, such as PubMed abstracts. See http://www.ncbi.nlm.nih.gov/mesh for details.
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Disease/radionuclide imaging, Male, Child }, { Parkinson Disease/ra-

dionuclide imaging, Dystonia/drug therapy}, respectively. The graph induced

by these annotations is depicted in Figure 1.

Figure 1. Example of an entity graph derived from PubMed.

The secondary evaluation method uses an index of related articles derived from the entities in

the SKIMMR knowledge bases. For the baseline, we use either an index of related articles

produced by a specific service of PubMed [Lin and Wilbur, 2007], or the evaluation data from

the document categorisation task of the TREC’04 genomics track [Cohen and Hersh, 2006]

where applicable. We use the TREC data since they were used also for evaluation of the actual

algorithm used by PubMed to compute related articles.

To generate the index of related articles from the SKIMMR data, we first use the knowledge

base indices (see Section 2.1) to generate a mapping EP : E → 2P from entities from a set E to

a set of corresponding provenance identifiers (subsets of a set P ). In the next step, we traverse

the entity graph GE derived from the statements in the SKIMMR knowledge base and build an

index of related articles according to the following algorithm:

1. Initialise a map MP between all possible (Pi, Pj) provenance identifier pairs and the

weight of an edge between them so that all values are zero.

2. For all pairs of entities E1, En (i.e., nodes in GE), do:

• If there is a path P of edges {(E1, E2), (E2, E3), . . . , (En−1, En)} in GE:

– compute an aggregate weight of the path as wP = wE1,E2
·wE2,E3

· . . . ·wEn−1,En

(as a multiplication of all weights along the path P);

– set the values MP (Pi, Pj) of the map MP to max(MP (Pi, Pj), wP) for every

Pi, Pj such that Pi ∈ EP (E1), Pj ∈ EP (En) (i.e., publications corresponding

to the source and target entities of the path).
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3. Interpret the MP map as an adjacency matrix and construct a corresponding weighted

undirected graph GP .

4. For every node P in GP , iteratively construct the index of related articles by associat-

ing the key P with a list L of all neighbours of P in GP sorted by the weights of the

corresponding edges.

Note that in practice, we restrict the maximum length of the paths to three and also remove edges

in GP with weight below 0.1. This is to prevent a combinatorial explosion of the provenance

graph when the entity graph is very densely connected.

The base-line index of related publications according to the PubMed service is simply a map-

ping of one PubMed ID to an ordered list of the related PubMed IDs. The index based on the

TREC data is generated from the article categories in the data set. For a PubMed ID X , the list

of related IDs are all IDs belonging to the same category as X , ordered so that the definitely

relevant articles occur before the possibly relevant ones10.

2.4.2 Motivation of the Evaluation Methods

The random walks are meant to simulate user’s behaviour when browsing the SKIMMR data,

starting with an arbitrary entry point, traversing a number of edges linking the entities and

ending up in a target point. Totally random walk corresponds to when a user browses randomly

and tries to learn something interesting along the way. Other types of user behaviour can be

simulated by introducing specific heuristics for selection of the next entity on the walk (see

below for details). To determine how useful a random walk can be, we measure properties

like the amount of information along the walk and in its neighbourhood, or semantic similarity

between the source and target entities (i.e., how semantically coherent the walk is).

The index of related articles has been chosen as a secondary means for evaluating SKIMMR.

Producing links between publications is not the main purpose of our current work, however,

it is closely related to the notion of skim reading. Furthermore, there are directly applicable

gold standards we can use for automated evaluation of the lists of related articles generated by

SKIMMR, which can provide additional perspective on the utility of the underlying data even

if we do not momentarily expose the publication networks to users.

10The articles in the TREC data set are annotated by membership in a number of specific categories. The

membership is gradual, with three possible values – definitely relevant, possibly relevant and not relevant.
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2.4.3 Running and Measuring the Random Walks

To evaluate the properties of random walks in a comprehensive manner, we ran them in batches

with different settings of various parameters. These are namely: (1) heuristics for selecting

the next entity (one of the four defined below); (2) length of the walk (2, 5, 10 or 50 edges);

(3) radius of the walk’s envelope, i.e., the maximum distance between the nodes of the path and

entities that are considered its neighbourhood (0, 1, 2); (4) number of repetitions (100-times for

each combination of the parameter (1-3) settings).

Before we continue, we have to introduce few notions that are essential for the definition of

the random walk heuristics and measurements. The first of them is a set of top-level (abstract)

clusters associated with an entity in a graph (either from SKIMMR or from PubMed) according

to the MeSH taxonomy. This is defined as a function CA : E → M , where E,M are the sets of

entities and MeSH cluster identifiers, respectively. The second notion is a set of specific entity

cluster identifiers CS , defined on the same domain and range as CA, i.e., CS : E → M .

The MeSH cluster identifiers are derived from the tree path codes associated with each term

represented in MeSH. The tree path codes have the form L1.L2. . . . .Ln−1.Ln where Li are

sub-codes of increasing specificity (i.e., L1 is the most general and Ln most specific). For the

abstract cluster identifiers, we take only the top-level tree path codes into account as the values

of CA, while for CS we consider the complete codes. Note that for the automatically extracted

entity names in SKIMMR, there are often no direct matches in the MeSH taxonomy that could

be used to assign the cluster identifiers. In these situations, we try to find a match for the terms

and their sub-terms using a lemmatised full-text index implemented on the top of MeSH. This

helps to increase the coverage two- to three-fold on our experimental data sets.

For some required measures, we will need to consider the number and size of specific clusters

associated with the nodes in random walks and their envelopes. Let us assume a set of entities

Z ⊆ E. The number of clusters associated with the entities from Z, cn(Z), is then defined as

cn(Z) = |
⋃

X∈Z C(X)| where C is one of CA, CS (depending on which type of clusters are

we interested in). The size of a cluster Ci ∈ C(X), cs(Ci), is defined as an absolute frequency

of the mentions of Ci among the clusters associated with the entities in Z. More formally,

cs(Ci) = |{X|X ∈ Z ∧ Ci ∈ C(X)}|. Finally, we need a MeSH-based semantic similarity of

entities simM(X, Y ), which is defined in detail in the formula (8) in Appendix A.2.

Example 7 To illustrate the MeSH-based cluster annotations and similarities, let us consider

two entities, supranuclear palsy, progressive, 3 and secondary parkin-

son disease. The terms correspond to the MeSH tree code sets { C10.228.662.700,

. . . , C23.888.592.636.447.690, . . . , C11.590.472.500, . . .} and { C10.228.

662.600.700 }, respectively, which are also the sets of specific clusters associated with the
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terms. The top-level clusters are { C10, C11, C23 } and { C10 }, respectively. The least

common subsumer of the two terms is C10.228.662 of depth 3 (the only possibility with

anything in common is C10.228.662.700 and C10.228.662.600.700). The depths of

the related cluster annotations are 4 and 5, therefore the semantic similarity is 2·3
4+5

= 2
3
.

We define four heuristics used in our random walk implementations. All the heuristics select

the next node to visit in the entity graph according to the following algorithm:

1. Generate the list L of neighbours of the current node.

2. Sort L according to certain criteria (heuristic-dependent).

3. Initialise a threshold e to ei, a pre-defined number in the (0, 1) range (we use 0.9 in our

experiments).

4. For each node u in the sorted list L, do:

• Generate a random number r from the [0, 1] range.

• If r ≤ e:

– return u as the next node to visit.

• Else:

– set e to e · ei and continue with the next node in L.

5. If nothing has been selected by now, return a random node from L.

All the heuristics effectively select the nodes closer to the head of the sorted neighbour list more

likely than the ones closer to the tail. The random factor is introduced to emulate the human

way of selecting next nodes to follow, which is often rather fuzzy according to our observations

of sample SKIMMR users.

The distinguishing factor of the heuristics are the criteria for sorting the neighbour list. We

employed the following four criteria in our experiments: (1) giving preference to the nodes that

have not been visited before (H=1); (2) giving preference to the nodes connected by edges with

higher weight (H=2); (3) giving preference to the nodes that are more similar, using the simM

function introduced before (H=3); (4) giving preference to the nodes that are less similar (H=4).

The first heuristic simulates a user that browses the graph more or less randomly, but prefers

to visit previously unknown nodes. The second heuristic models a user that prefers to follow a

certain topic (i.e., focused browsing). The third heuristic represents a user that wants to learn as

much as possible about many diverse topics. Finally, the fourth heuristic emulates a user that
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prefers to follow more plausible paths (approximated by the weight of the statements computed

by SKIMMR).

Each random walk and its envelope (i.e., the neighbourhood of the corresponding paths in the

entity graphs) can be associated with various information-theoretic measures, graph structure

coefficients, levels of correspondence with external knowledge bases, etc. Out of the multitude

of possibilities, we selected several specific scores we believe to soundly estimate the value of

the underlying data for users in the context of skim reading.

Firstly, we measure semantic coherence of the walks. This is done using the MeSH-based

semantic similarity between the nodes of the walk. In particular, we measure: (A) coherence

between the source S and target T nodes as simM(S, T ); (B) product coherence between all

the nodes U1, U2, . . . , Un of the walk as Πi∈{1,...,n−1}simM(Ui, Ui+1); (C) average coherence be-

tween all the nodes U1, U2, . . . , Un of the walk as 1
n

∑
i∈{1,...,n−1} simM(Ui, Ui+1). This family

of measures helps us to assess how convergent (or divergent) are the walks in terms of focus on

a specific topic.

The second measure we used is the information content of the nodes on and along the walks.

For this, we use the entropy of the association of the nodes with clusters defined either (a) by the

MeSH annotations or (b) by the structure of the envelope. By definition, the higher the entropy

of a variable, the more information the variable contains [Shannon, 1948]. In our context, a high

entropy value associated with a random walk means that there is a lot of information available

for the user to possibly learn when browsing the graph. The specific entropy measures we

use relate to the following sets of nodes: (D) abstract MeSH clusters, path only; (E) specific

MeSH clusters, path only; (F) abstract MeSH clusters, path and envelope; (G) specific MeSH

clusters, path and envelope; (H) clusters defined by biconnected components [Hopcroft and

Tarjan, 1973] in the envelope11. The entropies of the sets (D-G) are defined by formulae (9-10)

in Appendix A.3.

The last family of random walk evaluation measures is based on the graph structure of the

envelopes: (I) envelope size (in nodes); (J) envelope size in biconnected components; (K) av-

erage component size (in nodes); (L) envelope’s clustering coefficient. The first three measures

are rather simple statistics of the envelope graph. The clustering coefficient is widely used as a

convenient scalar representation of the structural complexity of a graph, especially in the field of

social network analysis [Carrington et al., 2005]. In our context, we can see it as an indication

of how likely it is that the connections in the entity graph represent non-trivial relationships.

To facilitate the interpretation of the results, we computed also the following auxiliary measures:

11Biconnected components can be understood as sets of nodes in a graph that are locally strongly connected and

therefore provide us with a simple approximation of clustering in the entity graphs based purely on their structural

properties.
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(M) number of abstract clusters along the path; (N) average size of the abstract clusters along

the path; (O) number of abstract clusters in the envelope; (P) average size of the abstract clusters

in the envelope; (Q) number of specific clusters along the path; (R) average size of the specific

clusters along the path; (S) number of specific clusters in the envelope; (T) average size of the

specific clusters in the envelope. Note that all the auxiliary measures use the MeSH cluster size

and number notions, i.e., cs(. . . ) and cn(. . . ) as defined earlier.

2.4.4 Comparing the Indices of Related Articles

The indices of related articles have quite a simple structure. We can also use the base-line in-

dices as gold standard, and therefore evaluate the publication networks implied by the SKIMMR

data using classical measures of precision and recall [Manning et al., 2008]. Moreover, we can

also compute correlation between the ranking of the items in the lists of related articles which

provides an indication of how well SKIMMR preserves the ranking imposed by the gold stan-

dard.

For the correlation, we use the standard Pearson’s formula [Dowdy et al., 2005], taking into

account only the ranking of articles occurring in both lists. The measures of precision and re-

call are defined using overlaps of the sets of related articles in the SKIMMR and gold standard

indices. The detailed definitions of the specific notions of precision and recall we use are given

in formulae (11-12) in Appendix A.4. The gold standard is selected depending on the experi-

mental data set, as explained in the next section. In order to cancel out the influence of different

average lengths of lists of related publications between the SKIMMR and gold standard indices,

one can take into account only a limited number of the most relevant (i.e., top) elements in each

list.

3 Results

We have implemented the techniques described in the previous section as a set of software

modules and provided them with a search and browse front-end. This forms a prototype im-

plementation of SKIMMR, available as an open source software package through the GitHub

repository (see Section 3.2.3 for details). We here describe the architecture of the SKIMMR

software (Section 3.1) and give examples on the typical use of SKIMMR in the domains of

Spinal Muscular Atrophy and Parkinson’s Disease (Section 3.2). Section 3.3 presents an eval-

uation of the proposed approach to machine-aided skim reading using SKIMMR running on

three domain-specific sets of biomedical articles.
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3.1 Architecture
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Figure 2. Architecture of the SKIMMR system.

The SKIMMR architecture and data flow is depicted in Figure 2. First of all, SKIMMR needs a

list of PubMed identifiers (unique numeric references to articles indexed on PubMed) specified

by the user of system administrator. Then it automatically downloads the abstracts of the corre-

sponding articles and stores the texts locally. Alternatively, one can export results of a manual

PubMed search as an XML file (using the ‘send to file’ feature) and then use a SKIMMR script

to generate text from that file. From the texts, a domain-specific SKIMMR knowledge base

is created using the methods described in Sections 2.1 and 2.2. The computed statements and

their article provenance are then indexed as described in Section 2.3. This allows users to search

and browse the high-level graph summaries of the interconnected pieces of knowledge in the

input articles. The degrees in the result sets (explained in detail in Section 2.3) are used in the

user interface to prioritise the more important nodes in the graphs by making their font and

size proportional to the sum of the degrees of links (i.e., the number of statements) associated

with them. Also, only a selected amount of the top scoring entities and links between them is

displayed at a time.

3.2 Using SKIMMR

The general process of user interaction with SKIMMR can be schematically described as fol-

lows:

1. Search for an initial term of interest in a simple query text box.
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2. A graph corresponding to the results of the search is displayed. The user has two options

then:

(a) Follow a link to another node in the graph, essentially browsing the underlying

knowledge base along the chosen path by displaying the search results correspond-

ing to the selected node and thus going back to step 1. above.

(b) Display most relevant publications that have been used for computing the content of

the result graph, going to step 3. below.

3. Access and study the displayed publications in detail using a re-direct to PubMed.

The following two sections illustrate the process using examples from two live instances of

SKIMMR deployed on articles about Spinal Muscular Atrophy and Parkinson’s Disease12. The

last section of this part of the article gives a brief overview of the open source software packages

of SKIMMR available for developers and users interested in deploying SKIMMR on their own

data.

3.2.1 Spinal Muscular Atrophy

Figure 3 illustrates a typical session with the Spinal Muscular Atrophy13 instance of SKIMMR.

The SMA instance was deployed on a corpus of 1, 221 abstracts of articles compiled by SMA

experts from the SMA foundation14.

The usage example is based on an actual session with Maryann Martone, a neuroscience pro-

fessor from UCSD and a representative of the SMA Foundation who helped us to assess the

potential of the SKIMMR prototype. Following the general template from the beginning of the

section, the SMA session can be divided into three distinct phases:

12The live instances are running at http://www.skimmr.org:8008 and http://www.

skimmr.org:8090, respectively, as of June 2014. Canned back-up versions of them are available

at http://www.skimmr.org/resources/skimmr/sma.tgz and http://www.skimmr.

org/resources/skimmr/pd.tgz (SMA and Parkinson’s Disease, respectively). If the SKIMMR de-

pendencies are met (see https://github.com/vitnov/SKIMMR), the canned instances can be used

locally on any machine with Python installed (versions higher than 2.4 and lower than 3.0 are supported, while

2.6.* and 2.7.* probably work best). After downloading the archives, unpack them and switch to the resulting

folder. Run the re-indexing script, following Section 3.6 in the README provided in the same folder. To execute

the SKIMMR front-end locally, run the server as described in Section 3.7 of the README.
13A genetic neurological disease caused by mutation of SMN1 gene that leads to death of motor neurons and

consequent progressive muscle atrophy. It is the most common genetic cause of infant death and there is no cure

as of now. See http://en.wikipedia.org/wiki/Spinal_muscular_atrophy for details.
14See http://www.smafoundation.org/.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.352v3 | CC-BY 4.0 Open Access | received: 19 Jun 2014, published: 19 Jun 2014

P
re
P
ri
n
ts



SKIMMR: Machine-Aided Skim Reading 22

Figure 3. Exploring SMA etiology.
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1. Searching: The user was interested in the SMA etiology (studies on underlying causes

of a disease). The key word etiology was thus entered into the search box.

2. Skimming: The resulting graph suggests relations between etiology of SMA, various

gene mutations, and the Lix1 gene. Lix 1 is responsible for protein expression in limbs

which seems relevant to the SMA manifestation, therefore the Lix1-associated

etiology path was followed in the graph, moving on to a slightly different area in

the underlying knowledge base extracted from the SMA abstracts. When browsing the

graph along that path, one can quickly notice recurring associations with feline SMA.

According to the neuroscience expert we consulted, the cat models of the SMA disease

appear to be quite a specific and interesting fringe area of SMA research. Related articles

may be relevant and enlightening even for experienced researchers in the field.

3. Reading: The reading mode of SKIMMR employs an in-line redirect to a specific Pub-

Med result page. This way one can use the full set of PubMed features for exploring

and reading the articles that are mostly relevant to the focused area of the graph the user

skimmed until now. The sixth publication in the result was most relevant for our sample

user, as it provided more details on the relationships between a particular gene mutation

in a feline SMA model and the Lix1 function for motor neuron survival. This knowledge,

albeit not directly related to SMA etiology in humans, was deemed as enlightening by the

domain expert in the context of the general search for the culprits of the disease.

The whole session with the neuroscience expert lasted about two minutes and clearly demon-

strated the potential for serendipitous knowledge discovery with our tool.

3.2.2 Parkinson’s Disease

Another example of the usage of SKIMMR is based on a corpus of 4, 727 abstracts concerned

with the clinical studies of Parkinson’s Disease (PD). A sample session with the PD instance of

SKIMMR is illustrated in Figure 4. Following the general template from the beginning of the

section, the PD session can be divided into three distinct phases again:

1. Searching: The session starts with typing parkinson’s into the search box, aiming

to explore the articles from a very general entry point.

2. Skimming: After a short interaction with SKIMMR, consisting of few skimming steps

(i.e., following a certain path in the underlying graphs of entities extracted from the PD

articles), an interesting area in the graph has been found. The area is concerned with

Magnetic Resonance Parkinsons Index (MRPI). This is a numeric score cal-

culated by multiplying two structural ratios: one for the area of the pons relative to that
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Figure 4. Exploring Parkinson’s disease.
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of the midbrain and the other for the width of the Middle Cerebellar Peduncle relative to

the width of the Superior Cerebellar Peduncle. The score is used to diagnose PD based

on neuroimaging data [Morelli et al., 2011].

3. Reading: When displaying the articles that were used to compute the subgraph surround-

ing MRPI, the user reverted to actual reading of the literature concerning MRPI and re-

lated MRI measures used to diagnose Parskinson’s Disease as well a range of related

neurodegenerative disorders.

This example illustrates once again how SKIMMR provides an easy way of navigating through

the conceptual space of a subject that is accessible even to novices, reaching interesting and

well-specified components areas of the space very quickly.

3.2.3 Software Packages

In addition to the two live instances described in the previous sections, SKIMMR is available for

local installation and custom deployment either on biomedical article abstracts from PubMed,

or on general English texts. Moreover, one can expose SKIMMR via a simple HTTP web ser-

vice once the back-end has compiled a knowledge base from selected textual input. The latter

is particularly useful for the development of other applications on the top of the content gen-

erated by SKIMMR. Open source development snapshots (written in the Python programming

language) of SKIMMR modules are available via our GitHub repository15 with accompanying

documentation.

3.3 Evaluation

In the following we report on experiments we used for evaluating SKIMMR using the method

explained in Section 2.4. The results of our experiments empirically demonstrate that the

SKIMMR networks allow for more focused browsing of the publication content than possi-

ble with tools like PubMed. SKIMMR also has the potential for offering more information of

higher complexity during the browsing process. The following sections provide details on the

data sets used in the experiments and the results of the evaluation.

15See https://github.com/vitnov/SKIMMR.
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3.3.1 Evaluation Data

We have evaluated SKIMMR using three corpora of domain-specific biomedical articles. The

first one was SMA: a representative corpus of 1, 221 PubMed abstracts dealing with Spinal

Muscular Atrophy (SMA), compiled by experts from SMA Foundation. The second corpus

was PD: a set of 4, 727 abstracts that came as results (in February 2013) of a search for clinical

studies on Parkinson’s Disease on PubMed. The last corpus was TREC: a random sample16 of

2, 247 PubMed abstracts from the evaluation corpus of the TREC’04 genomics track (document

categorisation task).

For running the experiment with random walks, we generated two graphs for each of the corpora

(using the methods described in Example 6): (1) network of SKIMMR entities; (2) network of

MeSH terms based on the PubMed annotations of the articles that were used as sources for the

particular SKIMMR instance.

As outlined before in the methods section, we also used some auxiliary data structures for the

evaluation. The first auxiliary resource was the MeSH thesaurus (version from 2013). From

the data available on the National Library of Medicine web site, we generated a mapping from

all MeSH terms and their synonyms to the corresponding tree codes indicating their position in

the MeSH hierarchy. We also implemented a lemmatised full-text index on the MeSH mapping

keys to increase the coverage of the tree annotations when the extracted entity names do not

exactly correspond to the MeSH terms.

The second type of auxiliary resource (a gold standard) were indices of related articles based on

the corresponding PubMed service. For the other type of gold standard, we used the TREC’04

category associations from the genomics track data. This is essentially a mapping between

PubMed IDs, category identifiers and a degree of membership of the specific IDs in the category

(definitely relevant, possibly relevant, not relevant). From that mapping, we generated the index

of related articles as a gold standard for the secondary evaluation method (the details of the

process are described in the previous section).

Note that for the TREC corpus, the index of related articles based on the TREC data is applicable

as a gold standard for the secondary evaluation. However, for the other two data sets (SMA

and PD), we used the gold standard based on the PubMed service for fetching related articles.

This is due to almost zero overlap between the TREC PubMed IDs and the SMA, PD corpora,

respectively.

16We processed only a subset of the experimental data available from TREC so that the experimental knowledge

bases are of a size within similar range of hundreds of thousands of statements.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.352v3 | CC-BY 4.0 Open Access | received: 19 Jun 2014, published: 19 Jun 2014

P
re
P
ri
n
ts



SKIMMR: Machine-Aided Skim Reading 27

3.3.2 Data Statistics

Corpus and Knowledge Base Statistics Basic statistics of the particular text corpora are

given in Table 1, with column explanations as follows: (1) |SRC| is the number of the source

documents; (2) |TOK| is the number of tokens (words) in the source documents; (3) |BC|
is the number of base co-occurrence statements extracted from the sources (see Section 2.1

for details); (4) |LEX| is the vocabulary size (i.e., the number of unique entities occurring

in the basic co-occurrence statements); (5) |KBcooc| is the number of aggregate co-occurrence

statements in the corresponding SKIMMR knowledge base (see Section 2.2.1); (6) |KBsim|
is the number of similarity statements in the corresponding SKIMMR knowledge base (see

Section 2.2.2).

Data set ID |SRC| |TOK| |BC| |LEX| |KBcooc| |KBsim|

SMA 1, 221 223, 257 333, 124 15, 288 308, 626 23, 167
PD 4, 727 943, 444 1, 096, 037 43, 410 965, 753 57, 876
TREC 2, 247 439, 202 757, 762 39, 431 745, 201 65, 510

Table 1. Basic statistics of the SKIMMR instances

Derived statistics on the SKIMMR instances are provided in Table 2, with column explanations

as follows: (1) T/S is an average number of tokens per a source document; (2) B/S is an aver-

age number of basic co-occurrence statements per a source document; (3) L/T is a ratio of the

size of the lexicon with respect to the overall number of tokens in the input data; (4) SM/KB
is a ratio of the similarity statements to the all statements in the knowledge base; (5) KB/S is

an average number of statements in the knowledge base per a source document; (6) KB/L is

an average number of statements in the knowledge base per a term in the lexicon. The values in

the columns are computed from the basic statistics as follows:

T/S =
|TOK|

|SRC|
, B/S =

|BC|

|SRC|
, L/T =

|LEX|

|TOK|
, SM/KB =

|KBsim|

|KBsim|+ |KBcooc|
,

KB/S =
|KBsim|+ |KBcooc|

|SRC|
, KB/L =

|KBsim|+ |KBcooc|

|LEX|

The statistics of the data sets are relatively homogeneous. The TREC data contains more base

Data set ID T/S B/S L/T SM/KB KB/S KB/L

SMA 182.848 272.829 0.068 0.07 271.739 21.703
PD 199.586 231.867 0.046 0.057 216.549 23.58
TREC 195.462 337.233 0.09 0.081 360.797 20.56

Table 2. Derived statistics of the SKIMMR instances
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co-occurrence statements per article, and has an increased ratio of (unique) lexicon terms per

absolute number of (non-unique) tokens in the documents. TREC knowledge base also contains

more statements per an article than the other two, but the ratios of number of statements in it per

a lexicon term are more or less balanced. We believe that the statistics do not imply the need to

treat each of the data sets differently when interpreting the results reported in the next section.

Graph Statistics The statistics of the graph data that are utilised in the random walks experi-

ment are given in Tables 3 and 4 for PubMed and SKIMMR, respectively. The specific statistics

Data set ID |V | |E| |E|
|V | D d lG |C|

SMA 5, 364 78, 608 14.655 5.465 · 10−3 5.971 3.029 2
PD 8, 622 133, 188 15.447 3.584 · 10−3 6 2.899 2
TREC 10, 734 161, 838 15.077 2.809 · 10−3 7.984 3.146 3

Table 3. Statistics of the PubMed graphs for random walks

provided on the graphs are: (1) number of nodes (|V |); (2) number of edges17 (|E|); (3) average

Data set ID |V | |E| |E|
|V | D d lG |C|

SMA 15, 287 305, 077 19.957 2.611 · 10−3 5 2.642 1
PD 43, 411 952, 296 21.937 1.011 · 10−3 5 2.271 2
TREC 37, 184 745, 078 20.038 1.078 · 10−3 5.991 2.999 12

Table 4. Statistics of the SKIMMR graphs for random walks

number of edges per a node (
|E|
|V |

); (4) density (D = 2·|E|
|V |(|V |−1)

, i.e., a ratio of the actual bidirec-

tional connections between nodes relative to the maximum possible number of connections);

(5) diameter (d, computed as an arithmetic mean of the longest possible paths in the connected

components of the graph, weighted by the size of the components in nodes); (6) average short-

est path length (lG, computed similarly to d as an average weighted mean of the value for each

connected component); (7) number of connected components (|C|).

The statistics demonstrate that the SKIMMR graphs are larger and have higher absolute number

of connections per a node, but are less dense than the PubMed ones. All the graphs exhibit the

“small-world” property [Watts and Strogatz, 1998], since the graphs have small diameters and

there are also very short paths between the connected nodes despite of the low density and

relatively large size of the graphs.

17Note that the number of edges is lower in the SKIMMR graphs than in the corresponding SKIMMR knowledge

bases due to the fact that we do not distinguish between the different relationships. Therefore, if two nodes are

connected by more than one statements, there is still only one edge for those nodes in the graph.
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Auxiliary Data Statistics The MeSH data contained 719, 877 terms and 54, 935 tree codes,

with ca. 2.371 tree code annotations per term in average. The statistics of the indices of related

publications for SKIMMR and for gold standards are provided in Table 5. We provide values

Gold standard SKIMMR

Data set ID |P | R̄ |P | R̄

SMA 1, 221 36.15 1, 220 959.628
PD 4, 727 28.61 4, 724 4327.625
TREC 434 18.032 2, 245 1251.424

Table 5. Statistics of the indices of related publications

for the size of the index in numbers of publications covered (|P |) and an average number of

related publications associated with each key (R̄). The average length of the lists of related

publications is much higher for all three instances of SKIMMR. This is a result of the small-

world property of the SKIMMR networks which makes most of the publications connected with

each other (although the connections mostly have weights close to zero).

3.3.3 Evaluation Results

In the following we report on the results measured using the specific SKIMMR knowledge

bases and corresponding base-line data. Each category of the evaluation measures is covered in

a separate section. Note that we mostly provide concise plots and summaries of the results here

in the article text, however, full results are part of the data supplement of the article.

Semantic Coherence Figure 5 shows the values of the aggregated semantic coherence mea-

sures (i.e., source-target coherence, product path coherence and average path coherence) for

the PD, SMA and TREC data sets. The values were aggregated by computing their arithmetic

means and are denoted by the y-axis of the plots. The x-axis corresponds to different combina-

tions of the heuristics and path lengths for the execution of the random walks (as the coherence

does not depend on the envelope size, this parameter is zero all the time in this case)18. The

combinations are grouped by heuristics (random preference, weight preference, similarity pref-

erence, dissimilarity preference from left to right). The path length parameter increases from

left to right for each heuristic group on the x-axis. The green line is for the SKIMMR results

and the blue line is for the PubMed baseline.

18The exact form of labels on the x-axis is a combination of heuristic (H), envelope diameter (E) and path

length (L) parameters with their numeric identifiers (in case of heuristics) or values (for envelope size and path

length). For instance, H=2.E=1.L=10 stands for a measurement using the weight preference heuristic (identifier

2), envelope of diameter 1 and path of length 10.
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Figure 5. Aggregated semantic coherence (blue: PubMed, green: SKIMMR)
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For any combination of the random walk execution parameters, SKIMMR outperforms the

base-line by quite a large relative margin. The most successful heuristic in terms of coherence

is the one that prefers more similar nodes to visit next (third quarter of the plots), and the coher-

ence is generally lower for longer paths, which are all observations corresponding to intuitive

assumptions.

Information Content Figure 6 shows the values of the arithmetic mean of all types of in-

formation content measures for the particular combinations of the random walk execution pa-

rameters (including also envelope sizes in increasing order for each heuristic). Although the

relative difference is not as significant as in the semantic coherence case, SKIMMR again per-

forms consistently better than the base-line. There are no significant differences between the

specific heuristics. The information content increases with longer walks and larger envelopes,

which is due to generally larger numbers of clusters occurring among more nodes involved in

the measurement.

Graph Structure Figure 7 shows the values of the clustering coefficient, again with green

and blue lines for the SKIMMR and PubMed base-line results, respectively. SKIMMR exhibits

larger level of complexity than the base-line in terms of clustering coefficient, with moderate

relative margin in most cases. There are no significant differences between the particular walk

heuristics. The complexity generally increases with the length of the path, but, interestingly

enough, does not so with the size of the envelopes. The highest complexity is typically achieved

for the longest paths without any envelope. We suspect this to be related to the small world

property of the graphs – adding more nodes from the envelope may not contribute to the actual

complexity due to making the graph much more “uniformly” dense and therefore less complex.

Auxiliary Measures The number of clusters associated with the nodes on the paths (measures

M and Q) is always higher for SKIMMR than for the PubMed base-line. The number of clusters

associated with the whole envelopes (measures O and S) is almost always higher for SKIMMR

with few exceptions of rather negligible relative differences in favour of the base-line. The

average numbers of nodes per cluster on the path (measures N and R) are higher for SKIMMR

except of the heuristic that prefers similar nodes to visit next. This can be explained by the

increased likelihood of populating already “visited” clusters with this heuristic when traversing

paths with lower numbers of clusters along them. Finally, the average number of nodes per

cluster in the envelope (measures P and T) is higher for SKIMMR in most cases.

The general patterns observed among the auxiliary measure values indicates higher topical vari-

ability in the SKIMMR graphs, as there are more clusters that have generally higher cardinality
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Figure 6. Aggregated information content (blue: PubMed, green: SKIMMR)
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Figure 7. Clustering coefficient (blue: PubMed, green: SKIMMR)
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than in the PubMed base-lines. This is consistent with the observation of the generally higher

information content associated with the random walks in SKIMMR graphs.

Related Articles The results of the evaluation measures based on the lists of related articles

generated by SKIMMR and by related base-lines are summarised in Table 6. Note that as

PD SMA TREC

preavg recavg C ≥ 0.7 preavg recavg C ≥ 0.7 preavg recavg C ≥ 0.7
0.0095 0.0240 0.5576 0.0139 0.0777 0.5405 0.0154 0.0487 0.5862

Table 6. Results for the related articles

explained in Section 3.3.1, we used actual TREC evaluation data for the TREC dataset, while

for PD and SMA, we used the related articles provided by PubMed due to negligible overlap

with the TREC gold standard.

The preavg and recavg columns in Table 6 contain the precision and recall values for each data

set, respectively, and the C ≥ 0.7 contains the ratio of SKIMMR results that have signifi-

cant correlation (i.e., at least 0.7) with the corresponding base-line. The absolute values of

the average precision and recall are very poor, in units of percents. The correlation results are

more promising, showing that more than half of the related document rankings produced by

SKIMMR are reasonably aligned with the gold standard. Moreover, the correlation is highest

for the TREC data set based on the only gold standard that is manually curated.

4 Discussion

SKIMMR provides a computational instantiation of the concept of ‘skim reading.’ In the early

prototype stage, we generally focussed on delivering as much of the basic functionality as pos-

sible in a lightweight interface. Lacking enough representative data collected from ongoing user

studies, we have designed a series of automated experiments to simulate several skim reading

modes one can engage in with SKIMMR. We evaluated these experiments using gold standards

derived from manually curated biomedical resources. Here we offer a discussion of the results

in relation to the concept of machine-aided skim reading as realised by the SKIMMR proto-

type. The discussion is followed by an overview of related work and an outline of possible

future directions.
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4.1 Interpreting the Results

The secondary evaluation using lists of related publications induced by the SKIMMR knowl-

edge bases did not bring particularly good results in terms of precision and recall. However,

the correlation with the related document ranking provided by base-lines was more satisfac-

tory. This indicates that with better methods for pruning the rather extensive lists of related

publications produced with SKIMMR, we may be able to improve the precision and recall sub-

stantially. Still, this evaluation was indirect since generating list of related publications is not

the main purpose of SKIMMR. Apart of indirect evaluation, we were also curious whether the

data produced by SKIMMR could not be used also for a rather different task straightaway. The

lesson learned is that this may be possible, however, some post-processing of the derived pub-

lication lists would be required to make the SKIMMR-based related document retrieval more

accurate for practical applications.

Our main goal was to show that our approach to machine-aided skim reading can be efficient

in navigating high-level conceptual structures derived from large numbers of publications. The

results of the primary evaluation experiment—simulations of various types of skimming be-

haviour by random walks—demonstrated that our assumption may indeed be valid. The entity

networks computed by SKIMMR are generally more semantically coherent, more informative

and more complex than similar networks based on the manually curated PubMed article an-

notations. This means that users will typically be able to browse the SKIMMR networks in a

more focused way. At the same time, however, they will learn more interesting related informa-

tion from the context of the browsing path, and can also potentially gain additional knowledge

from more complex relationships between the concepts encountered on the way. This is very

promising in the context of our original motivations for the presented research.

Experiments with actual users would have brought many more insights regarding the practical

relevance of the SKIMMR prototype. Still, the simulations we have proposed cover four distinct

classes of possible browsing behaviour, and our results are generally consistent regardless of

the particular heuristic used. This leads us to believe that the evaluation measures computed

on paths selected by human users would not be radically different from the patterns observed

within our simulations.

4.2 Related Work

The text mining we use is similar to the techniques mentioned in [Yan et al., 2009], but we

use a finer-grained notion of co-occurrence. Regarding biomedical text mining, tools like

BioMedLEE [Friedman et al., 2004], MetaMap [Aronson and Lang, 2010] or SemRep [Liu

et al., 2012] are closely related to our approach. The tools mostly focus on annotation of texts
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with concepts from standard biomedical vocabularies like UMLS which is very useful for many

practical applications. However, the it is relatively difficult to use the corresponding software

modules within our tool due to complex dependencies and lack of simple APIs and/or batch

scripts. The tools also lack the ability to identify concepts not present in the biomedical vo-

cabularies or ontologies. Therefore we decided to use LingPipe’s batch entity recogniser in

SKIMMR. The tool is based on a relatively outdated GENIA corpus, but is very easy to inte-

grate, efficient and capable of capturing unknown entities based on the underlying statistical

model, which corresponds well to our goal of delivering a light-weight, extensible and easily

portable tool for skim-reading.

The representation of the relationships between entities in texts is very close to the approach

of [Baroni and Lenci, 2010], however, we have extended the tensor-based representation to

tackle a broader notion of text and data semantics, as described in detail in [Nováček et al.,

2011]. The indexing and querying of the relationships between entities mentioned in the texts

is based on fuzzy index structures, similarly to [Zadrozny and Nowacka, 2009]. We make use

of the underlying distributional semantics representation, though, which captures more subtle

features of the meaning of original texts.

Graph-based representations of natural language data have previously been generated using de-

pendency parsing [Ramakrishnan et al., 2008,Biemann et al., 2013]. Since these representations

are derived directly from the parse structure, they are not necessarily tailored for the precise task

of skim-reading but could provide a valuable intermediate representation. Another graph-based

representation that is derived from the text of documents are similarity-based approaches de-

rived from ‘topic models’ of document corpora [Talley et al., 2011]. Although these analyses

typically provide a visualization of the organization of documents, not of their contents, the

topic modeling methods provide statistical representation of the text that can then be leveraged

to examine other aspects of the context of the document, such as it’s citations [Foulds and

Smyth, 2013].

A broad research area of high relevance to the presented work is the field of ‘Machine Reading’

that can be defined as “the autonomous understanding of text” [Etzioni et al., 2006]. It is an

ambitious goal that has attracted much interest from NLP researchers [Mulkar et al., 2007,

Strassel et al., 2010, Poon and Domingos, 2010]. By framing the reading task as ‘skimming’

(which provides a little more structure than simply navigating a set of documents, but much less

than a full representation of the semantics of documents), we hope to leverage machine reading

principles into practical tools that can be used by domain experts straightforwardly.

Our approach shares some similarities with applications of spreading activation in information

retrieval which are summarised for instance in the survey [Crestani, 1997]. These approaches

are based on associations between search results computed either off-line or based on the “live”

user interactions. The network data representation used for the associations is quite close to
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SKIMMR, however, we do not use the spreading activation principle to actually retrieve the

results. We let the users to navigate the graph by themselves which allows them to discover

even niche and very domain-specific areas in the graph’s structure that may not be reached

using the spreading activation.

Works in literature based discovery using either semantic relationships [Hristovski et al., 2006]

or corresponding graph structures [Wilkowski et al., 2011] are conceptually very similar to our

approach to skim reading. However, the methods are quite specific when deployed, focusing

predominantly on particular types of relationships and providing pre-defined schema for min-

ing instances of the relationships from the textual data. We keep the process lightweight and

easily portable, and leave the interpretation of the conceptual networks on the user. We do lose

some accuracy by doing so, but the resulting framework is easily extensible and portable to a

new domain within minutes, which provides for a broader coverage compensating the loss of

accuracy.

From the user perspective, SKIMMR is quite closely related to GoPubMed [Dietze et al., 2008],

a knowledge-based search engine for biomedical texts. GoPubMed uses Medical Subject Head-

ings and Gene Ontology to speed up finding of relevant results by semantic annotation and

classification of the search results. SKIMMR is oriented more on browsing than on searching,

and the browsing is realised via knowledge bases inferred from the texts automatically in a

bottom-up manner. This makes SKIMMR independent on any pre-defined ontology and lets

users to combine their own domain knowledge with the data present in the article corpus.

Tools like DynaCat [Pratt, 1997] or QueryCat [Pratt and Wasserman, 2000] share the basic

motivations with our work as they target the information overload problem in life sciences. They

focus specifically on automated categorisation of user queries and the query results, aiming at

increasing the precision of document retrieval. Our approach is different in that it focuses

on letting users explore the content of the publications instead of the publications themselves.

This provides an alternative solution to the information overload by leading users to interesting

information spanning across multiple documents that may not be grouped together by [Pratt,

1997, Pratt and Wasserman, 2000].

Another related tool is Exhibit [Huynh et al., 2007], which can be used for faceted browsing

of arbitrary datasets expressed in JSON [Crockford, 2006]. Using Exhibit one can dynamically

define the scope from which they want to explore the dataset and thus quickly focus on particular

items of interest. However, Exhibit does not provide any solution on how to get the structured

data to explore from possibly unstructured resources (such as texts).

Textpresso [Müller et al., 2004] is quite similar to SKIMMR concerning searching for rela-

tions between concepts in particular chunks of text. However, the underlying ontologies and

their instance sets have to be provided manually which often requires years of work, whereas
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SKIMMR operates without any such costly input. Moreover, the system’s scale regarding the

number of publications’ full-texts and concepts covered is generally lower than the instances of

SKIMMR that can be set up in minutes.

CORAAL [Nováček et al., 2010] is our previous work for cancer publication search, which

extracts relations between entities from texts, based on the verb frames occurring in the sen-

tences. The content is then exposed via a multiple-perspective search and browse interface.

SKIMMR brings the following major improvements over CORAAL: (1) more advanced back-

end (built using our distributional data semantics framework introduced in [Nováček et al.,

2011]); (2) simplified modes of interaction with the data leading to increased usability and

better user experience; (3) richer, more robust fuzzy querying; (4) general streamlining of

the underlying technologies and front-ends motivated by the simple, yet powerful metaphor

of machine-aided skim reading.

4.3 Future Work

Despite of the initial promising results, there is still much to do in order to realise the full poten-

tial of SKIMMR as a machine-aided skim reading prototype. First of all, we need to continue

our efforts in recruiting coherent and reliable sample user groups for each of the experimen-

tal SKIMMR instances in order to complement the presented evaluation by results of actual

user studies. Once we get the users’ feedback, we will analyse it and try to identify significant

patterns emerging from the tracked behaviour data in order to correlate them with the explicit

feedback, usability assessments and the results achieved in our simulation experiments. This

will provide us with a sound basis for the next iteration of the SKIMMR prototype development,

which will reflect more representative user requirements.

Regarding the SKIMMR development itself, the most important things to improve are as fol-

lows. We need to extract more types of the relations than just co-occurrence and rather broadly

defined similarity. One example of domain specific complex relation are associations of poten-

tial side effects with drugs. Another, more general example, are taxonomical relations (super-

concept, sub-concept), which may help to provide additional perspective to browsing the entity

networks (i.e., starting with high-level overview of the relations between more abstract concepts

and then focusing on the structure of the connections between more specific sub-concepts of se-

lected nodes). Other improvements related to the user interface are: (1) smoother navigation

in the entity networks (the nodes have to be active and shift the focus of the displayed graph

upon clicking on them, they may also display additional meta-data, such as summaries of the

associated source texts); (2) support of more expressive (conjunctive, disjunctive, etc.) search

queries not only in the back-end, but also in the front-end, preferably with a dedicated graphical

user interface that allows to formulate the queries easily even for lay users; (3) higher-level vi-
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sualisation features such as evolution of selected concepts’ neighbourhoods in time on a sliding

scale. We believe that realisation of all these features will make SKIMMR a truly powerful tool

for facilitating knowledge discovery (not only) in life sciences.
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A Formulae Definitions

In this appendix we give full account on definitions of some of the formal notions used through-

out the main article but not covered in detail there for reasons of maintaining a smooth flow of

the text.

A.1 Co-Occurrences

The basic co-occurrence score cooc((ex, ey), PubMedPMID) for two entities ex, ey in an article

PubMedPMID, introduced in Section 2.1, is computed as

cooc((ex, ey), PubMedPMID) =
∑

i,j∈S(ex,ey)

1

1 + |i− j|
(1)

where S(ex, ey) is a set of numbers of sentences that contain the entity ex or ey (assuming the

sentences numbered sequentially from the beginning of the text). In practice, one may impose a

limit on the maximum allowed distance of entities to be taken into account in the co-occurrence

score computation (we disregard entities occurring more than 3 sentences apart from the score

sum).

The non-normalised formula for corpus-wide co-occurrence for two outcomes (i.e., terms in our

specific use case) x, y, using a base-2 logarithm (introduced in Section 2.2.1), is:

fpmi(x, y) = F (x, y)log2
p(x, y)

p(x)p(y)
(2)

where F (x, y) is the absolute frequency of the x, y co-occurrence and p(x, y), p(x), p(y) are the

joint and individual distributions, respectively. In our case, the distributions are the weighted

relative frequencies of the entity terms in the basic co-occurrence tuples generated from the

input texts which are computed as follows. Let us assume a set T of tuples

t1 = (e1,x, e1,y, cooc((e1,x, e1,y), PubMedPMID1
), PubMedPMID1

),
t2 = (e2,x, e2,y, cooc((e2,x, e2,y), PubMedPMID2

), PubMedPMID2
),

...

tn = (en,x, en,y, cooc((en,x, en,y), PubMedPMIDn
), PubMedPMIDn

)

as a result of the basic co-occurrence statement extraction described in the previous section.

The joint distribution of terms x, y specific to our case can then be computed as:

p(x, y) =

∑

w∈W (x,y,T ) w

|T |
(3)
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where W (x, y, T ) = {w|∃e1, e2, w, i.(e1, e2, w, i) ∈ T∧((e1 = x∧e2 = y)∨(e1 = y∧e2 = x))}
is the set of weights in the basic co-occurrence tuples that contain both x, y as entity arguments.

Finally, the individual distribution of a term z is computed as:

p(z) =

∑

w∈W (z,T ) w

|T |
(4)

where W (z, T ) = {w|∃e1, e2, w, i.(e1, e2, w, i) ∈ T ∧(e1 = z∨e2 = z)} is the set of weights in

the basic co-occurrence tuples that contain z as any one of the entity arguments. In the eventual

result, all co-occurrence tuples with score lower than zero are omitted, while the remaining ones

are normalised as follows:

npmi(x, y) = ν(fpmi(x, y), P ) (5)

where ν is a function that divides the scores by the P -th percentile of all the scores and trun-

cates the resulting value to 1 if it is higher than that. The motivation for such definition of the

normalisation is that using the percentile, one can flexibly reduce the influence of possibly dis-

proportional distributions in the scores (i.e., when there are few very high values, normalisation

by the sum of all values or by the maximal value would result in most of the final scores being

very low, whereas the carefully selected percentile can balance that out, reducing only relatively

low number of very high scores to crisp 1).

A.2 Similarities

Firstly we define the cosine similarity introduced in Section 2.2.2. For that we need few auxil-

iary notions. First of them is a so called ‘co-occurrence complement’ x̄ of an entity x:

x̄ = {(e, w)|∃e, w.(e, cooc, x, w) ∈ KB ∨ (x, cooc, e, w) ∈ KB} (6)

where KB is the knowledge base, i.e., the set of the aggregated co-occurrence statements com-

puted as shown in Section 2.2.1. Additionally, we define an element-set projection of an entity’s

co-occurrence complement x̄ as x̄1 = {y|∃w.w 6= 0 ∧ (y, w) ∈ x̄}, i.e., set of all the entities

in the co-occurrence complement abstracting from the corresponding co-occurrence weights.

Finally, we use a short-hand notation x̄[y] = w such that (y, w) ∈ x̄ for a quick reference to the

weight corresponding to an entity in a co-occurrence complement. If an entity y is missing in

the co-occurrence complement of x, we define x̄[y] = 0.

Example 8 Assuming that the knowledge base consists only from one co-occurrence tuple

(parkinsonism,cooc,DRD,0.545) from the previous Example 2, we can define two co-

occurrence complements on the entities in it:

parkinsonism = {(DRD, 0.545)}, DRD = {(parkinsonism, 0.545)}
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The element-set projection of parkinsonism is then a set {DRD}, while parkinsonism[DRD]
equals 0.545

Now we can define the similarity between two entities a, b in a SKIMMR knowledge base as:

sim(a, b) =

∑

z∈ā1∩b̄1
ā[z]b̄[z]

√

∑

x∈ā1
ā[x]2

√

∑

y∈b̄1
b̄[y]2

(7)

where ā, b̄ are the co-occurrence complements of a, b, and ā1, b̄1 their element-set projections.

It can be easily seen that the formula directly corresponds to the definition of cosine distance:

its top part is the dot product of the co-occurrence context vectors corresponding to the entities

a, b, while the lower part is multiplication of the vectors’ sizes (Euclidean norms in particular).

The MeSH-based semantic similarity of entities, introduced in Section 2.4.3, is defined as

simM(X, Y ) = maxu∈CS(X),v∈CS(Y )
2 · dpt(lcs(u, v))

dpt(u) + dpt(v)
(8)

where the specific tree codes in the CS(X), CS(Y ) are interpreted as nodes in the MeSH taxon-

omy, the lcs stands for the least common subsumer of two nodes in the taxonomy and dpt is the

depth of a node in the taxonomy (defined as zero if no node is supplied as an argument, i.e., if

lcs has no result). The formula we use is essentially based on a frequently used taxonomy-based

similarity measure defined in [Wu and Palmer, 1994]. We only maximise it across all possible

cluster annotations of the two input entities to find the best match. Note that this strategy is safe

in case of a resource with as low ambiguity as MeSH – while there are often more annotations

of a term, they do not refer to different senses but rather to different branches in the taxonomy.

Therefore using the maximum similarity corresponds to finding the most appropriate branch in

the MeSH taxonomy along which the terms can be compared.

A.3 Entropies

Section 2.4.3 introduced entropies for expressing information value of SKIMMR evaluation

samples (i.e., random walks and their contexts). The entropies are defined using the notion of

MeSH cluster size (cs(. . . )) introduced in the main part of the article. Given a set Z of nodes

of interest, the entropy based on MeSH cluster annotations, HM(Z), is computed as

HM(Z) = −
∑

Ci∈C(Z)

cs(Ci)
∑

Cj∈C(Z) cs(Cj)
· log2

cs(Ci)
∑

Cj∈C(Z) cs(Cj)
(9)
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where C is one of CA, CS , depending whether we consider the abstract or the specific nodes.

Similarly, the component-based entropy HC(Z) is defined as

HC(Z) = −
∑

Ci∈B(Z)

|Ci|
∑

Cj∈B(Z) |Cj|
· log2

|Ci|
∑

Cj∈B(Z) |Cj|
(10)

where B(Z) is a function returning a set of biconnected components in the envelope Z, which

is effectively a set of subsets of nodes from Z.

A.4 Precision and Recall

The indices of related articles are compared using precision and recall measures, as stated in

Section 2.4.4. Let IS : P → 2P , IG : P → 2P be the SKIMMR and gold standard indices of

related publications, respectively (P being a set of publication identifiers). Then the precision

and recall for a publication p ∈ P are computed as

pre(p) =
|IS(p) ∩ IG(p)|

|IS(p)|
, rec(p) =

|IS(p) ∩ IG(p)|

|IG(p)|
(11)

respectively. To balance the possibly quite different lengths of the lists of related articles, we

limit the computation of the precision and recall to at most 50 most relevant items in the lists.

The average values of precision and recall for a corpus of articles X ⊆ P are computed as

preavg(X) =

∑

p∈X pre(p)

|X|
, recavg(X) =

∑

p∈X rec(p)

|X|
(12)

respectively.
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