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Identifying the separate parts in ultrasound images such as bone and skin plays the crucial

role in synovitis detection task. This paper presents a detector of bone and skin regions in

the form of a classifier which is trained on a set of annotated images. Selected regions

have labels: skin or bone or none. Feature vectors used by the classifier are assigned to

image pixels as a result of passing the image through the bank of linear and nonlinear

filters. The filters include Gaussian blurring filter, its first and second order derivatives,

Laplacian as well as positive and negative threshold operations applied to the filtered

images. We compared multiple supervised learning classifiers including Naive Bayes, k-

Nearest Neighbour, Decision Trees, Random Forest, AdaBoost and Support Vector

Machines (SVM) with various kernels, using four classification performance scores and

computation time. The Random Forest classifier was selected for the final use, as it gives

the best overall evaluation results.
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Marcin Fojcik4, and Marek Kulbacki15

1Research & Development Center, Polish-Japanese Academy of Information6

Technology, Warsaw, Poland7

2Institute of Informatics, Silesian University of Technology, Institute of Informatics,8

Gliwice, Poland9

3Department for Neurology, Rheumatology and Physical Medicine, Helse Førde, Førde,10

Norway11

4Faculty of Engineering and Science, Sogn og Fjordane University College, Førde,12

Norway13

Corresponding author:14

Marcin Fojcik4
15

Email address: marcin.fojcik@hisf.no16

ABSTRACT17

Identifying the separate parts in ultrasound images such as bone and skin plays the crucial role in

synovitis detection task. This paper presents a detector of bone and skin regions in the form of a classifier

which is trained on a set of annotated images. Selected regions have labels: skin or bone or none.

Feature vectors used by the classifier are assigned to image pixels as a result of passing the image

through the bank of linear and nonlinear filters. The filters include Gaussian blurring filter, its first and

second order derivatives, Laplacian as well as positive and negative threshold operations applied to the

filtered images. We compared multiple supervised learning classifiers including Naive Bayes, k-Nearest

Neighbour, Decision Trees, Random Forest, AdaBoost and Support Vector Machines (SVM) with various

kernels, using four classification performance scores and computation time. The Random Forest classifier

was selected for the final use, as it gives the best overall evaluation results.
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INTRODUCTION28

Synovitis, that is, an inflammation of the synovial membrane around the joint, may lead to a dangerous29

and irreparable joint degeneration. It may cause swelling and pain in the relatively early stages, but30

its prolonged persistence may result in a functional disability. An often used noninvasive method of31

synovitis assessment is a doctor’s examination of ultrasound images of joints. Since such examination32

consumes time of a trained medical practitioner, and the results from different examiners may vary due33

to subjectivity of human judgment, it is desirable to develop an automated tool for the assessment of34

synovitis.35

This paper describes a method for bone and skin detection which is a part of the system for automated36

assessment of synovitis activity, a work in progress within the Polish-Norwegian research project Medusa37

(Medusa, 2015). In the Medusa system the bone and skin detection method provides the initial estimates38

of the bone and skin. The improved, final estimates (Segen et al., 2015) are obtained by registering a39

model with a structural description of the image in the form of a group of parts that includes the results40

of the detector described here and an initial estimate of the joint which is described in a separate article41

(Wereszczyński et al., 2015).42

The area of research that is nearest to the detection problem addressed in this paper is the analysis and43

processing of medical ultrasound images. This is explained by the shared characteristics of ultrasound44

image formation process, where the image is built as a plot of travel times of ultrasound pulses, that are45
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sent by a transducer and received back after being reflected by organs and tissues at different depths. A46

noticeable feature of medical ultrasound images is the presence of speckle noise, and all ultrasound image47

analysis techniques must include some form of speckle noise reduction or removal. Among the accessible48

publications on analysis and processing of medical ultrasound images, the literature search conducted by49

the authors did not find articles related to the detection of skin or bone.50

(Yap et al., 2007) proposed a fully automatic detection of breast lesion in ultrasound images. They51

used a histogram equalization, hybrid filtering, multifractal analysis and a rule-based approach for52

identification of region-of-interest, which is used as a seed-point in thresholding based background53

separation and followed by active contour method for final lesion boundary detection. (Supriyanto54

et al., 2011) used a threshold segmentation and combination of morphological techniques for early55

detection of breast cancer and several other types of abnormalities in breast tissues. (Lokesh et al., 2014)56

used automatic contouring and texture analysis for the classification of breast lesions. The anisotropic57

diffusion filtering is applied to remove the speckle noise while preserving the lesion boundaries. A58

segmentation based on watershed transform finds the contour of the breast lesion and features based on59

the histogram of co-occurring greyscale values are extracted from the segmented lesion and used in the60

SVM classifier to identify the breast lesion as benign or malignant. (Chen et al., 2016) describes detection61

and segmentation of anatomical structures by multi-domain regularized deep learning method which uses62

convolutional network and iterative refinement of results. The method is applied to obstetric and cardiac63

ultrasound images. (Kisilev et al., 2013) construct a multi-stage learning of lesion-specific boundaries64

for automatic detection of breast lesion in ultrasound images. They apply multiple image filters and65

segmentation algorithms to obtain various textural characteristics and local directional coherence features66

from the image, which are used by an SVM classifier for automatic detection of breast lesion boundaries.67

Their approach similarly to the method proposed in this paper uses image filters as features for pixel68

classification, however our method is distinct in other aspects. It uses a different, unique set of image69

features, most of which are one-dimensional and include threshold operators, and a discrete optimization70

process is applied to find the best configuration of the features and filter parameters.71

METHOD OVERVIEW72

The main purpose of the detectors described in this paper is to find the bone and skin parts as lines in73

the image. Supervised learning accomplishes this by using training samples extracted from annotated74

areas of training images by filtering. The Insight Segmentation and Registration Toolkit (ITK) (Johnson75

et al., 2013) algorithms are used for image filtering including Gaussian smoothing, the first and second76

derivatives, Laplacian and threshold filters. The results of filtering are then applied to generate an77

appropriate vector of features used as training samples for learning algorithms. The scikit-learn tool78

(Pedregosa et al., 2011) was used for learning selected features, which is a specialized machine learning79

environment with many configurable classifiers. A few different classifiers were evaluated in this work80

including Gaussian Naive Bayes (Zhang, 2004), k-Nearest Neighbours (kNN) (Altman, 1992), Support81

Vector Machines (SVM) (Boser et al., 1992; Chang and Lin, 2011), Decision Trees (Breiman et al., 1984;82

Hastie et al., 2009) , Random Forest (Breiman, 2001) and AdaBoost (Freund and Schapire, 1997; Zhu et al.,83

2009). Both the generation of the feature vector in ITK and the learning algorithms in scikit-learn require84

a large number of parameters, which have a strong influence on the result of detection. Additionally,85

different combinations of filters applied to feature vector generation give significantly different learning86

efficiencies. It requires finding the optimal configuration of system over the vast space of parameters. For87

that reason, the parametrization tool was developed for an automatic execution of feature extraction and88

learning procedure in an iterative way combined with the effective result visualization module. It allows89

executing a big number of experiments to find some optimal parameters as well as most efficient filter90

combination in much easier and quicker way than manual trials. The general architecture of bone and91

skin detector and the operations flow are illustrated in Figure 1.92

The following sections describe more details on particular steps of feature extraction and applied93

learning with presenting the results from our empirical evaluation at the end.94

Regional Committee for Medical and Health Research Ethics, Region west, Norway has approved the95

study (ref. 2013/743). All participants signed informed consent form.96
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Figure 1. The architecture of system and operations flow between its component.

FEATURE EXTRACTION97

Learning algorithms require appropriate representative features extracted from raw images to be able to98

learn and detect the bone and skin areas efficiently. The form of such features must allow representing99

different regions of interest in the image in a discriminative way.100

The features in the determined form are computed in two parts of the method: 1) extraction of features101

from training images used as training data for learning and 2) extraction of features from the test image102

subjected to detection of bone and skin by already trained algorithms. Both cases require slightly different103

procedures of extraction, though the basic concept is similar. These procedures are described in the104

following sections.105

Features for training106

As the bone and skin detector uses supervised learning, the training data for algorithms must explicitly107

indicate for each set of features extracted from the image, whether it is related to bone or skin or to neither108

of them. This information must be provided a priori as a set of annotations attached to each processed109

image of a training set. An example of image annotations is shown in Figure 2b.110

skin bone joint synovitis region

(a) (b)

Figure 2. Example of image annotations for training and evaluation: (a) image without annotations, (b)

image with annotations. Skin, bones, joint and synovitis region are marked with different colors.

The pixels for training features generation selected from bone and skin annotations are called samples.111

There are three types of samples: 1) positive samples that represent bone, 2) positive samples that represent112

skin and 3) negative samples that represent neither bone nor skin.113

The pixels used for generation of positive bone samples are the same as bone annotation points.114

Similarly, the pixels used for positive skin samples generation are the same as skin annotation points.115

By contrast, the pixels used for negative samples generation are selected from areas of an image that are116
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neither bone nor skin regions. The bone and skin regions are defined as areas within a given radius from117

bone and skin annotation points. Thus, each pixel selected for the negative sample must lie in distance118

bigger than given radius from any pixel belonging to bone or skin annotation. Figure 3 presents the119

example of pixels selection that is further used for samples generation.120

Figure 3. Example of pixel selection for samples generation.

To obtain the proper characterization of the selected pixels, their neighborhood should also be121

considered. This is done by taking as a pixel representation the subimage [2 ·w+ 1,1] centered at the122

pixel, where 2 ·w+1 is a vertical window around the pixel. The representation vector of a pixel pi is123

defined as a vector of pixels Ki = (pk,l2w, pk,l2w+1, ..., pk,l+w), where k and l are the image coordinates124

of the pixel pi.125

Once the pixels for samples are selected and their vertical neighborhood is defined the final samples126

generation process may start. First of all, a series of new images is obtained by use of different filters,127

where each new image is an output of particular filter applied to the original image. It includes Gaussian128

smoothing, first and second derivatives of Gaussian, Laplacian of Gaussian as well as thresholding filters.129

The Gaussian smoothing, as proposed in (Deriche, 1990), is done by recursive filtering that approximates130

an image convolution with the Gaussian kernels. The convolution with first and second derivatives131

of Gaussian are applied separately in vertical direction only while the Laplacian of Gaussian filtering132

is obtained by applying the second derivatives of Gaussian in both vertical and horizontal directions.133

Additionally, all outputs of these filters are processed by the binary thresholding. This operation with the134

use of some given thresholds produces binary output images by mapping the original pixel values to black135

or white ones. All filtering operations use the efficient implementation of recursive filters (Deriche, 1993)136

taken from ITK library. The resulting images obtained by selected filters are presented in Figure 4.137

(a) (b) (c)

(d) (e) (f)

Figure 4. Images obtained from selected ITK filters: a) the original image, b) Gaussian smoothing, c)

smoothing first derivative, d) smoothing second derivative, e) Laplacian, f) Laplacian positive threshold.

The set of images obtained by applying n filters to the original image I forms a vector F = (I1, I2, .., In),138

which is used for final samples generation. The samples generation is done by taking the values of all139

selected pixels with their vertical neighborhood Ki from each image I j obtained from j-th filter. This140

generates for each Ki the matrix made from concatenated vectors of values extracted from filtering outputs141
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I j (where j * [1,n]) for each pixel in the window, which can be denoted as:142

Vi =

û

ü

ü

ý

vi11 vi12 .. vi1n

vi21 vi22 .. vi2n

: : : :

vik1 vik2 .. vikn

þ

ÿ

ÿ

ø

(1)

The example of a few different neighborhoods Ki indicating the pixels to be taken from Laplacian143

output as part of training samples is presented in Figure 5.144

k

pi

Figure 5. Different neighborhoods Ki taken from Laplacian filter output: green, pink and blue lines

represent samples for bone, skin and none areas respectively.

The final training samples for given image I consist of three matrices. Each such matrix is a145

concatenation of matrices from (1) for all samples of given type t:146

Xt =
�

V1,V2, ..,Vm
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=
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(2)

where m is a number of samples of given type, t * {Skin,Bone,None}, k is a window size and n is a147

number of filters applied to the image I. Each column of matrix (2) represents the output values of148

particular filter for one neighborhood Ki of pixel pi and each row represents the output values from all149

filters for one index in the neighborhood window Ki across all pixels pi. Such form of training data is150

directly passed as a feature vectors to learning algorithms in the second phase of the processing described151

in following sections.152

Features for classification153

Once the learning algorithms are trained on the feature vectors described in the previous chapter, they154

require a similar form of data for classification instead of raw pixel values from original test image. The155

process of samples generation for classification is the same as for training samples generation. The only156

difference is that the samples are generated for all pixels pi of the test image instead of those representing157

only positive and negative samples. It means that if the test image resolution is M×N, the number of158

pixels selected for samples generation is M ·N. The final data for classification are also concatenated in159

the same way as the training data (2) using all vertical neighborhoods Ki and output values from all filters160

F , which gives the final size of generated matrix as M ·N ·n · k.161

LEARNING AND CLASSIFICATION162

The learning part of the system was built using the scikit-learn environment, which offers many config-163

urable algorithms suitable for three-class classification tasks. The list of evaluated classifiers is described164

below.165
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1. Gaussian Naive Bayes classifier (Zhang, 2004) is based on a conditional probability model defined166

by applying the Bayes’ theorem with strong (naive) assumption of independence between the167

features. The model parameters are estimated during training step with the use of maximum168

likelihood, and the classification rule relies on the most probable hypothesis selection according to169

the estimated probability distribution.170

2. The k-Nearest Neighbour classifier (kNN) (Altman, 1992; Hastie et al., 2009) is one of the simplest171

classification methods which caches training samples at training step and then performs the classifi-172

cation for new sample by finding some predefined number of cached samples closest in distance to173

that new sample and using the label from them as a prediction.174

3. Support Vector Machines (SVM) (Boser et al., 1992; Chang and Lin, 2011) is a classifier which175

is trained to obtain a hyperplane splitting the samples in some sample space into different classes176

with margin maximization. The SVM classifier can use different kernels, which implicitly map the177

inputs into high-dimensional feature space and thus efficiently perform a non-linear classification.178

There were a few different kernels evaluated in this work including linear, polynomial and Radial179

Basis Function (RBF) kernel.180

4. Decision Trees classifier (DTs) (Breiman et al., 1984; Hastie et al., 2009) is based on directed181

tree-like graph of decisions inferred from the data features.182

5. Random Forest classifier (Breiman, 2001) uses many decision trees classifiers executed on various183

subsets of samples averaging the results for improving accuracy and overfitting control. The184

Random Forest classifier belongs to ensemble method domain, where many predictions from basic185

classifiers are combined to improve generalizability and robustness.186

6. Another ensemble method evaluated in this work is an Adaboost classifier (Freund and Schapire,187

1997; Zhu et al., 2009), which initially trains the basic classifier on the original dataset and after first188

evaluation it trains additional copies of the classifier on the same dataset but focusing on incorrectly189

classified cases during that evaluation.190

Each classifier can be trained with training samples generated with use of ITK as described in191

previous sections. By using the three-class model for classifiers, they can learn simultaneously the classes192

representing two types of positive samples for bone and skin as well as negative samples for other parts of193

the image.194

The classification is done by querying the particular classifier for the class of each pixel on the test195

image. The result of classification is written as a matrix of the same dimension as test image being196

classified and consists of the values indicating the class for a particular pixel, that is, bone or skin or197

none. The output matrix that represents detected skin and bone regions is then passed to the next phase of198

synovitis detection system, namely the part responsible for the approximation of clean lines for bone and199

skin, which are then used directly by the registration model (Segen et al., 2015).200

SEARCHING PARAMETER SPACE201

Both the ITK based samples extraction and the scikit-learn based classifier is set up with many parameters,202

which directly affect the final detection result. The screenshot of the ITK parameters configuration panel203

for samples generation including filtering configuration is presented in Figure 6. Even more parameters204

can be defined for different classifiers in the scikit-learn part.205

The optimal configuration of bone and skin detector that gives the best efficiency relies on finding the206

optimal values for all these parameters. The number of all possible parameters is too high to execute the207

exhaustive search over them in finite and reasonable time taking into consideration the relatively long208

time of samples generation and classifier learning. Instead, the heuristic approach is applied with use of209

easy protocol to define some series of parameters in a form of extendable tree structure and filtering the210

large number results efficiently. The process of searching the optimal system configuration is performed211

according to Algorithm 1.212

Above iterative process can be repeated for a different split of parameters (line 3 in Algorithm 1) or213

by using additional parameters until some global criteria for evaluation result are met.214
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Figure 6. Configuration of samples generation by the ITK parameters panel.

Algorithm 1 Searching the optimal parameters of detector

1: Define the parameters of the detection system for optimization, e.g.: Z = (z1,z2,z3,z4,z5)
2: Define the range of values for each parameter, e.g.: (a11,a12,a13) for z1 and (a21,a22) for z2

3: Split Z into L groups G = {Z1, ..,ZL}, e.g.: Z1 = (z1,z2), Z2 = (z4,z5)
4: Define the set of fixed parameters Fixed = { /0}
5: goto TREE(Z1)

6: TREE(Zi):

7: Generate the search tree from Zi in such way that each value of preceding parameters is a parent

for all defined values of its successive parameters, e.g. the branches bi of tree for Z1 are following:

b1 = (a11,a21),b2 = (a11,a22),b3 = (a12,a21),b4 = (a12,a22),b5 = (a13,a21),b6 = (a13,a22)
8: Check each configuration of the system defined by params = Fixed*bi including feature extraction,

learning and classifier performance evaluation

9: Select the branch b7 from line 7 which gives the best evaluation result in line 8 on the base of

precision, recall, fallout and accuracy values

10: Fixed± Fixed*b7
11: G± G\{Zi}
12: if G �= /0 then

13: goto TREE(Zi+1)

14: else

15: Exit

One of the most important uses of such iterative search is to find the best image filter combination for215

samples generation which is called a feature selection. It was proven during experiments that different216

filter sets give very different results: some filters have more impact on results than others and in some217

cases the smaller set of filters gives a better result than the bigger one. Some examples of different results218

for different filter combinations are presented in following section describing empirical results.219

RESULTS220

A set of 34 images was used for evaluation, which allowed obtaining around 120,000 samples including221

around 40,000 positive samples representing bone and skin and around 80,000 negative samples. We222

assumed that a test set of the size of 50,000 samples is adequate to assess quality of the results. The223

remaining 70,000 samples are used for the training set, giving the training to test ratio of 60:40. Four224

metrics were used to evaluate the quality of predictions done by classifiers described in previous sections:225

precision, recall, fallout and accuracy. The results of classifier prediction are divided into four groups226

defined by the indicators listed below:227

1. True Positives (TP) is a number of correct predictions of positive samples.228

2. False Positives (FP) is a number of incorrect predictions of positive samples.229

3. True Negatives (TN) is a number of correct predictions of negative samples.230

4. False Negatives (FN) is a number of incorrect predictions of negative samples.231
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Above indicators are used to define the appropriate evaluation metrics (Zhu, 2004) according to232

mathematical formulation in equations (3,4,5,6).233

Precision indicates how many predictions of positive samples were correct.

Precision =
T P

T P+FP
(3)

Recall indicates how many positive samples were correctly done among all positive samples and measures

the sensitivity of classifier.

Recall =
T P

T P+FN
(4)

Fallout indicates the proportion of incorrectly predicted positive samples to all negative samples and234

thus measures the classifier proneness to false detections.235

Fallout =
FP

FP+T N
(5)

Accuracy is the proportion of correct predictions out of all predictions performed by the classifier and236

measures the overall performance of a classifier.237

Accuracy =
T P+T N

T P+FP+T N +FN
(6)

The results achieved in the experiments are summarized in Table 1. Both learning and prediction238

time durations were measured only during the real activity of the classifier, which means that the files239

loading and features preprocessing time is not included in reported results. The prediction time refers to240

the prediction of a single test image. Each entry in Table 1 is an average result obtained from two learning241

rounds, where each round splits the image dataset into two exclusive subsets (training and test set) in a242

different way.243

Classifier Precision Recall Fallout Accuracy Learn time Detection time

Naive Bayesian 0.58 0.96 0.35 0.75 1 sec <1 sec

kNN 0.85 0.78 0.06 0.88 30 sec 2 min 10 sec

SVM (linear) 0.94 0.91 0.03 0.95 7 hrs 45 min 33 sec

SVM (polynomial) 0.92 0.86 0.04 0.93 2 days 16 sec

SVM(RBF) 0.90 0.36 0.02 0.77 3 hrs 3 min

Decision Trees 0.92 0.74 0.03 0.89 2 min <1 sec

Random Forest 0.96 0.79 0.02 0.92 35 sec <1 sec

Adaboost 0.70 0.84 0.17 0.83 11 min <1 sec

Table 1. Results from experiments.

The best results were achieved for the Random Forest classifier and SVM with polynomial and linear244

kernels giving the accuracy of 0.92, 0.93 and 0.95 respectively. Though SVM classifiers achieved the245

best overall accuracy, the Random Forest classifier was selected for the final use as it obtained the best246

precision and showed less proneness to false positive detection (Fallout), which gives less noise for247

further steps of the synovitis detection process. Additionally, the Random Forest classifier provides the248

best computational efficiency. Some examples of visualization results for the best configuration of the249

system are presented in Figure 7.250

As mentioned in the previous sections, the selection of proper filter combination used for samples251

generation has a significant impact on the final result. The optimal configuration of filters that was found252

by our automatic heuristic search consists of Gaussian smoothing, first and second derivatives as well as253

Laplacian where the first and second derivatives have the most impact on the result. Adding the threshold254

filters makes the results to get worse. Figure 8 presents the example of samples generation where just a255

few filters gave a better result than the full set of filters.256
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(a) (b) (c)

Figure 7. The results from experiments: (a) input images for detection, (b) features generated by

optimal set of filters, (c) features generated by full set of filters.
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Figure 8. The results for the different filter combinations.

CONCLUSIONS257

This paper presents a bone and skin detector which is an important part of a synovitis detection system258

(Medusa, 2015). The detector output is further processed by a registration method which improves the259

detection result, therefore the precision achieved by the bone and skin detector does not need to be perfect.260

The results presented in this paper are sufficient for the detector to fulfill its role as determined in tests that261

will be described in a future article. The optimization of bone and skin detector is done locally, based only262

on comparison of results with the annotations. There is a plan to introduce a global feedback, from the263

output of the entire synovitis detector to find the best configuration of bone and skin detector for which264

the system is the most effective.265
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