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Abstract

Rigorous performance engineering traditionally assumes measur-
ing on bare-metal environments to control for as many confounding
factors as possible. Unfortunately, some researchers and practition-
ers might not have access, knowledge, or funds to operate dedicated
performance testing hardware, making public clouds an attractive
alternative. However, cloud environments are inherently unpre-
dictable and variable with respect to their performance. In this study,
we explore the effects of cloud environments on the variability of
performance testing outcomes, and to what extent regressions can
still be reliably detected. We focus on software microbenchmarks
as an example of performance tests, and execute extensive experi-
ments on three different cloud services (AWS, GCE, and Azure) and
for different types of instances. We also compare the results to a
hosted bare-metal offering from IBM Bluemix. In total, we gathered
more than 5 million unique microbenchmarking data points from
benchmarks written in Java and Go. We find that the variability
of results differs substantially between benchmarks and instance
types (from 0.03% to > 100% relative standard deviation). We also
observe that testing using Wilcoxon rank-sum generally leads to
unsatisfying results for detecting regressions due to a very high
number of false positives in all tested configurations. However, sim-
ply testing for a difference in medians can be employed with good
success to detect even small differences. In some cases, a difference
as low as a 1% shift in median execution time can be found with a
low false positive rate given a large sample size of 20 instances.
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1 Introduction

In many domains, renting computing resources from public clouds
has largely replaced privately owning resources. This is due to
economic factors (public clouds can leverage economies of scale),
but also due to the convenience of outsourcing tedious data center
or server management tasks [6]. However, one often-cited disad-
vantage of public clouds is that the inherent loss of control can
lead to highly variable and unpredictable performance (e.g., due to
co-located noisy neighbors) [7, 13, 17]. This makes adopting cloud
computing for performance testing, where predictability and low-
level control over the used hard- and software is key, a challenging
proposition.

There are nonetheless many good reasons why researchers and
practitioners might be interested in adopting public clouds for their
experiments. They may not have access to dedicated hardware,
or the hardware that they have access to may not scale to the ex-
periment size that the experimenter has in mind. They may wish
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to evaluate the performance of applications under “realistic condi-
tions”, which nowadays often means running it in the cloud. Finally,
they may wish to make use of the myriad of industrial-strength
infrastructure automation tools, such as Chef! or AWS CloudFor-
mation?, which ease the setup and identical repetition of complex
performance experiments.

In this paper, we ask the question whether using a standard
public cloud for software performance experiments is always a
bad idea. To manage the scope of the study, we focus on a specific
class of cloud service, namely Infrastructure as a Service (IaaS),
and on a specific type of performance experiment (evaluating the
performance of open source software products in Java or Go using
microbenchmarking frameworks, such as JMH3). In this context,
we address the following research questions:

RQ 1. How variable are benchmark results in different cloud envi-
ronments?

RQ 2. How large does a regression need to be to be detectable in
a given cloud environment? What kind of statistical methods lend
themselves to confidently detect regressions?

We base our research on 20 real microbenchmarks sampled from
four open source projects written in Java or Go. Further, we study in-
stances hosted in three of the most prominent public IaaS providers
(Google Compute Engine, AWS EC2, and Microsoft Azure) and con-
trast the results against a dedicated bare-metal machine deployed
using IBM Bluemix (formerly Softlayer). We also evaluate and com-
pare the impact of common deployment strategies for performance
tests in the cloud, namely running test and control experiments on
different cloud instances, on the same instances, and randomized
multiple interleaved trials as recently proposed as best practice [1].

We find that result variability ranges from 0.03% relative stan-
dard deviation to > 100%. This variability depends on the particular
benchmark and the environment it is executed in. Some benchmarks
show high variability across all studied instance types, whereas
others are stable in only a subset of the studied environments. We
conclude that there are different types of instability (variability in-
herent to the benchmark, variability between trials, and variability
between instances), which needs to be handled differently.

Further, we find that standard hypothesis testing (Wilcoxon rank-
sum in our case) is an unsuitable tool for performance-regression
detection in cloud environments due to false positive rates of 26%
to 81%. However, despite the highly variable measurement results,
medians tend to be stable. Hence, we show that simply testing for

Lhttps://www.chef.io
Zhttps://aws.amazon.com/cloudformation
3http://openjdk.java.net/projects/code-tools/jmh
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difference in medians can be used to surprisingly good results, as
long as a sufficient number of samples can be collected. For the
baseline case (1 trial at 1 instance), we are mostly only able to detect
regression sizes >20%, if regressions are detectable at all. However,
with increased sample sizes (e.g., 20 instances, or 5 trials), even a
median shift of 1% is detectable for some benchmarks.

Following the findings, we can conclude that executing software
microbenchmarks is possible on cloud instances, albeit with some
caveats. Not all cloud providers and instance types have shown to
be equally useful for performance testing, and not all microbench-
marks lend themselves to reliably finding regressions. In most set-
tings, a substantial number of trials or instances are required to
achieve good results. However, running test and control groups on
the same instance, optimally in random order, reduces the num-
ber of required repetitions. Practitioners can use our study as a
blueprint to evaluate the stability of their own performance mi-
crobenchmarks, and in the environments and experimental settings
that are available to them.

2 Background

We now briefly summarize important background concepts that we
use in our study.

2.1 Software Microbenchmarking

Performance testing is a common term used for a wide varity of
different approaches. In this paper, we focus on one very specific
technique, namely software microbenchmarking (sometimes also
referred to as performance unit tests [12]). Microbenchmarks are
short-running (e.g., < 1ms), unit-test-like performance tests, which
attempt to measure fine-grained performance counters, such as
method-level execution times, throughput, or heap utilization. Typ-
ically, frameworks repeatedly execute microbenchmarks for a cer-
tain time duration (e.g., 1s) and report their average execution time.

In the Java world, the Java Microbenchmarking Harness (JMH)
has established itself as the de facto standard to implement software
microbenchmarking [24]. JMH is part of the Open]JDK implemen-
tation of Java and allows users to specify benchmarks through
an annotation mechanism. Every public method annotated with
@Benchmark is executed as part of the performance test suite. List-
ing 1 shows an example benchmark from the RxJava project, which
is used as one of the studied benchmarks (rxjava-5).

Conversely, in the Go programming language, a benchmarking
framework is included directly in the standard library*. This frame-
work is primarily based on conventions. For instance, benchmarks
are defined in files ending with _test.go as functions that have a
name starting with Benchmark.

In our study, we use both, JMH and Go microbenchmarks, as
test cases to study the suitability of IaaS clouds for performance
evaluation.

2.2 Infrastructure as a Service Clouds

The academic and practitioner communities have nowadays widely
agreed on a uniform high-level understanding of cloud services
following NIST [18]. This definition distinguishes three service

*https://golang.org/pkg/testing

@State(Scope.Thread)
public class ComputationSchedulerPerf {

@State(Scope.Thread)
public static class Input
extends InputWithIncrementingInteger {
@Param({ "100" })
public int size;

}

@Benchmark
public void observeOn(Input input) {
LatchedObserver<Integer> o =
input.newLatchedObserver();
input.observable.observeOn(
Schedulers.computation()
).subscribe(o);
o.latch.await();

}
Listing 1: JMH example from the RxJava project.

models: [aaS, Platform as a Service (PaaS), and Software as a Ser-
vice (SaaS). These levels differ mostly in which parts of the cloud
stack is managed by the cloud provider and what is left for the
customer. Most importantly, in IaaS, computational resources are
acquired and released in the form of virtual machines or contain-
ers. Tenants do not need to operate physical servers, but are still
required to administer their virtual servers. We argue that for the
scope of our research, IaaS is the most suitable model at the time of
writing, as this model still allows for comparatively low-level access
to the underyling infrastructure. Further, setting up performance
experiments in JaaS$ is significanly simpler than doing the same in
a typical Paa$S system.

In IaaS, a common abstraction is the notion of an instance: an
instance is a bundle of resources (e.g., CPUs, storage, networking
capabilites, etc.) defined through an instance type and an imagine.
The instance type governs how powerful the instance is supposed to
be (e.g., what hardware it receives), while the image defines the soft-
ware initially installed. More powerful instance types are typically
more expensive, even though there is often significant variation
even between individual instances of the same type [7, 22]. Instance
types are commonly grouped into families, each representing a dif-
ferent usage class (e.g., compute-optimized, memory-optimized).

3 Approach

Traditionally, performance measurements are conducted in dedi-
cated environments, with the goal to reduce the non-deterministic
factors inherent in all performance tests to a minimum [20]. Specif-
ically, hardware and software optimizations are disabled on test
machines, no background services are running, and each machine
has a single tenant. These dedicated environments require a high ef-
fort to maintain and have considerable acquisition costs. Conversely,
cloud providers offer different types of hardware for on-demand
rental that have no maintenance costs and low prices. However, the
lack of control over optimizations, virtualization, and multi-tenancy
negatively affects performance measurements [17]. To study the
extent of these effects, we take the following approach.

We choose a subset of benchmarks from four open-source soft-
ware (OSS) projects written in two programming languages. These
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Package Benchmark Name Parameters

Name

log4j2-1 org.apache.logging log4j.perf.jmh SortedArrayVsHashMapBenchmark.getValueHashContextData  count = 5; length = 20

log4j2-2  org.apache.logging log4j.perf.jmh ThreadContextBenchmark.putAndRemove count = 50; threadContextMapAlias = NoGcSortedArray
log4j2-3  org.apache.logging log4j.perf.jmh PatternLayoutBenchmark.serializableMCNoSpace -

log4j2-4  org.apache.logging log4j.perf.jmh ThreadContextBenchmark.legacyInjectWithoutProperties count = 5; threadContextMapAlias = NoGcOpenHash
log4j2-5  org.apache.logging.log4j.perf.jmh SortedArrayVsHashMapBenchmark.getValueHashContextData  count = 500; length = 20

rxjava-1  rx.operators OperatorSerializePerf.serializedTwoStreamsSlightlyContended size = 1000

rxjava-2  rx.operators FlatMapAsFilterPerf.rangeEmptyConcatMap count = 1000; mask = 3

rxjava-3  rx.operators OperatorPublishPerf.benchmark async = false; batchFrequency = 4; childCount = 5; size = 1000000
rxjava-4  rx.operators OperatorPublishPerf.benchmark async = false; batchFrequency = 8; childCount = 0; size = 1
rxjava-5  rx.schedulers ComputationSchedulerPerf.observeOn size = 100

bleve-1 /search/collector/topn_test.go BenchmarkTop1000f50Scores -

bleve-2 /index/upsidedown/benchmark_null_test.go BenchmarkNullIndexing1Workers10Batch -

bleve-3 /index/upsidedown/row_test.go BenchmarkTermFrequencyRowDecode -

bleve-4 /search/collector/topn_test.go BenchmarkTop10000f100000Scores -

bleve-5 /index/upsidedown/benchmark_goleveldb_test.go ~ BenchmarkGoLevelDBIndexing2Workers10Batch -

eted-1 /client/keys_bench_test.go BenchmarkManySmallResponseUnmarshal -

eted-2 /integration/v3_lock_test.go BenchmarkMutex4Waiters -

eted-3 /client/keys_bench_test.go BenchmarkMediumResponseUnmarshal -

eted-4 /mvee/kvstore_bench_test.go BenchmarkStorePut -

eted-5 /mvee/backend/backend_bench_test.go BenchmarkBackendPut -

Table 1: Overview of selected benchmarks. For JMH benchmarks with multiple parameters, we also list the concrete parame-

terization we used in our experiments.

benchmarks are executed repeatedly on the same cloud instance
as well as on different cloud instance types from multiple cloud
providers. The results are then compared to each other in terms of
variability, and detectability of regressions.

Project and Benchmark Selection. The study is based on 20
microbenchmarks selected from four OSS projects, two of which
are written in Java and two in Go. We decided to choose Java as it
has been ranked highly in programming language rankings (e.g.,
Tiobe®), is executed in a virtual machine (VM) (i.e., the JVM) with
dynamic compiler optimizations, and has a microbenchmarking
framework available that is used by real OSS projects [24]. Go com-
plements our study selection as a new programming language, being
introduced in 2009. It is backed by Google, has gained significant
traction, compiles directly to machine-executable code, and comes
with a benchmarking framework® as part of its standard library. We
chose these languages due to their different characteristics, which
improves generalizability of our results.

In a pre-study, we investigated OSS projects in these languages
that make extensive use of microbenchmarking. We chose Log42’
and ij’ava8 for Java, and bleve® and etcd® for Go as study sub-
jects. We executed the entire benchmark suites of all study subjects
five times on an in-house bare-metal server at the first author’s
university. We then ranked all benchmarks for each project in the
order of result stability between these five repetitions and selected
the ones that are: the most stable, the most unstable, the median,
as well as the 25™ and 75t percentile across repeated executions.
Our intuition is to pick five benchmarks from each project that
range from stable to unstable results, to explore the effect result
variability has on regression detectability. Information about these
benchmarks are depicted in Table 1.

Shttps://www.tiobe.com/tiobe-index
Shttps://golang.org/pkg/testing
"https://logging.apache.org/log4j
Shttps://github.com/ReactiveX/RxJava
“https://github.com/blevesearch/bleve
Ohttps://github.com/coreos/etcd

Cloud Provider Selection. As cloud environments to test, we
choose entry-level general purpose, compute-optimized, and memory-
optimized instance types of three cloud service providers. We ex-
pect instance types with better specifications to outperform the
entry-level ones, and therefore this study sets a base line of what is
possible with the cheapest available cloud resource options. The
selected providers are Amazon with Amazon Web Services (AWS)
EC2, Microsoft with Azure, and Google with Google Compute En-
gine (GCE). Table 2 shows the different instance types selected
and information about the data center region, CPU and memory
specification, and hourly price of these. All cloud instances run
Ubuntu 17.04 64-bit.

Optimized Cost

Provider  Data Center  Instance Type @ vCPU Mem for [USD/h]
AWS us-east-1 m4.large 2 8.00 GP 0.1
AWS us-east-1 c4.large 2 3.75 CPU 0.1
AWS us-east-1 r4. large 2 15.25 Mem 0.133
Azure East US D2s v2 2 8.00 GP 0.1
Azure East US F2s 2 4.00 CPU 0.1
Azure East US E2s v3 2 16.00 Mem 0.133
GCE us-east1-b nl1-standard-2 2 7.50 GP 0.0950
GCE us-east1-b n1-highcpu-2 2 1.80 CPU 0.0709
GCE us-east1-b n1-highmem-2 2 13.00 Mem 0.1184

Table 2: Overview of used cloud instance types.

Additionally, we selected a bare-metal machine available for rent
from IBM in its Bluemix (formerly known as Softlayer) cloud. A
bare-metal instance represents the closest to a controlled perfor-
mance testing environment that one can get from a public cloud
provider. We used the entry-level bare-metal server equipped with
a 2.1GHz Intel Xeon IvyBridge (E5-2620-V2-HexCore) processor
and 4 x 4GB RAM, running Ubuntu 16.04 64-bit version, hosted in
IBM’s data center in Amsterdam, NL. We specifically deactivated
Hyperthreading and Intel’s TurboBoost. Moreover, we attempted
to disable frequency scaling, but manual checks revealed that this
setting is ineffective, and probably overridden by IBM.
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Execution. We use the following methodology to execute bench-
marks on cloud instances and collect the resulting performance
data. For each cloud instance type as listed in Table 2, we create
50 different instances. On each instance, we schedule 10 experi-
ment trials of each benchmark in randomized order (following the
method proposed by Abedi and Brecht [1]) without breaks between
trials. Within each trial, every benchmark (e.g., etcd-1) consists of
50 repeated executions (e.g., using the -150 parameter of JMH) and
every execution produces a single data point, which reports the
average execution time in ns. For JMH benchmarks, we also run
10 warmup executions (after which steady-state performance is
most likely reached [9]) prior to the test executions. The perfor-
mance counters originating from warmup iterations are discarded.
We use the same terminology of instances, trials, executions, and
data points in the remainder of the paper. These concepts are also
summarized in Figure 1.
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Figure 1: Schematic view of instance types, instances, and
randomized-order trials on each instance.

For setting up the instances we used Cloud Workbench!! [23],
a toolkit for conducting cloud benchmarking experiments. Cloud
Workbench sets up machines with Vagrant!? and Chef, collects
performance test results, and delivers the outcomes in the form of
CSV files for analysis. We collected our study data between July
and October 2017.

Using this study configuration we collected more than 5 million
unique data points from our benchmarks. However, due to the
large scale of our experiments and the inherent instability of the
environment, transient errors (e.g., timeouts) are unavoidable. We
apply a conservative outlier-removal strategy, where we remove all
data points that are one or more orders of magnitude higher than
the median. Table 3 lists how many data points we have collected
for each instance type across all instances, trials and executions,
as well as how many data points remain after outlier removal.
Unfortunately, due to a configuration error, we are lacking all results
for one benchmark (bleve-1) and consequently omit this benchmark
from all remaining discussions.

Uhttps://github.com/sealuzh/cloud-workbench
2https://www.vagrantup.com

Short Name  Instance Type Total Cleaned

AWS Std m4.large 484402 484056
AWS CPU c4.large 484472 484471
AWS MEM r4.large 474953 474951
Azure Std D2s v2 472636 472122
Azure CPU F2s 510640 510528

Azure MEM E2s v3 470570 470400

GCE Std nl-standard-2 474491 474490

GCE CPU n1-highcpu-2 484138 483959

GCE MEM n1-highmem-2 484168 483793
Bluemix - 595037 594778

Table 3: Overview of the number of collected data points per
cloud instance type, and how many data points remain after
data cleaning,.

4 Results

We now present the empirical study’s results and answer the re-
search questions stated in the introduction.

4.1 Variability in the Cloud

To answer RQ 1, we study the benchmarks of all projects in terms
of their result variability in all chosen environments. Specifically,
we report the variability of each benchmark across all 50 instances,
10 trials on each instance, and 50 executions per trial, for all bench-
marks and on all instance types. We refer to such a combination
of benchmark and instance type as a configuration c € C. We use
the relative standard deviation (RSD) in percent as the measure of

variability, defined as 100 Zégf;f; R
standard deviation and p(DP.) denoting the mean value of all data
points collected for a configuration ¢ € C. We report all data in
Table 4. Note that this table conflates three different sources of vari-
ability: (1) the difference in performance between different cloud
instances, (2) the variability between different trials, and (3) the
“inherent” variability of a benchmark, i.e., how variable the result-
ing performance counters are even in the best case. Consequently,
a large RSD in Table 4 can have different sources, including, but
not limited to, an unpredictable cloud instance type or an instable
benchmark.

Differences between Benchmarks and Instance Types. It
is evident that the investigated benchmarks have a wide range
of result variability. Consequently, the potential regression to be
detected by the benchmarks varies drastically depending on the
benchmark and instance type it is executed on. We observe three
classes of benchmarks: (1) some have a relatively small variability
across all providers and instance types (e.g., rxjava-1), (2) some
show a high variability in any case (e.g., log4j2-5), and (3) some
are stable on some instance types, but unstable on others. The first
group’s result indicate that variability is as desired low, making the
latter two groups particular interesting to identify reasons for their
instability.

We observe three benchmarks that have high result variability,
namely log4j2-1, log4j2-5, and, to a lesser extent, etcd-5 on all in-
stance types. There are two factors that lead to high variability,
either the execution time of the benchmark is very small, or the
benchmark itself produces unstable results. log4j2-1and log4j2-5 are
examples for the first case, with low execution times in the orders
of only tens of nanoseconds. For these benchmarks, measurement

with o (DP,) representing the
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Benchs AWS GCE Azure BM
Std CPU Mem  Std CPU  Mem Std CPU  Mem

log4j2-1 4541 4217 4853 4140 4347 4438 46.19  40.79 5179 4195
log4j2-2 7.90 4.89 392  10.75 9.71 1129 6.18 6.06  11.01 3.83
log4j2-3 4.86 3.76 2.53 1012 9.18  10.15 13.89 7.55  15.46 3.02
log4j2-4 3.67 3.17 4.60  10.69 9.47  10.52 17.00 7.79  19.32 6.66
log4j2-5 7675 86.02 88.20 83.42 8244 80.75 82.62 8693 82.07 77.82

rxjava-1 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.27 0.03
rxjava-2 0.70 0.61 1.68 5.73 4.90 6.12 9.42 6.92 13.38 0.49
rxjava-3 2.51 3.72 191 8.16 8.28 9.63 6.10 5.81 10.32 4.14
rxjava-4 4.55 4.18 7.08 8.07 10.46 8.82 17.06  10.22  21.09 1.42
rxjava-5 5.63 2.81 4.04 1433 1139 1311 6198 6424 21.69 1.76

bleve-2 1.57 1.32 4.79 5.56 6.09 5.78 o107 548 13.29 0.27
bleve-3 113 7.53 7.77 10.08 10.74 14.42 7.62 6.12  14.41 0.18
bleve-4 4.95 4.38 517 11.24 12.00 14.52 8.18 7.11  15.24 0.62
bleve-5 10.23 9.84 8.18 57.60 5842 59.32 5229 4640 52.74 10.16

eted-1 1.03 3.17 1.56 6.45 5.21 7.62 6.36 489 11.46 0.15
eted-2 4.06 4.45 6.28  66.79 69.07 69.18 100.68 94.73 90.19  29.46
eted-3 1.25 0.69 1.24 7.15 6.57 9.27 4.95 431 9.89 0.14
etcd-4 6.80 6.00 7.34 3453 3434 3437 12.28 1239 22.92 8.09

eted-5 4359 2246 4344 2721 2786 27.17 30.54 3140 2498 23.73

Table 4: Result variability in RSD [%] for every benchmark
and instance type configuration in the study.

inaccuracy becomes an important factor for variability. In contrast,
etcd-5 (see also Figure 2) has an execution time around 250000ns
on GCE Mem with an RSD of 27.17%. This variability is similar to
all other instance types, with RSDs ranging from 22.46% to 43.59%.
Even the bare-metal machine from Bluemix has high variability of
23.73% RSD. This indicates that the benchmark itself is rather low-
quality and produces unstable measurement results, independently
of where it is executed.

Instance Variability — etcd-5 on GCE Mem
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Figure 2: Drilldown into the variability of etcd-5, an exam-
ple of a benchmark with high result variability across all
instance types.

The second group we discuss exhibits high variability on some,
but not all, instance types. This group contains two sub-types, (1)
benchmarks that have high standard deviations, but where the
median runtime is similar, and (2) benchmarks that have overall
varying results, including substantially differing medians on dif-
ferent instances. An example for the first sub-group is log4j2-3 on
GCE Mem — and similarly on the other GCE and Azure instances
— where the benchmark’s variability differs among the instances
of the same instance types (see Figure 3). We observe that this
benchmark on this instance type, and unlike etcd-5, has a “long tail”
distribution, which is not uncommon for performance data. How-
ever, the length of this long tail differs from instance to instance. A

possible explanation for this phenomenon is the behavior of other
tenants on the same physical machine as the instance. Other ten-
ants may compete for resources needed by a benchmark causing
longer tails in the data. We have observed this problem particularly
in the case of log4j2 benchmarks, as a manual analysis of these
benchmarks reveals that they tend to be IO-intensive (e.g., writing
to log files). Previous work has shown that IO-bound operations
suffer particularly from noisy neighbors in a cloud [17].
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Figure 3: Drilldown into the variability of log4j2-3, an ex-
ample of a benchmark with differing variability between in-
stances.

More severe variabilities can be observed with the second sub-
group, where even medians are shifted substantially between in-
stances. This is illustrated in Figure 4 for bleve-5 on Azure. A poten-
tial cause for this phenomenon is hardware heterogeneity [7, 22],
i.e., different hardware configurations being used for different in-
stances of the same instance type (e.g., different processor genera-
tions). Another potential root cause can be the Intel Turbo Boost
Technology, which overclocks the CPU if compute-intensive ap-
plications are currently running on the particular hardware host.
Given that the medians fall into a small number of different groups
(only 2 in the case of Figure 4), we conclude that multi-tenancy is
not the culprit for these cases.

Instance Variability — bleve-5 on Azure Mem

7.5e+09 -

5.0e+09 -

Avg. Exec. Time [ns]

2ses09- Tu”xl !

! Lalilal o lllll“” \ll l“ ] 1|

HNOSIOONOOQHNNIINONBDOHNNIOOR DAOAND LB OERAOYNOTROE RN

Instances

Figure 4: Drilldown into the variability of bleve-5 on Azure,
and example for a benchmark with high benchmark result
variability due to differences in hardware.

Moreover, an interesting finding is that different instance type
families (e.g., general-purpose versus compute-optimized) of the
same cloud provider mostly do not differ from each other drastically.
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The only cloud provider that consistently has different variabilities
between its instance types is Azure, where the memory-optimized
type does not perform as well as the general-purpose and compute-
optimized types. A reason for the similarity of different instance
types of the same provider may be that the different types are
backed by the same hardware, just with different CPU and RAM
configuration. We assume that the benchmarks under study do
not fully utilize the provided hardware and, therefore, show little
difference. A detailed exploration of this finding is out of scope of
the current work.

Sources of Variability. We now discuss the different sources of
variability (between instance performance, between trials, inherent
to the benchmark) in more detail. Expectedly, the relative impact
of these sources of variability differs for different configurations.
Some examples are depicted in Figure 5. Each subfigure contrasts
three different RSD values: the total RSD of a configuration, as
also given in Table 4 (Total), the average RSD per instance (Per
Instance), and the average RSD per trial (Per Trial). For the latter
two, error bars signifying the standard deviation are also provided.
Error bars for Total are not meaningful, as this is a single RSD value
per configuration.

Azure Std / etcd-2

—

AWS CPU / etcd-2

|

0 2 4 6 0 25 50 75 100 e
RSD RSD er el

AWS CPU / log4j2-5 GCE Mem / etcd-4

Per Instance

Total

RSD RSD

Figure 5: Drilldown on the source of variability for four ex-
ample configurations.

The top left and right subfigures provide a drilldown on etcd-2
in different clouds, and explores in more detail why this curious
benchmark is remarkably stable on AWS and unstable in GCE and
Azure (see also Table 4). The top left subfigure shows the benchmark
on AWS CPU. There is little difference in the RSDs between trials,
instances, and total, signifying that the little variability that the
benchmark has largely originates from the benchmark itself. The
large error bars signify that this variability differs from trial to trial,
independently of which instance the trial is executed on. This is
different for the same benchmark executed on Azure (top right
subfigure). While the per-trial and per-instance RSD is also larger
than on AWS, it is particularly the total RSD that is now very high.
This signifies that the reason for the difference in stability between
providers is indeed due to varying instance performance.

A different example is provided by the bottom left figure, which
shows log4j2-5 on AWS CPU. Here, the inherent benchmark vari-
ability is miniscule, but there are substantial differences between
different trials, largely independently of whether those trials hap-
pen on the same instance or not. This indicates that for this bench-
mark a large source of variability are trial-level effects, such as

JVM just-in-time optimizations. Finally, the example on the bot-
tom right shows etcd-4 on GCE Mem. This benchmark has a high
total variability, which is composed of a combination of large inher-
ent benchmark variability and substantial performance variability
between different instances.

IaaS Instances vs. Bare-metal Cloud. The study’s idea is to
not only compare performance test results on different resources
from a diverse set of cloud providers, but also compare the nine
IaaS$ instance types with results obtained from a hosted bare-metal
server, in our case from IBM Bluemix. Our initial hypothesis was
that the bare-metal server would provide substantially more stable
results than any other instance type. Based on the data, we can not
support that hypothesis. Benchmarks with high result variability
across all instance types (log4j2-1, log4j2-5, and etcd-5) perform
badly on bare-metal as well. An interesting observation is that
AWS performs about the same compared to Bluemix in terms of
result variability. Some benchmarks (e.g., rxjava-3) even have more
reliable results in AWS than the bare-metal solution. One potential
reason for AWS being surprisingly close to the stability of a hosted
bare-metal server is its provisioned IOps!3 which is the default
for all three used AWS instance types. Provisioned IOps throttles
the IO operations to 10 Mbps, but at the same time guarantees
consistent bandwidth, whereas the other providers generally offer
IO bandwidth on a best effort basis. However, Bluemix consistently
leads to less variable results than the other cloud providers in the
study.

4.2 Detecting Regressions

To answer RQ 2, we first explore the usability of standard hypothesis
testing (Wilcoxon rank-sum in our case) for reliable regression
detection in cloud environments, and then study the configuration
effects (increased number of measurements) that intra- and inter-
instance variability has on detectable regression sizes.

4.2.1 A/A Testing We initially study the applicability of
Wilcoxon rank-sum (also referred to as Mann-Whitney U test)
for performance-change detection by performing A/A tests of all
project’s benchmarks with different sample sizes. The goal of A/A
testing is to compare samples that, by construction, do not stem
from a differently performing application (i.e., running the same
benchmark in the same environment) and observe whether the
statistical test environment is not able to reject Hy (i.e., the test
environment does not find a regression if, by construction, there is
none).

Recall the approach from Section 3, Figure 1: we executed every
benchmark on each individual instance 10 times (number of trials)
and repeated these trials 50 times on different instances of the same
instance type. We now randomly select 1, 5, 10, and 20 instances
(as indicated by the column “# VMs”) and then randomly select 5
trials for the test and 5 trials for the control group. This implements
a recent best practice for low cloud measurement variabilities as
proposed by Abedi and Brecht [1].

For each benchmark we repeated this experiment 100 times with
different instances, test, and control groups. Table 5 reports in
percent how often a Wilcoxon rank-sum test between the test and

Bhttps://aws.amazon.com/de/about-aws/whats-new/2012/07/31/
announcing-provisioned-iops-for-amazon-ebs/
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control group rejects Hy for a p-value < 0.05. Wilcoxon rank-sum
is stable for non-normally distributed data, which most of our data
is, and, therefore, fits the needs of this study [4]. For readability, we
aggregate the data over all benchmarks of the projects. Intuitively,
the table reports in percent how often a Wilcoxon rank-sum test
falsely reported a performance change when neither benchmark
nor code had in fact changed.

Project < AWS GCE Azure BM
>
# Std CPU Mem Std CPU Mem Std CPU Mem

log4j2

RxJava

bleve

eted

20 41 44 44 44 42 44 28 26 28 35

Table 5: False positive rates in percent of A/A testing with
Wilcoxon rank-sum tests, testing between multiple trials on
multiple instances.

Overall, the rate of falsely reported differences (false positives
(FPs)) between identical executions is very high, ranging from 26%
up to 81% detected changes in the already conservative test set up.
For the 40 different configurations, in 10 cases, a single instance
produced the least amount of FPs. This shows that even an increase
of sample size does not necessarily help to reduce the number of
FPs.

Different instance types of the same cloud provider report roughly
the same number of FPs. In comparison to the variability results
(see Section 4.1), the FP-rate between cloud providers are different.
Whereas AWS and Bluemix exhibit the lowest variabilities, the sta-
tistical test shows the fewest FPs on Azure instances (12/16 Azure
configurations). Unexpectedly, in 9 out of 16 cases, AWS shows
the highest FP-rate with a minimum of 39% for etcd with 5 VMs.
Further, the Bluemix bare-metal server is the only one that consis-
tently has less FPs with increased sample sizes. Azure has the lowest
numbers of FPs for all projects but Log4j2. Nevertheless, FP-rates
are above 25%, which still indicates that this approach can not be
used for reliable detection of performance changes in our environ-
ment. Hence, we conclude that hypothesis testing using Wilcoxon
rank-sum tests is not a suitable vehicle for detecting performance
degradations in cloud environments. It should be noted that we
did not conduct extensive experiments with other statistical test-
ing methods (e.g., comparison of confidence intervals or ANOVA).
However, given the drastically unsatisfying results with Wilcoxon
rank-sum tests, we do not expect other hypothesis testing methods
to perform much better as to become practically useful. Given the
overall high numbers of FPs we believe it is unlikely that other
tests would outperform Wilcoxon rank-sum such that the FP-rate
would consistently drop to 5% or less. Nonetheless, an extensive

comparative study between the different types of statistical tests is
open for future research.

4.2.2 Detectable Regression Sizes. While our results us-
ing hypothesis testing are disappointing, the fairly stable medians
we have observed in Section 4.1 (see also Figures 2 and 3, which
depict the medians in green dots) indicate that a simpler testing
method may prove useful. In the following, we experiment with
what regressions can confidently be found when simply evaluating
whether the test and control group differ in median by at least a
pre-defined threshold.

Input: Benchmark results for all instances and trials of an instance type
Sampling strategy select for test and control group
Data: Regressions to test for R = {1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100} [%]
Result: Smallest regression size detectable
foreach r € R in descending order do
for 100 times do
select random control (c) and test () group

if [median(t) — median(c)| > % then
‘ report FP
end
if |median(add_reg_to(t, r)) — median(c)| > % then
| report TP
end
end

if FP-rate < 0.05 and TP-rate > 0.95 then
| returnr
end

end
return no regression detectable

Algorithm 1: A simple approach for detecting regressions
based on medians.

Threshold-based Approach for Regression Detection. To
find the minimal regression detectable by a benchmark in a partic-
ular environment, we performed testing based on the approach de-
scribed in Algorithm 1. This approach finds the smallest detectable
regression across 100 random samples, where at least 95% of the
time this regression was detected, which we refer to as true positive
(TP), and less than 5% of the time an A/A test reported a change,
referred to as FP. The sampling strategy (select) defines the control
and test groups, i.e., which instances and trials both consist of. We
describe the two sampling strategies we experimented with below.

Figure 6 shows an example illustrating the approach for etcd-4 on
AWS Std. The y-axis shows the percentage of detected regressions
(either TPs or FPs), and the x-axis shows the regression tested for.
The left subfigure shows the data for 1 trial per instance, the right
for 5 trials. Both figures use only a single instance as sample size.
The red line indicates the TPs, whereas the blue line depicts FPs. The
horizontal dashed line illustrates the regression detectable by the
benchmark in the chosen environment. Note that with increasing
simluated regression, TPs typically goes up (it is easier to find larger
regressions), but the number of FPs goes down (when we assume
larger regressions, the threshold that we test for, which is fixed to
be half the regression, goes up, rendering the A/A test to be more
robust).

In the illustrated example, the minimum regression that can be
detected is 20% for both number of trials. In both figures we notice
that the TP-rate is high for all regressions, and for slowdowns <20%
the FP-rate is high. In this example the FP-rate is the deciding factor
when a regression is detectable abiding our approach.
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Figure 6: An illustration for etcd-4 on AWS Std how the de-
tectable regressions are calculated.
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Figure 7: In the case of bleve-5 on Azure Mem, and for a sam-
ple size of a single instance, no regression that we tested was
large enough due to the very high rate of FPs.

A further example in Figure 7 shows that with such a small
measurement sample size, some benchmarks (e.g., bleve-5 in Azure
Mem) are entirely unstable and produce a high rate of FPs. Therefore,
they can not reliably detect regressions at all. We now investigate
the detectable regressions for all configurations using this strategy.

Instance-Based Sampling. We will use and contrast two dif-
ferent sampling procedures. First, we randomly select 1, 5, and 20
different instances, and use 1 random trial from each instance. This
simulates the case of a performance experiment where the test and
control group are run on different cloud instances. This can happen,
for instance, when a software team runs a performance test for
each new release, and uses as control group the data gathered in
the previous release. Between releases, cloud instances are termi-
nated to save costs. We refer to this as the instance-based sampling
strategy. Table 6 shows the results for this sampling strategy. Values
represent a regression by x%. Cells with the value “no” (colored in
red), indicate that for the given configuration no regression can be
detected with the approach described above.

We investigate 190 combinations overall. This sampling strategy
combined with the approach outlined above detects a slowdown
in 159 combinations. The remaining 31 combinations generate too
unstable result to reliably find the regressions that we tested for
(up to 100%). This indicates that some benchmark-environment
combinations produce too unstable results for reliable regression
detection. In 12 out of the 31 undetectable cases, an increase to 5
instances, and in further 8 cases 20 instances, allows us to find at
least large regressions reliably. In 15 of the examined combinations,
namely log4j-5 on all instance types, even a sample size increase
did not allow us to reliably detect a regression of 100% or lower.

Bench £ AWS GCE Azure BM
i Std CPU Mem Std CPU Mem Std CPU Mem
1 5 4 2 20 [EGN 50 20 @GN 50 1
logdj2-1 5 1 1 110 10 1510 10 10 1
20 1 1 110 5 10 4 4 4 1
110 25 325 20 25 20 50 25 1
logdj2-2 5 3 20 115 10 1510 15 10 1
20 1 5 110 10 10 4 5 4 1
110 5 5 25 20 25 50 25 25 4
logdj2-3 5 4 3 115 15 1510 15 10 2
20 2 1 110 5 10 4 5 5 1
110 10 15 25 50 50 50 50 25 15
logdj2-4 5 5 4 5 15 15 15 15 15 10 5
20 3 3 210 5 10 5 10 5 3
1
log4j2-5 5
20
1 1 1 1 1 1 1 1 1 1 1
rxjava-1 5 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1
1 2 4 320 25 50 10 10 10 2
rxjava-2 5 1 1 2 15 15 20 5 5 4 1
20 1 1 110 5 10 2 3 2 1
110 5 10 25 25 25 20 25 20 20
rxjava-3 5 5 4 3010 15 1510 10 10 10
20 3 3 210 10 10 4 4 410
115 15 50 50 50 20 15 25 15 5
rxjava-4 5 10 10 50 15 15 010 10 10 3
20 4 3 10 10 10 5 5 4 3 1
110 25 50 oo 75 50 50 [EeN 10
rxjava-5 5 10 10 20 25 25 20 50 25 50 2
20 5 4 5 15 10 15 25 20 20 1
1 5 10 15 20 25 25 25 15 25 1
bleve-2 5 2 3 1010 10 20 10 10 10 1
20 2 2 4 10 5 10 4 4 3 1
1 3 10 10 20 25 25 50 20 50 1
bleve-3 5 1 2 5 15 15 20 15 15 10 1
20 1 1 310 5 10 5 10 5 1
115 10 20 20 50 50 50 50 100 1
bleve-4 5 5 5 15 15 15 50 20 20 15 1
20 3 3 4 10 10 10 10 10 10 1
175 50 50 75 50
bleve-5 5 25 25 0 15 20 15
20 15 10 10 10 10 25 100 00 10
1 2 5 10 20 20 25 20 20 20 1
eted-1 5 1 2 210 10 20 10 10 10 1
20 1 1 210 5 10 3 4 3 1
1 3 4 350 20
20 1 1 115 20 | 100 50 75 5 10
1 3 5 4 25 20 25 20 15 25 1
eted-3 5 1 2 2 15 10 25 10 10 10 1
20 1 1 110 5 10 3 4 3 1
120 20 25 50 50 25
eted-4 510 15 15 15 20 100 100 7515
20 5 10 1010 10 1575 75 50 10
1 5 15 15 75 50 50 50 20
eted-5 5 4 10 10 25 50 20 20 50 2510
20 2 4 4 20 20 10 15 15 15 4

Table 6: Minimum detectable regression using instance-
based sampling and a single trial per instance.

Apart from log4j2-5, AWS and Bluemix are the only providers
that do not have result variabilities such that our approach is unable
to detect regressions reliably. Further, across all benchmarks, these
two providers offer a platform for the lowest detectable regressions,
which is in line with our results from Section 4.1. This is especially
evident for the first four log4j2, the first three bleve, and the first
three etcd benchmarks. For those, on AWS and Bluemix, it is possible
to detect regressions between 1% and 10%, whereas in comparison
on GCE and Azure slowdown sizes above 10% are the usual case.
In line with the variability results, IBM’s bare-metal environment
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Figure 8: Regressions found using the instance-based sam-
pling strategy. With one sample, many benchmarks are only
able to reliably detect regressions in the 20% to 50% range.
With 20 instances, 3% to 10% regressions can often be found.

is best for detecting regressions with the instance-based strategy,
although AWS achieves very good results as well. Sometimes AWS
even outperforms Bluemix (e.g., etcd-2).

Taking a step back and highlighting the big picture, Figure 8
shows the number of combinations that capture a particular regres-
sion size as a density plot. This figure depicts the minimal regres-
sion sizes across various providers, instance types, and benchmarks,
such that they are detectable with a given number samples (i.e.,
repetitions on different instances). An increase in the number of
instances overall leads to smaller regressions becoming detectable.

Trial-Based Sampling. For evaluating the second strategy, we
randomly select 1 and 20 instances per benchmark and environment.
However, different from the instance-based strategy, the control
and test group now consist of the same instances with five different
randomly selected trials each. This simulates the case where a
performance engineer starts 1 or 20 instances and then runs both,
the test and control group, multiple times on the same instance in
randomized order. This minimizes the impact of the performance of
the specific instance, which we have established to be an important
factor contributing to variability in many cases. Hence, we expect
that this approach should generally lead to smaller regressions
being detectable. The results are presented in Table 7.

The results are generally in line with expectations. log4j2-5 re-
mains unable to reliably detect regressions in any configuration.
Similar to the instance-based strategy, the same benchmarks show
undetectable regressions. However, in general, the number of con-
figurations for which no regression can be found goes down con-
siderably, even if just a single instance is used.

An increase in numbers of instances reduces the inter-instance
variability drastically as depicted by Figure 9. Comparing the 20
instances cases, this 5 trial-based sampling reduces the detectable
regression sizes from around 10% to 15% for the single trial instance-
based sampling to below 4% for most configurations.

This confirms our initial expectation, as well as the previous
result by Abedi and Brecht [1]: executing performance experiments
on the same instances in randomized order can indeed be consid-
ered a best practice. However, it is a surprising outcome how small
regressions can be found with high confidence even in a compara-
tively unstable environment. This is largely due to the medians of

Bench E AWS GCE Azure BM
S
% Std CPU Mem Std CPU Mem Std CPU Mem
) 1 s 1 110 75 15 25 50 15 1
logdiz-1 5 1 12 3 3 3 3 2 1
. 115 25 310 10 0 2 25 15 1
loghiz-2 5y 5 103 2 3 3 3 3 1
. 110 4 4 10 10 0 15 20 15 5
loghjz-3 5y 1 103 2 2 2 2 3 1
. 110 10 15 15 10 15 15 20 15 20
loghiz=d 55 3 2 3 2 4 3 3 3 3
) 1
N B 1 11 1 1 1 1 1 1
xjavi 20 1 1 1 1 1 1 1 1 1
ez 12 2 14 10 010 10 10 2
J 20 1 1 12 2 1 1 1 1
a1 10 5 5 5 10 0 10 10 015
X 20 3 3 2 2 2 2 2 5
iavaq 110 10 10 10 10 010 10 10 5
J 20 2 3 2 3 3 3 2 1
xiavass L 3 4 5 [EONEeN 10 10 5 10 2
) 20 1 1 2 2 2 2 4 3 4 1
11 2 3 4 4 0 10 4 5 1
bleve-z oy 1 1 12 1 3 1 2 1 1
11 1 2 3 4 0 10 10 15 1
bleve-3 1 1 1 1 1 2 2 1
103 5 3 3 4 0 15 15 15 1
bleve-d 5 1 11 2 2 2 2 3 1
bleve.s L3 5 0 10 4 15 [INECIIEGIEGN s
ve 20 2 2 1 3 2 5 15 20 20 10
11 2 14 3 10 5 10 10 1
eted-1 20 1 1 1 1 1 2 1 2 1 1
eted-2 1 1 2 120 50 50 100 [EONNEON 20
20 1 1 110 5 50 15 20 20 5
11 1 1 s 3 0 10 10 15 1
eted3 1 1 11 1 3 1 2 1 1
cted-a 1 4 5 4 10 10 10 RGN 50 50 20
20 1 1 2 2 2 3 15 15 15 4
etedss 103 10 15 10 10 50 25 25 25 20
20 1 2 2 3 3 4 5 10 5 3

Table 7: Minimum detectable regression using a trial-based
sampling strategy, and 5 trials per instance.

Trial-based Strategy

VMs

[0

20-

\ \
1 2 3 4 5 10 15 20 25 50 75 100
Regression [%)]

Figure 9: Regressions found using the trial-based sampling
strategy. With one instance, regressions between 5% and 15%
can often be found. With 20 instances, we are able to dis-
cover regressions as small as 4% in most configurations.

benchmark results actually not varying much between runs, even
of the distributions themselves have high standard deviation or a
long tail.
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5 Discussion

In this section, we discuss the implications of this study’s results
for researchers and practitioners. First and foremost, we want to
address the titular question, “Performance Testing in the Cloud.
How Bad is it Really?”. The answer to this question has multiple
aspects to it, (1) which cloud provider and instance type is used, (2)
how many measurements are taken, (3) which measurements are
considered for regression analysis, and (4) which regression sizes
are desired to be detected. Following, we explicitly address threats
to the validity and limitations of our study.

5.1 Implications and Main Lessons Learned

Cloud Provider and Instance Type. The reliable detection of
regressions directly depends on the choice of cloud provider. We
have observed relevant differences between providers and more
stable providers eventually will lead to benchmark results with
lower result variability. Across all experiments performed we see
an indication that at the time of writing, benchmarks executed
on AWS produce results that are most stable compared to GCE
and Azure. Even better results are obtained when utilizing a bare-
metal machine rented from Bluemix. Surprisingly, variability and
detectable regressions in AWS and Bluemix are not far apart. An
interesting conclusion drawn from the presented data is that there
is no big difference between instance types of the same provider,
suggesting that using the cheapest option is often the right choice
for performance experiments.

Required Number of Measurements. The result variability
as well as the detectable slowdown is directly affected by the num-
ber of repeated benchmark executions. A naive suggestion would
be to run as many as possible, which is obviously at odds with tem-
poral and monetary constraints. With the “limitless” availability of
cloud instances, performance tests of a new software version can
be executed in parallel. Even long-running benchmark suites could
be split into subsets and run in parallel in order to reduce overall
execution time. The only sequential operation are the number of
trials on the same instance. There is no definite answer to exactly
how many measurements are required for all benchmarks to re-
liably detect slowdowns, as this depends on project, benchmark,
and cloud configuration. However, we have observed that even a
single instance can often be used to detect small regressions if trials
are repeated five times, and both, test and control groups, can be
executed on the same instance within a short time frame and in
random order.

Measurement Strategy. Both, instance-based and trial-based
sampling, come with their own advantages and disadvantages. The
trial-based strategy leads to substantially better regression detec-
tion results, but may not lend itself to typical continuous software
development scenarios. The instance-based strategy can be imple-
mented easily, but requires substantially higher sample sizes, or
an experimenter who is willing to compromise on the regressions
that can realistically be found. One advantage which, to some ex-
tend, alleviates the problem of high sample size is that this strategy
supports parallelization of test executions nicely.

Detectable Regression Size. The regression size that is desired
to detect influences the performance testing environment config-
uration. For example, if it is sufficient to detect regressions in the

order of 20% to 50%, an instance-based strategy with 5 instances
might be sufficient. However, if regressions below 10% are desired to
be detected, more instances with multiple trials might be required.
Even with extensive testing on multiple instances, it is not guaran-
teed that all benchmarks of a project will reliably detect regressions
of a certain size. We have observed multiple benchmarks, most
evidently log4j2-5, that are inherently not able to detect realistic re-
gressions in our setting. We argue that there is a need for developer
tooling which constantly tracks result variability of benchmarks on
the current as well as other cloud providers to dynamically adapt
to software as well as provider changes. Further, as shown in Sec-
tion 4.2, standard hypothesis testing is not an appropriate tool for
regression detection of performance measurements conducted on
cloud instances. Before relying on detected performance variations,
research as well as practitioners should validate whether the ob-
served change is certain or potentially caused by the flakiness of
the experiment environment. A/A testing can and should be used
to assure the experimenter of this.

5.2 Threats to Validity and Limitations

As with any empirical study, there are experiment design trade-offs,
threats, and limitations to the validity of our results to consider.

Threats to Internal and Construct Validity. Experiments in
a public cloud always need to consider that the cloud provider is, for
all practical purposes, a black box that we cannot control. Although
reasonable model assumptions can be made (e.g., based on com-
mon sense, previous literature, and information published by the
providers), we can fundamentally only speculate about the reasons
for any variability we observe. Another concern that is sometimes
raised for cloud experimentation is that the cloud provider may in
theory actively impact the scientific experiment, for instance by
providing more stable instances to benchmarking initiatives than
they would do in production. However, in practice, such concerns
are generally unfounded. Major cloud providers operate large data
centers on which our small-scale experiments are expected to have
a neglectable impact, and historically, providers have not shown
interest to directly interfere with scientific experiments. For the
present study we investigated entry-level instance types, which we
consider to produce baseline results compared to better instances.
A follow-up study is required to investigate whether variability and
detectability results improve for superior cloud hardware. Another
threat to the internal validity of our study is that we have chosen to
run all experiments in a relatively short time frame. This was due to
avoid bias from changes in the performance of a cloud provider (e.g.,
through hardware updates), but this decision means that our study
only reports on a specific snapshot and not on longitudinal data, as
would be observed by a company using the cloud for performance
testing over a period of years.

Threats to External Validity. We have only investigated mi-
crobenchmarking in Java and Go, and only for a selected sample of
benchmarks in two OSS projects. Further, we have focused on three,
albeit well-known, public cloud providers and a single bare-metal
hosting provider. A reader should carefully evaluate whether our
results can be generalized to other projects and providers. Even
more so, our results should not be generalized to performance test-
ing in a private cloud, as many of the phenomena that underlie our
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results (e.g., noisy neighbors, hardware heterogeneity) cannot, or
not to the same extent, be observed in a private cloud. Similarly,
we are not able to make claims regarding the generalizability of
our results to other types of performance experiments, such as
stress or load tests. Further, we focus in our study on the detec-
tion of median execution-time related performance regressions.
To keep the scope of our experiments manageable, we chose to
not discuss worst-case performance or different performance coun-
ters (e.g., memory consumption or IO operations) in the present
work. Finally, readers need to keep in mind that any cloud-provider-
benchmarking study is fundamentally aiming at a moving target.
As long as virtualization, multi-tenancy, or control over hardware
optimizations is managed by providers, we expect the fundamental
results and implications of our work to be stable. Nevertheless, de-
tailed concrete results (e.g., detectable regression sizes on particular
provider/instance types) may become outdated as providers update
their hardware or introduce new offerings. For instance, when AWS
introduced provisioned IOps, the IO-related performance character-
istics of their service changed sufficiently that previously-published
academic benchmarking studies became outdated.

6 Related Work

Software performance is a cross-cutting concern affected by many
parts of a system and, therefore, hard to understand and study. Two
general approaches to software performance engineering (SPE) are
prevalent: measurement-based SPE, which executes performance
experiments and monitors and evaluates their results, and model-
based SPE, which predicts performance characteristics based on the
created models [26]. In this paper, we focus on measurement-based
SPE.

It has been extensively studied that measuring correctly and
applying the right statistical analyses is hard and much can be
done wrong. Mytkowicz et al. [20] pinpoint that many systems
researchers have drawn wrong conclusions through measurement-
bias. Others report on wrongly quantified experimental evalu-
ations by ignoring uncertainty of measurements through non-
deterministic behavior of software systems (e.g., memory place-
ment, dynamic compilation) [15]. Dealing with non-deterministic
behavior of dynamically optimized programming languages, Georges
et al. [9] summarize methodologies to measure languages like Java,
and explain statistical methods to use for performance evaluation.
All of these studies expect an as stable as possible environment
to run performance experiments on. More recently, Arif et al. [2]
study the effect virtual environments have on load tests. They find
that there is a discrepancy between physical and virtual environ-
ments which are most strongly affected by unpredictability of IO
performance. Our paper augments this study, which looks at re-
sult unreliability of load tests, whereas we investigates software
microbenchmarks. Additionally, our study differs by conducting
measurements in cloud environments rather than virtual environ-
ments on controlled hardware.

Traditionally, performance testing research was conducted in
the context of system-scale load and stress testing [3, 14, 19, 25].
By now, such performance tests are academically well-understood,
and recent research focuses on industrial applicability [8, 21] or
how to reduce the time necessary for load testing [11]. Studies of

software microbenchmarking have not received main stream atten-
tion previously, but academics have recently started investigating
it [5, 12, 24]. Similarly, Leitner and Bezemer [16] recently investi-
gated different practices of microbenchmarking of OSS written in
Java. However, none of these studies report on result reliability.

A substantial body of research has investigated the performance,
and stability of performance, of cloud providers independently
of software performance engineering experiments. For instance,
Leitner and Cito [17] study the performance characteristics of cloud
environments across multiple providers, regions, and instance types.
Tosup et al. [13] evaluate the usability of IaaS clouds for scientific
computing. Gillam et al. [10] focus on a fair comparison of providers
in their work. Ou et al. [22] and Farley et al. [7] specifically focus
on hardware heterogeneity and how it can be exploited to improve
a tenant’s cloud experience. Our study sets a different focus on
software performance tests and goes a step further to investigate
which regressions can be detected.

7 Conclusions

This paper empirically studied “how bad” performance testing (i.e.,
software microbenchmarking) in cloud environments actually is.
We investigated result variability and minimal detectable regres-
sion sizes of microbenchmark suite subsets of two Java projects
(Log4j2 and RxJava) and two Go projects (bleve and etcd). The test
suites were executed on general purpose, compute-optimized, and
memory-optimized instance types of three public IaaS providers, i.e.,
Amazon’s EC2, Google’s GCE, and Microsoft Azure, and as compar-
ison a hosted bare-metal environment from IBM Bluemix. Result
variability, indicated as RSD, ranges for the studied benchmark-
environment configurations vary between 0.03% to 100.68%. This
variability originates from three sources (variability between in-
stances, between trials, inherent to the benchmark), and different
benchmark-environment configurations suffer to very different
degrees from any of these sources. The bare-metal instance expect-
edly produces very stable results. However, AWS is typically not
substantially less stable. Both, GCE and Azure seemed to lend them-
selves much less to performance testing in our experiments. Further,
we found that A/A tests using Wilcoxon rank-sum tests produce
high false-positive rates between 26% and 81%. However, a simple
strategy based on comparing medians can be applied successfully,
often to detect surprisingly small differences. For high sample sizes
(e.g., 20 instances), performance differences as small as 1% can be
found. If this is not possible, detectable regressions range between
10% and 50% for most cases or even beyond for some, depending
on benchmark, instance type, and sample size.
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