

Parasitism without frontiers: Infection variability of an intermediate host across multiple spatial scales

Sara M Rodríguez Corresp., 1, Fernando C Aliaga 1, Nelson Valdivia 1,2

Corresponding Author: Sara M Rodríguez Email address: saramrodriz@gmail.com

Background. Parasites are heterogeneously distributed in intermediate host populations, but how this variability changes between multiple geographic scales remain unclear. Here, we test whether in a complex host-parasite system developing in sandy shores, the high spatiotemporal variability in the physical structure of these habitats will lead to comparatively high variability in parasitosis observed at the local- (i.e. few metres) and meso-scale (i.e. tens of km), relative to the regional scale (several 100s of km).

Methods. Here, we analyse the spatial variability of acanthocephalan parasites infecting decapod molecrabs according to a hierarchical design spanning more than 500 km of the southern-central shore of Chile. We predicted that the local effects could potentially influence the host-parasite interaction by generating a large amount of between-site heterogeneity in parasitosis and thus, to improve our understanding of the development of epidemic and infectious processes.

Results. The analysis of generalized mixed-effect models showed that the spatial variability in parasitosis (i.e. probability of infection, parasite burden, prevalence, mean intensity, and mean abundance) was smallest at the regional scale. On the other hand, the largest amount of spatial variability of most measures of parasitosis was observed at the meso-scale. Prevalence, however, displayed similar (and high) levels of variation at meso- and local-scales.

Conclusions. We suggest that parasite infection could be related with abiotic factors that determine habitat physical stability, such as seasonal morphodynamic of sandy shores. Thus, local environmental filters can have strong and deterministic effects on the regulation of this complex host-parasite system across spatial scales.

¹ Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus isla Teja s/n, Valdivia, Chile

² Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)

1 Parasitism without frontiers: infection variability of an intermediate host across multiple 2 spatial scales 3 Sara M. Rodríguez¹, Fernando C. Aliaga¹ & Nelson Valdivia ^{1,2} 4 5 6 ¹Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, campus Isla Teja s/n, Valdivia, Chile. 7 ²Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes 8 9 (IDEAL). 10 11 Corresponding author: Sara M. Rodríguez 12 E-mail address: saramrodriz@gmail.com 13 14 15

Abstract

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Background. Parasites are heterogeneously distributed in intermediate host populations, but how this variability changes between multiple geographic scales remain unclear. Here, we test whether in a complex host-parasite system developing in sandy shores, the high spatiotemporal variability in the physical structure of these habitats will lead to comparatively high variability in parasitosis observed at the local- (i.e. few metres) and meso-scale (i.e. tens of km), relative to the regional scale (several 100s of km). **Methods.** Here, we analyse the spatial variability of acanthocephalan parasites infecting decaped molecrabs according to a hierarchical design spanning more than 500 km of the southern-central shore of Chile. We predicted that the local effects could potentially influence the host-parasite interaction by generating a large amount of between-site heterogeneity in parasitosis and thus, to improve our understanding of the development of epidemic and infectious processes. **Results.** The analysis of generalized mixed-effect models showed that the spatial variability in parasitosis (i.e. probability of infection, parasite burden, prevalence, mean intensity, and mean abundance) was smallest at the regional scale. On the other hand, the largest amount of spatial variability of most measures of parasitosis was observed at the meso-scale. Prevalence, however, displayed similar (and high) levels of variation at meso- and local-scales. **Conclusions.** We suggest that parasite infection could be related with abiotic factors that determine habitat physical stability, such as seasonal morphodynamic of sandy shores. Thus, local environmental filters can have strong and deterministic effects on the regulation of this complex host-parasite system across spatial scales. Key words: acanthocephalans, beach morphodynamics, *Emerita analoga*, generalized linear mix-

effect models, Profilicollis altmani, southeast Pacific

Introduction

Parasites are essential components of natural communities over the world. They are 41 42 generally heterogeneously distributed across space and time (Byers et al., 2008; Johnson & 43 Hoverman, 2014: Byers, Holmes & Blakeslee, 2016), which has important consequences 44 for host mortality and the process of host-parasite regulation (Thieltges & Reise, 2007; 45 Byers et al., 2008; Rodríguez & Valdivia, 2017). In general, parasitological studies have 46 been focused more on temporal than spatial scale (but see Latham & Poulin, 2003; Smith, 47 2007; Powell, Kim & Bushek, 2015; Rodríguez & Valdivia, 2017). Nevertheless, an 48 emergent pattern rising from these studies in that the spatial patterns of parasitosis are 49 scale-dependent; that is to say, patterns observed at a given spatial scale can be absent at 50 other (Smith, 2001; Thieltges et al., 2009; Studer et al., 2013; Thieltges et al., 2013). 51 Spatial scale can be determined in terms of grain size, extent, and the distance between 52 observations (Wiens, 1989; Legendre & Legendre, 1998). In this study, we analyse the 53 differences in parasitosis between host subpopulations separated by few centimetres (local 54 scale), few kilometres (meso-scale), and several hundreds of kilometres (regional scale). 55 Broad-scale infective processes usually develop from infections that occur at local scales in 56 which hosts interact directly, and then propagate toward broader spatial scales (Parietti, 57 Merlo & Etchegoin, 2013; Byers, Holmes & Blakeslee, 2016). Thus, quantifying the 58 variability in parasitosis across spatial scales in determinant to improve our understanding 59 of the development of epidemic and infectious processes. 60 The variation in the spatial distribution of parasites can be important at local scales; 61 e.g within local host populations embedded in a host metapopulation (Smith, 2001; Parietti, 62 Merlo & Etchegoin, 2013). Local factors such as host movement, density, recruitment 63 patterns and host mortality can determine local-scale parasite variability (Blower &

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Roughgarden, 1989; Smith, 2001; Johnson & Hoverman, 2014). For example, people movement can explain the fact that the risk of malaria infection is more variable between members of a household (i.e. local scale) than between communities separated by tens to hundreds of kilometres (i.e. meso-scale: Bousema et al., 2011: Carrasco-Escobar et al., 2017). Within host populations in nature, variations in parasite exposure can increase the variability in host's infection probability and infection rate, leading to the usually strong parasite aggregation at the local scale (i.e. spatial variance in parasite load; Anderson & May, 1978). Therefore, factors that affect host' infection rates can generate strong scaledependent patterns of parasite variability. In natural communities, local factors like physical characteristic of habitat, habitat alteration, and pollution can influence the heterogeneity of infection among sites and generate meso-scale variation in parasitosis (Smith, 2001; Lafferty & Gerber, 2002). For example. Meager, Schlacher & Nielsen (2012) demonstrate that human activities can affect habitat selection of birds (Charadriiformes), which are forced to escape from severely impacted sites. In the case of migratory Charadriiformes that use sandy shores as feeding areas, spatial variability in beach morphodynamics can pose strict restrictions to habitat use, generating significant meso-scale variations in bird abundance (Lafferty, 2001; Meager, Schlacher & Nielsen, 2012; Basso et al., 2017). Since birds are definitive host for many parasites, these alterations of bird abundances can affect the exposure of local intermediate hosts to parasite's dispersive stages and thus increase the between-site heterogeneity in parasitosis (Fredensborg, Mouritsen & Poulin, 2006; Smith, 2007; Byers, Holmes & Blakeslee, 2016; Rodríguez, D'Elía & Valdivia, 2017). Moreover, sandy shores experience broad seasonal variations in terms of sand erosion and accretion, which generates large mortality events of sand-dwelling invertebrates that act as intermediate hosts in complex

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

host-parasite systems (Bessa et al., 2014; Sepúlveda & Valdivia, 2016). Therefore, alterations of habitats can potentially influence the host-parasite interaction by generating a large amount of between-site heterogeneity in parasitosis (Smith, 2001).

Complex host-parasite systems usually include highly mobile definitive hosts. which are able to disperse the parasites over broad spatial scales. For instance, migratory birds can disperse the infective stages of parasites over hundreds and thousands of kilometres (Smith, 2007; Goulding & Cohen, 2014; Gutiérrez et al., 2017). According to metacommunity theory, high dispersal potential can lead to low heterogeneity in terms of species occurrences and abundances across a region (Leybold, 2004). Thus, low variability in parasitosis within a complex host-parasite system can be expected when host populations separated by several hundreds of km—but in the same biogeographic region—are contrasted (i.e. a region-scale spatial comparison). Regarding complex parasite systems developing in sandy shores, regional variation in parasitosis can be expected to be smaller relative to that occurring at local and meso-scales of observation, owing the dynamic nature of the physical structure of these habitats (see previous paragraph). Sandy shores are currently under threat due to urban development and recreational activities worldwide (Defeo et al., 2009; Schlacher et al., 2014; Bessa et al., 2014). In addition, migratory birds face multiple anthropogenic impacts derived from broad- (e.g. global change) and localscale (e.g. increasing level of human activities) processes (Meager, Schlacher & Nielsen, 2012; Navedo & Herrera 2012; Piersma et al., 2016; van Gils et al., 2016). Assessing therefore the scale-dependent variability in complex host-parasite interactions involving sandy-shore coastal ecosystems and migratory birds can be relevant for both applied and fundamental ecology.

In this study we test the hypothesis that, in a complex host-parasite system developing in coastal sandy shores, the high spatiotemporal variability in the physical structure of these habitats will lead to comparatively high variability in parasitosis observed at local- (few metres) and meso-scales (10s of km) relative to the geographic scale (100s of km). In this complex system, the decapod molecrab *Emerita analoga* Stimpson, 1857 ingests accidentally the infective stages of the acanthocephalan *Profilicollis altmani* Meyer, 1931, which reproduces and completes its life cycle in several seagull species (Goulding & Cohen, 2014; Rodríguez, D'Elía & Valdivia, 2017). Parasitosis was expressed as infection probability, parasite burden, prevalence, intensity, and mean abundance. These estimators were compared between host subpopulations located at increasing distances along the shore of southern-central Chile.

Materials and methods

Study sites and sampling procedure

This study was conducted across two regions separated by ca. 500 km of distance in
southern-central Chile. Both regions belong to the transitional area between the Peruvian
and Magellanic biogeographic provinces (Camus, 2001). In each region, four beaches were
randomly selected and sampled during April 2014. In the central region (i.e. "Biobío"), the
sites were Dichato (36.4°S – 72.9°W), Lenga (36.4°S – 73.1°W), Playa Blanca (37.0°S –
73.1°W) and Colcura (37.1°S – 73.1°W). In the southern region ("Los Ríos"), the sites were
Cheuque $(39.3^{\circ}S - 73.2^{\circ}W)$, Curiñanco $(39.4^{\circ}S - 73.2^{\circ}W)$, Calfuco $(39.7^{\circ}S - 73.3^{\circ}W)$ and
Chaihuín (39.9°S – 73.5°W; Fig. 1). In each site, we randomly deployed two patches of 10
m in alongshore length and separated by 5 m. In each patch, two transects were deployed
randomly and perpendicularly to the shoreline—transects were separated from each other
by ca. 2 m. In each transect, we placed four sampling stations located ca. 2 m apart from
each other from the effluent line (i.e. mid-low intertidal) to the swash line (low intertidal).
Plastic corers (0.03 m^{-2}) were buried to a depth of 20 cm (equating a volume of 0.006 m^{-3})
and the sand was sieved through a 1-mm mesh sieve. Molecrabs were collected from each
corer and transported to the laboratory; cephalothorax length (mm) of each individual was
recorded before extracting and counting the P. altmani cystacanths (i.e. larval stage) from
the haemocoele. The per capita number of parasites (i.e. burden) was estimated for each
molecrab. For each transect, beach, and region, we estimated the prevalence (percentage of
infected hosts), intensity (mean parasite burden per infected hosts) and mean abundance of
parasites (mean number of parasites per host population; Bush et al., 1997).

Statistical Analyses

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

(i.e. infection probability, per capita parasite burden, prevalence, intensity, and mean abundance) as variance components of generalized lineal mixed-effects models (GLMM; Pinheiro & Gates, 2000). The regional, meso- (nested in regional), and local (nested in meso) scales were included in the models as random factors. Variance components were calculated according to Pinheiro & Gates (2000) and expressed as standard deviation units. Model parameters were estimated though maximum likelihood. For each GLMM, we estimated two types of pseudo-R²: the marginal R², which represents the variance explained by the fixed factors, and the conditional R², which represents the variance explained by both, fixed and random factors (Nakagawa & Schielzeth, 2013; Johnson, 2014). The spatial variance of infection probability and parasite burden were analysed at the per capita level; that of prevalence, intensity, and mean abundance were analysed at the population (i.e. sample) level. In the per capita models, we included molecrab body size as fixed variable due to the strong accumulation of parasites over the ontogeny in this species (see also Rodríguez & Valdivia, 2017). Scale-dependent variance components of per capita infection probability and parasite burden were estimated from a binomial (logit link) and Poisson (log link) GLMM, respectively. In the population-level models, the denominators of the calculations of prevalence, intensity, and mean abundance—i.e. number of hosts, number of infected

Scale-dependent spatial variability in parasitosis was estimated separately for each indicator

170

171

Results

hosts, and number of hosts, respectively—were included as fixed factors. This was done to

account for non-linearity between these measures. Poisson GLMMs were used for all

population-level estimations of variance components.

A total of 849 individuals of *E. analoga* were captured in both regions. Molecrab' cephalothorax length varied from 4.8 to 29.5 mm. The size of first infection was 9 mm cephalothorax length. At the per capita level, the probability of infection varied from 0.1 (3 mm host) to 0.8 (25 mm host; Fig. 2A) and parasite burden—i.e. the per capita number of parasites—ranged between zero and 12 ind. per molecrab (Fig. 2B). Body size accounted for ca. 14 % of the variability in probability of infection, while the entire model accounted for ca. 25 %. Cephalothorax length explained ca. 17 % of the variability in parasite burden, and the entire ca. 33 %. The variance components suggested that, after controlling for the variation in body size, the meso-scale (i.e. differences between sites) accounted for the largest variation in both probability of infection and parasite burden, followed by the local-and regional-scales (Fig. 2C, and 2D). The regional scale had almost no contribution to the overall variation in infection probability and burden.

At the population level, prevalence was high in both regions, reaching values close to 60 % (Fig. 3A). Among sites (i.e. meso-scale), prevalence varied between 40 and 80 % (Fig. 3B). Prevalence was variable at the local-scale (within sites), with maximum values near 90 % in the Biobío region and > 50 % of prevalence in most patches (Fig. 3C). The number of hosts (fixed portion of the GLMM) accounted for ca. 54 % of the variability in prevalence, while the entire model accounted for ca. 76 %.

Mean intensity was similar between both regions (Fig. 3D), but it was highly variable at the meso-scale. For example Playa Blanca (Biobío) and Cheuque (Los Ríos) showed the highest values across the entire region (Fig. 3E). The number of infected hosts in the model accounted for ca. 48 % of the variability in intensity, and the entire model accounted for ca. 77 %. Similar patterns of variation showed the mean abundance of parasites (no of parasite per individual), which was variable at the meso- and local scales

(Fig. 3H, 3I). The fixed model (i.e. number of hosts) explained 28 % of the variability in mean abundance, while the entire model explained ca. 69 %.

Prevalence variance component for the local-scale was slightly larger that for the meso-scale, and almost no variability was detected for the regional scale (Fig. 4A). For intensity, on the other side, variance component of the meso-scale was one order of magnitude larger than that of local- and regional-scales (Fig. 4B). Finally, variance component of mean abundance followed a similar pattern, in which the spatial variance assessed at the meso-scale was ca. 3-fold that observed at the local-scale—the regional scale of observation account for ca. zero spatial variability in mean abundance (Fig. 4C).

Discussion

This study showed that the spatial heterogeneity of parasitism of molecrabs was in general strongest at the meso-scale. At the per capita level, however, the relationships between parasitosis and spatial scale were rather weak, as the scale of observation accounted for ca. 11 % of the variation in probability of infection and 16 % of that of parasite burden. In contrast, we observed that prevalence, intensity of infection, and mean abundance varied strongest at the local and meso-scale. In this host-parasite system, local and meso-scale factors can be determinant predictors of the probability of infection and burden of acanthocephalan parasites, which in turn drive the variation of prevalence, intensity, and mean abundance in the region. Below, we discuss how local filters that influence habitat's physical stability—such as mechanical disturbance and temporal dynamic of sandy shores—can mediate the regulation of this host-parasite system.

In our study, most parasitological descriptors were highly variable at the spatial meso-scale. Physical characteristics of sandy shores such as morphodynamics, in addition

220 to anthropogenic disturbances, could explain these trends (Jaramillo & González, 1991; 221 Jaramillo, Contreras & Quijon, 1996; Dugan & Hubbard, 2006; Meager, Schlacher & 222 Nielsen, 2012). First, in reflective beaches, the drift line is narrow and has less available 223 space for seabirds (Jaramillo, McLachlan & Coetzee, 1993), which release the infective 224 stage of parasites (Byers et al., 2016). In intermediate and dissipative beaches, however, a 225 broader drift line increases the habitat available for seabird (Jaramillo, McLachlan & 226 Coetzee, 1993; Meager, Schlacher & Nielsen, 2012); thereby the source of parasite 227 propagules is larger. In the present work, accordingly, Playa Blanca (Biobío) and Cheuque 228 (Los Ríos) are considered dissipative beaches (Jaramillo, McLachlan & Coetzee, 1993; 229 Jaramillo et al., 2012) and showed highest intensity and mean abundance of parasites. 230 Contrary, Dichato (Biobío) and Chaihuín (Los Ríos) are reflective beaches (Veas et al., 231 2013) and showed low infection level. Second, anthropogenically impacted beaches are 232 susceptible to decreases in the abundance of seabirds (Lafferty, 2001; Meager, Schlacher & 233 Nielsen, 2012; Navedo & Herrera, 2012), which can also reduce the exposure of molecrabs 234 to the parasitic infective stages. Previous work in this region and elsewhere has shown 235 significant, albeit context-dependent, relationships between seabird (i.e. exposure) and 236 parasite load in intermediate hosts (Latham & Poulin, 2003; Smith, 2007; Zambrano & 237 George-Nascimento, 2010; Byers, Holmes & Blakeslee, 2016; Rodríguez & Valdivia, 238 2017). Therefore, the probability and infection level of E. analoga likely varied as 239 functions of local environmental filters that influence parasite exposure. 240 In addition to changes in parasite exposure, natural disturbances such as sand 241 erosion and accretion can cause significant between-site variability in mortality of sandy-242 shore invertebrate hosts (Jaramillo et al., 2012; Veas et al., 2013; Sepúlveda & Valdivia, 243 2016). These seasonal events remove tons of sand from the lower elevation of intertidal

sandy shores, which leads to massive mortality events of molecrabs and other taxa (Sepúlveda & Valdivia, 2016). In the study regions, seasonal erosion-accretion cycles occur with strongest intensity in Dichato, Curiñanco, and Chaihuín (S. M. Rodríguez, pers. obs.), which can further explain the significant variation in parasitosis at the meso-scale. In fact, our study was carried out during autumn, when erosion can heavily impact mainly reflective beaches (e.g. Sepúlveda & Valdivia, 2016). In these regions, molecrab populations are able to reach between 20 and 30 % of pre-disturbance abundances in two years (Sepúlveda & Valdivia, 2016). This relatively slow recovery rate can disrupt the accumulation of parasites in the molecrabs and further transmission to seagulls (Defeo & McLachlan, 2013; Rodríguez & Valdivia, 2017). Thus, context-dependent disruptions of the host-parasite links, due to decreased molecrab abundance, would affect the transmission and aggregation in the intermediate hosts and lead to high between-site variability in parasitosis.

We observed that the second relevant source of variation was the local scale. Smith (2001) and Bousema et al. (2011) indicate that epidemiological processes usually start from local scales. Local biotic factors, such as patchy host mortality, parasite recruitment failure, and host mobility can generate within-site variability in parasitosis (Smith, 2001; Byers et al., 2008; Parietti, Merlo & Etchegoin, 2013). High parasite burden increases the mortality rate in large-sized hosts, producing highly skewed distributions of parasites across the host population (Latham & Poulin, 2002; Rodríguez & Valdivia, 2017). However, temporal variation in molecrab recruitment might decouple the relationship between local variability in parasite exposure and load due to the increase of non-infected hosts (Contreras, Defeo & Jaramillo, 1999; Zambrano & George-Nascimento, 2010). Although these factors can play a major role in generating local-scale parasite aggregation, the results of this study suggest

that their effects would be subordinated to those of factors that operate at broader (i.e. meso) spatial scales.

Conclusions

In summary, our results showed that infection variability can be larger when host populations separated by tens of km are compared along the shore. We suggest that parasite infection in this model system could be related with abiotic factors that determine habitat physical stability, such as seasonal morphodynamic of sandy shores. But, how generalizable are these results? Probably, other ecosystems that are subjected to constant environment and physical disturbances, like agricultural lands and wetlands, can show similar patterns of parasitic infection within host populations (Koprivnikar & Redfern, 2012; Basso et al., 2017). If anthropogenic impacts negatively affect parasite exposure in sandy shores, then the information on parasite geographical variability would be relevant also for informing conservation strategies (e.g. Lafferty, 1997). Environmental variability can decrease host density and increase parasite mortality, reducing the capacity of the parasite to regulate the host-parasite interaction (Lafferty, 1997; Koprivnikar & Redfern, 2012). Therefore, beyond life history traits of hosts, changes in the physical habitat can have strong effects on host-parasite dynamics.

Acknowledgements

We thank all undergraduate interns (Biología Marina; UACH) that provided invaluable help during the fieldwork. This paper belongs to FCA undergraduate thesis dissertation at Universidad Austral de Chile.

292	References
293	Anderson RM, May RM. 1978. Regulation and stability of host-parasite population
294	interactions I. Regulatory processes. Journal of Animal Ecology 47: 219-247 DOI
295	10.2307/3933.
296	
297	Basso E, Fonseca J, Drever MC, Navedo JG. 2017. Effects of intertidal habitat availability
298	on the use of anthropogenic habitats as foraging grounds by shorebirds: a case study on
299	semi-intensive shrimp farms. <i>Hydrobiologia</i> DOI 10.1007/s10750-017-3394-x.
300	
301	Bessa F, Goncalves SC, Franco JN, Andre JN, Cunha PP. Marques JC. 2014. Temporal
302	changes in macrofauna as response indicator to potential human pressures on sandy
303	beaches. Ecological Indicators 41: 49-57 DOI 10.1016/j.ecolind.2014.01.023.
304	
305	Blower SM, Roughgarden J. 1989. Parasites detect host spatial pattern and density: a field
306	experimental analysis. <i>Oecologia</i> 78 : 138-141 DOI 10.1007/BF00377209.
307	
308	Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F, Otieno S, Carneiro I,
309	Cox J, Msuya E, Kleinschmidt I, Maxwell C, Greenwood B, Riley E, Sauerwein R,
310	Chandramohan D, Gosling R. 2011. Identification of hot spots of malaria transmission for
311	targeted malaria control. Journal of Infectious Diseases 201: 1764-1774 DOI
312	10.1986/652456.
313	

314	Bush A, Lafferty KD, Lotz J, Shostak A. 1997. Parasitology meets ecology on its own
315	terms, Margolis et al. Revisited. Journal of Parasitology 120: 625-630 DOI
316	10.2307/3284227.
317	
318	Byers JE, Blakeslee AMH, Linder E, Cooper AB, Maguire TJ. 2008. Controls of spatial
319	variation in the prevalence of trematode parasites infecting a marine snail. <i>Ecology</i> 89 : 439
320	451 DOI 10.1890/06-1036.1.
321	
322	Byers JE, Holmes ZC, Blakeslee AMH. 2016. Consistency of trematode infection
323	prevalence in host population across large spatial and temporal scales. <i>Ecology</i> 97 : 1643-
324	1649 DOI 10.1002/ecy.1440.
325	
326	Camus P. 2001. Biogeografía marina de Chile continental. Revista Chilena de Historia
327	Natural 74 : 587-617 DOI 10.4067/S0716-078X2001000300008.
328	
329	Carrasco-Escobar G, Gamboa D, Castro MC, Bangdiwala SI, Rodríguez H, Contreras-
330	Mancilla J, Alava F, Speybroeck N, Lescano AG, Vinetz JM, Rosas-Aguirre A, Llanos-
331	Cuentas A. 2017. Micro-epidemiology and spatial heterogeneity of <i>P. vivax</i> parasitaemia in
332	riverine communities of the Peruvian Amazon: A multilevel analysis. Scientific Report 7:
333	8082 DOI 10.1038/s41598-017-07818-0.
334	
335	Contreras H, Defeo O, Jaramillo E. 1999. Life history of <i>Emerita análoga</i> (Stimpson)
336	(Anomura, Hippidae) in a Sandy beach of south central Chile. Estuarine, Coastal and Shelf
337	Science 48: 101-112 DOI 10.1006/ecss.1998.0396.

338	
339	Defeo O, McLachlan A, Schoeman DS, Schlacher TA, Dugan JE, Jones A, Lastra M,
340	Scapini F. 2009. Threats to sandy beach ecosystems: A review. Estuarine, Coastal and
341	Shelf Science 81: 1-12 DOI 10.1016/j.ecss.2008.09.022.
342	
343	Defeo O, McLachlan A. 2013. Global patterns in sandy beach macrofauna: species
344	richness, abundance, biomass and body size. Geomorphology 199: 106-114 DOI
345	10.1016/j.geomorph.2013.04.013.
346	
347	Dugan JE, Hubbard DM. 2006. Ecological responses to coastal armoring on exposed sandy
348	beaches. Shore & Beach 74: 10-16.
349	
350	Fredensborg BL, Mouritsen KN, Poulin R. 2006. Relating bird host distribution and spatial
351	heterogeneity in trematode infections in an intertidal snail-from small to large scale. Marine
352	Biology 149: 275-283 DOI 10.1007/s00227-005-0184-1.
353	
354	Goulding TC, Cohen CS. 2014. Phylogeography of marine acanthocephalan: lack of cryptic
355	diversity in a cosmopolitan parasite of mole crabs. Journal of Biogeography 41: 965-976
356	DOI 10.1111/jbi.12260.
357	
358	Gutiérrez JS, Rakhimberdiev E, Piersma T, Thieltges DW. 2017. Migration and parasitism:
359	hábitat use, not migration distance, influences helminth species richness in Charadriiform
360	birds. <i>Journal of Biogeography</i> 44 : 1137-1147 DOI 10.1111/jbi.12956.
361	

302	Jaramino E, Gonzalez M. 1991. Community structure and zonation of the marroinfauna
363	along a dissipative-reflective range of beach category in southern Chile. Studies on
364	Neotropical Fauna and Environment 26 : 193-212.
365	
366	Jaramillo E, McLachlan A, Coetzee P. 1993. Intertidal zonation patterns of macroinfauna
367	over range of exposed sandy beaches in south-central Chile. Marine Ecology Progress
368	Series 101. 105-118 DOI 10.3354/meps101105.
369	
370	Jaramillo E, Contreras H, Quijon P. 1996. Macroinfauna and human disturbance in a Sandy
371	beach of south-central Chile. Revista Chilena de Historia Natural 69: 655-663.
372	
373	Jaramillo E, Dugan JE, Hubbard DH, Melnick D, Manzano M, Duarte C, Campos C,
374	Sánchez R. 2012. Ecological implications of extreme events: footprints of the 2010
375	earthquake along to Chilean coast. PLoS ONE 7: e35348 DOI
376	10.1371/journal.pone.0035348.
377	
378	Johnson PCD. 2014. Extension Nakagawa & Schielzeth's R_GLMM² to random slopes
379	models. <i>Methods in Ecology and Evolution</i> 5 : 44-946 DOI 10.1111/2041-210X.12225.
380	
381	Johnson PTJ, Hoverman JT. 2014. Heterogeneous hosts: how variation in host size,
382	behaviour and immunity affects parasite aggregation. Journal of Animal Ecology 83: 1103-
383	1112 DOI 10.1111/1365-2656.12215.
384	
385	Koprivnikar J, Redfern JC. 2012. Agricultural effects on amphibian parasitism: importance

386	of general habitat perturbations and parasite life cycles. <i>Journal of Wildlife Diseases</i> 48:
387	925-936 DOI 10.7589/2011-09-258.
388	
389	Lafferty KD. 1997. Environmental parasitology: What can parasites tell us about impacts
390	on the environment? Parasitology Today 13: 251-255.
391	
392	Lafferty KD. 2001. Birds at a southern California beach: seasonality, habitat use and
393	disturbance by human activity. Biodiversity and Conservation 10. 1949-1962 DOI
394	10.1023/A:1013195504810.
395	
396	Lafferty KD, Gerber LR. 2002. Good medicine for conservation biology: the intersection of
397	epidemiology and conservation theory. Conservation Biology 16: 593-604 DOI
398	10.1046/j.1523-1739.2002.00446.x.
399	
400	Latham ADM, Pouli, R. 2002. Field evidence of the impact of two acanthocephalan
401	parasites on the mortality of three species of New Zealand shore crabs (Brachyura). Marine
402	Biology 141: 1131-1139 DOI 10.1007/s00227-002-0913-7.
403	
404	Latham ADM, Poulin R. 2003. Spatiotemporal heterogeneity in recruitment of larval
405	parasites to shore crab intermediate hosts: the influence of shorebird definitive hosts.
406	Canadian Journal of Zoology 81 : 1282-1291 DOI 10.1139/z03-118.
407	
408	Legendre P, Legendre L. 1998. Numerical ecology. Amsterdan: Elsevier Science BV.
409	

410 Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, 411 Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A. 2004. The metacommunity concept: 412 a framework for multi-scale community ecology. *Ecology Letter* 7: 601-613 DOI 10.1111/j.1461-0248.2004.00608.x. 413 414 415 Meager JJ, Schlacher TA, Nielsen T. 2012. Humans alter habitat selection of birds on 416 ocean-exposed sandy beaches. Diversity and Distributions 18: 294-306 DOI 417 10.1111/j.1472-4642.2011.00873.x. 418 419 Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R² from 420 Generalized Linear Mixed-effects Models. *Methods in Ecology and Evolution* **4**: 133–142 421 DOI 10.1111/j.2041-210x.2012.00261.x. 422 423 Navedo JG, Herrera AG. 2012. Effects of recreational disturbance on tidal wetlands: 424 supporting the importance of undisturbed roosting sites for waterbird conservation. Journal 425 of Coastal Conservation 16: 373-381 DOI 10.1007/s11852-012-0208-1. 426 427 Parietti M, Merlo MJ, Etchegoin JA. 2013. Can the studies at a spatial scale of 100s meters 428 detect the spatiotemporal fluctuations of a parasite assemblage? Acta Parasitologica 58: 429 577-584 DOI 10.2478/s11686-013-0184-0. 430 431 Piersma T, Lok T, Chen Y, Hassell CJ, Yang HY, Boyle A, Slaymaker M, Chan YC, 432 Melville DS, Zhang ZW, Ma Z. 2016. Simultaneous declines in summer survival of three

433	shorebird species signals a flyway at risk. Journal of Applied Ecology 53: 4/9-490 DOI
434	10.1111/1365-2664.12582.
435	
436	Pinheiro JC, Bates DM. 2000. Mixed-Effects Models in S and S-PLUS. New York:
437	Springer-Verlag Inc.
438	
439	Powell EN, Kim Y, Bushek D. 2015. Temporal structure and trends of parasites and
440	pathologies in us oysters and mussels: 16 years of mussel watch. Journal of Shellfish
441	Research 34 : 967-993 DOI 10.2983/035.034.0325.
442	
443	Rodríguez SM, D'Elía G, Valdivia N. 2017. The phylogeny and life cycle of two species of
444	Profilicollis (Acanthocephala: Polymorphidae) in marine hosts off the Pacific coast of
445	Chile. Journal of Helminthology 91: 589-596 DOI 10.1017/S0022149X16000638.
446	
447	Rodríguez SM, Valdivia N. 2017. Mesoscale spatiotemporal variability in a complex host-
448	parasite system influenced by intermediate host body size. <i>PeerJ</i> DOI: 10.7717/peerj.3675.
449	
450	Schlacher TA, Schoeman DS, Jones AR, Dugan JE, Hubbard DM, Defeo O, Peterson CH,
451	Weston MA, Maslo B, Olds AD, Scapini F, Nel R, Harris LR, Lucrezi S, Lastra M,
452	Huijbers CM, Connolly RM. 2014. Metrics to assess ecological condition, change, and
453	impacts in sandy beach ecosystems. Journal of Environmental Management 144: 322-335
454	DOI 10.1016/j.jenvman.2014.05.036.
455	

456	Sepúlveda R, Valdivia N. 2016. Localised effects of a mega-disturbance: spatiotemporal
457	responses of intertidal sandy shore communities to the 2010 Chilean earthquake. PLoS
458	ONE 11: e0157910 DOI 10.1371/journal.pone.0157910.
459	
460	Smith NF. 2001. Spatial heterogeneity in recruitment of larval trematodes to snail
461	intermediate hosts. <i>Oecologia</i> 127 : 115-122 DOI 10.1007/s004420000560.
462	
463	Smith NF. 2007. Associations between shorebird abundance and parasites in the sand crab
464	Emerita analoga, along the California coast. Journal of Parasitology 93: 265-273 DOI
465	10.1645/GE-1002R.1.
466	
467	Studer A, Widmann M, Poulin R, Krkosek M. 2013. Large scale pattern of trematode
468	parasitism in a bivalve: no evidence for a latitudinal gradient in infection levels. Marine
469	Ecology Progress Series 491 : 125-135 DOI 10.3354/meps10483.
470	
471	Thieltges DW, Reise K. 2007. Spatial heterogeneity in parasite infections at different
472	spatial scales in an intertidal bivalve. <i>Oecologia</i> 150 : 569-581 DOI 10.1007/s00442-006-
473	0557-2.
474	
475	Thieltges DW, Ferguson MAD, Jones CS, Noble LR, Poulin R. 2009. Biogeographical
476	patterns of marine larval trematode parasites in two intermediate snail hosts in Europe.
477	Journal of Biogeography 36 : 1493-1501 DOI 10.1111/j.1365-2699.2008.02066.x.
478	

479	Thieltges DW, Marcogliese DJ, Blanar CA, Poulin R. 2013. Trematode prevalence-
480	occupancy relationship on regional and continental spatial scales in marine gastropod hosts
481	Marine Ecology Progress Series 490: 147-154 DOI 10.3354/meps10381.
482	
483	van Gils JA, Lisovski S, Lok T, Meissner W, Ozarowska A, de Fouw J, Rakhimberdiev E,
484	Soloview MY, Piersma T, Klaasen M. 2016. Body shrinkage due to Arctic warming
485	reduces red knot fitness in tropical wintering range. Science 352: 819-821 DOI
486	10.1126/science.aad6351.
487	
488	Veas R, Hernández-Miranda E, Quiñones RA, Diaz-Cabrera E, Rojas JM, Farina JM. 2013
489	The influence of environmental factors on the abundance and recruitment of the sand crab
490	Emerita analoga (Stimpson 1857): Source-sink dynamics?. Marine Environmental
491	Research 89: 9-20 DOI 10.1016/j.marenvres.2013.04.004.
492	
493	Wiens J. 1989. Spatial scaling in ecology. Functional Ecology 3: 385-397 DOI
494	10.2307/2389612.
495	
496	Zambrano D, George-Nascimento M. 2010. Parasitism by <i>Profilicollis bullocki</i>
497	(Acanthocephala: Polymorphidae) in <i>Emerita analoga</i> (Anomura, Hippidae), according to
498	contrasting conditions of abundance of definitive hosts in Chile. Revista de Biología
499	Marina y Oceanografía 45: 277-283.

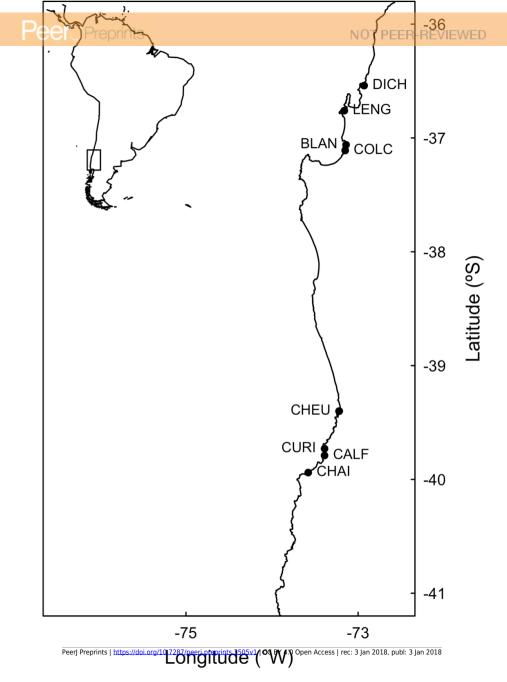
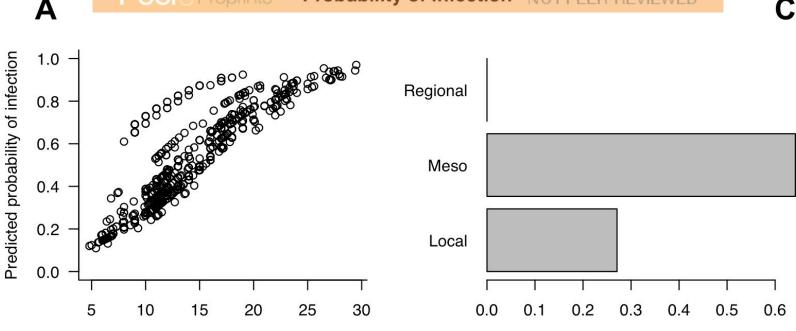

500	Figure legend
501	Figure 1. Map depicting the sampling sites across both study regions. Site codes are DICH
502	= Dichato, LENG = Lenga, BLAN = Playa Blanca and COLC = Colcura in the northern
503	region (Biobío), and CHEU = Cheuque, CURI = Curiñanco, CALF = Calfuco, and CHAI =
504	Chaihuín in the southern region (Los Ríos).
505	
506	Figure 2. Individual-scale parasitosis of <i>Profilicollis altmani</i> infecting the intermediate
507	host Emerita analoga in southern-central Chile. Probability of infection (A) and parasite
508	burden (i.e. per capita number of parasites; B) were estimated from Generalized Linear
509	Mixed-Effect models as functions of size of molecrabs. The variance components of the
510	probability of infection (C) and parasite burden (D) was estimated for each of three spatial
511	scales of observation: regional, meso-, and local scale.
512	
513	Figure 3. Population-level parasitosis of <i>Profilicollis altmani</i> infecting molecrabs in
514	southern-central Chile. Parasitosis was expressed as prevalence (A, B, C), intensity (D, E,
515	F), and mean abundance (G, H, I) of parasites. These indicators were estimated at the
516	regional (A, D, G), meso- (B, E, H), and local scales (C, F, I) of observation. Values are
517	given as mean and standard error of the mean.
518	
519	Figure 4. Variance components of prevalence (A), intensity (B) and mean abundance (C)
520	of parasites Profilicollis altmani, estimated at regional, meso-, and local scale in the
521	southern-central coast of Chile.
522	

Figure 1(on next page)

Study sites

Map depicting the sampling sites across both study regions. Site codes are DICH = Dichato, LENG = Lenga, BLAN = Playa Blanca and COLC = Colcura in the northern region (Biobío), and CHEU = Cheuque, CURI = Curiñanco, CALF = Calfuco, and CHAI = Chaihuín in the southern region (Los Ríos).



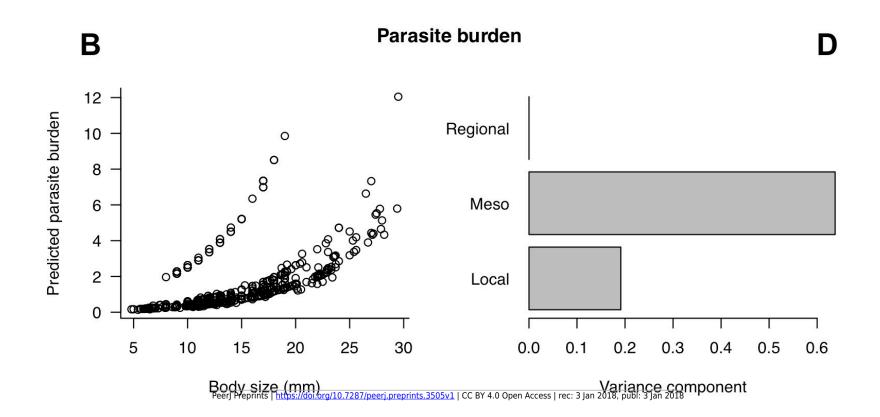


Figure 2(on next page)

Probability of infection and Parasite Burden in function of body size of mole crabs

Individual-scale parasitosis of *Profilicollis altmani* infecting the intermediate host *Emerita analoga* in southern-central Chile. Probability of infection (A) and parasite burden (i.e. per capita number of parasites; B) were estimated from Generalized Linear Mixed-Effect models as functions of size of molecrabs. The variance components of the probability of infection (C) and parasite burden (D) was estimated for each of three spatial scales of observation: regional, meso-, and local scale.

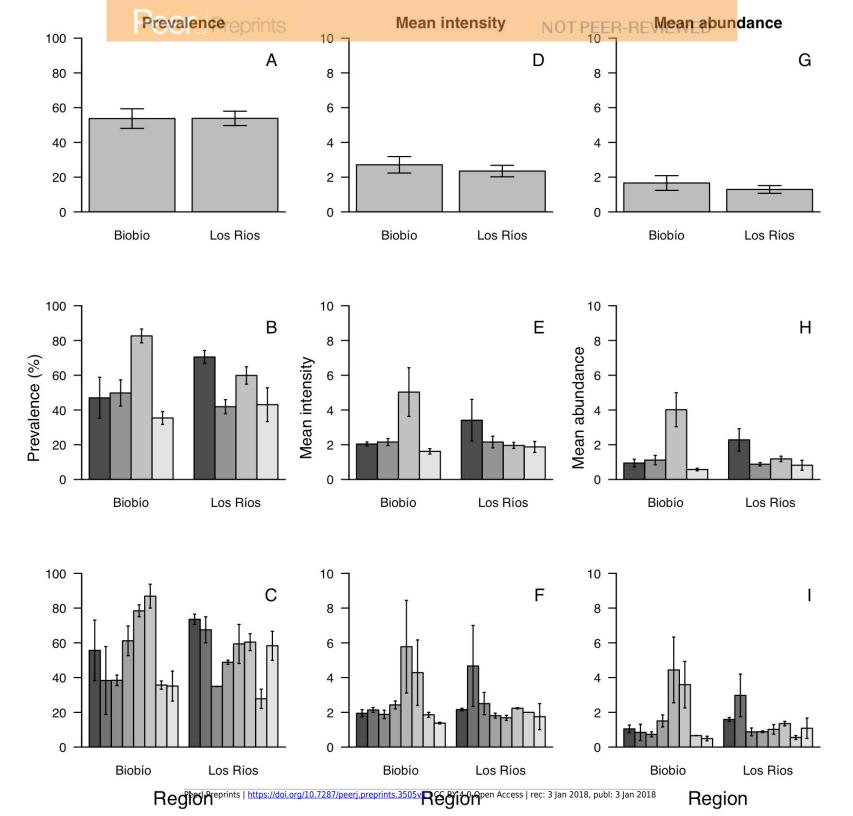


Figure 3(on next page)

Prevalence, mean intensity and mean abundance of parasites across different spatial scales

Population-level parasitosis of *Profilicollis altmani* infecting molecrabs in southern-central Chile. Parasitosis was expressed as prevalence (A, B, C), intensity (D, E, F), and mean abundance (G, H, I) of parasites. These indicators were estimated at the regional (A, D, G), meso- (B, E, H), and local scales (C, F, I) of observation. Values are given as mean and standard error of the mean.

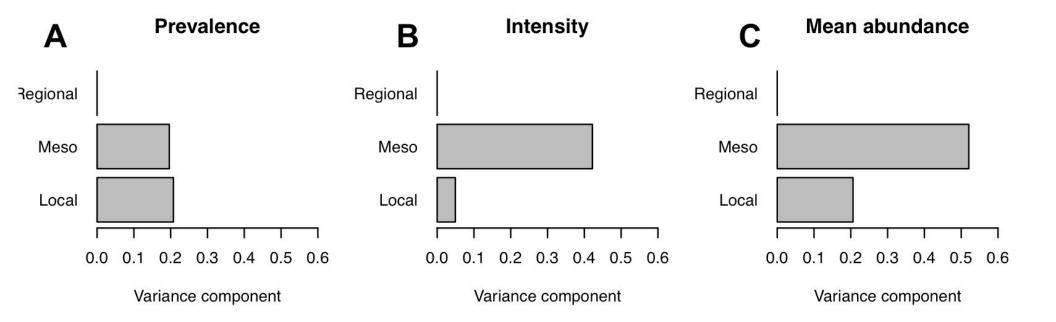


Figure 4(on next page)

Variance components of prevalence, mean intensity and mean abundance of parasites estimated to different spatial scales

Variance components of prevalence (A), intensity (B) and mean abundance (C) of parasites *Profilicollis altmani*, estimated at regional, meso-, and local scale in the southern-central coast of Chile.

