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Previous theoretical work on consciousness and other punctuated global broadcasts associated with attention
states has focused on the evolutionary exaptation of the inevitable signal crosstalk between related sets
of unconscious cognitive modules (UCM). This has invoked a groupoid treatment of the equivalence class
structure arising from information sources ‘dual’, in a formal sense, to the UCM, via a standard spontaneous
symmetry breaking/lifting methodology abducted from statistical physics, and through an index theorem
approach based on an Onsager-like stochastic differential equations model. Surprisingly, similar arguments
can be applied to the formally ‘fuzzy’ generalizations that are likely to better fit actual biological complexities.

I. INTRODUCTION

A vast spectrum of cognitive physiological and other
systems engage in dynamic recruitment of lower-level ‘un-
conscious’ cognitive modules to form attention-directed,
temporary working coalitions that address patterns of
threat and opportunity confronting organisms, and do
so across a variety of modalities, levels of organization,
scales, and time domains, in a highly punctuated manner
[1, 2].

This dynamic represents the evolutionary exaptation
[3] of the crosstalk inevitable to information transmission.
Crosstalk – correlation between interacting channels –
is known from electrical engineering practice to require
extraordinary efforts for mitigation, and is present across
a great variety of biological processes (e.g., [4]).

As McNeill and Woodgett [5] put it, in the context
of development, signal transduction pathways interact at
various levels to define tissue morphology, size and differ-
entiation during development. Understanding the mech-
anisms by which these pathways collude has been greatly
enhanced by recent insights into how shared components
are independently regulated and how the activity of one
system is contextualized by others. Traditionally, it was
assumed that components of signaling pathways show
pathway fidelity with high autonomy. However, there
is increasing evidence that components are often shared
between multiple biological pathways, and other compo-
nents talk to each other through multiple mechanisms.

Crosstalk and emergence, however, are not confined to
development. Attisano and Wrana [6] argue that com-
plete sequences of animal genomes reveal a remarkably
small and conserved toolbox of signaling pathways ac-
counting for all biological diversity. This raises the ques-
tion as to how such a limited set of cues elaborates so
many diverse cell fates and behaviors. It is now clear,
in their opinion, that components of signaling pathways
are physically assembled into higher order networks that
ultimately dictate the biological output of pathway ac-

tivity.
Previous formal studies of such cognitive global broad-

casts have been based on necessary conditions models
arising from the asymptotic limit theorems of information
theory, following the footsteps of Dretske [7, 8]. These
have assumed well-defined, tiling-like, quasi-symmetries
inherent to cognitive dynamics, and invoked spontaneous
symmetry-breaking arguments akin to those now stan-
dard in physical theory to derive the highly punctuated
accession to ‘consciousness’ and overt attention charac-
terizing such phenomena [1, 2, 9, 10]. Here, we extend
these arguments to inherently ‘fuzzy’ systems, where un-
derlying form is smeared out, in a certain sense, and may
hence be in better consonance with biological realities.

Fuzzy sets, algorithms, and control systems, were first
studied by Zadeh [11, 12], and have received increas-
ing attention (e.g., [13]). Biological global broadcasts
that range from the immune system, wound healing, the
HPA axis, emotional response, consciousness, and socio-
cultural distributed cognition [1], are basically control
processes, and the application of Zadeh’s perspective ap-
pears straightforward. In essence, the ‘fuzzification’ of
algebraic structures and relations is based on an exten-
sion of the idea of the characteristic function, mapping
an arbitrary set G onto the set of integers {0, 1}, so that
f : G → 0, 1. Then, if x ∈ G, f(x) = 1. Otherwise,
f(x) = 0. The fundamental idea involves letting f map
onto the real interval [0, 1] rather than onto a set of in-
tegers. Rosenfeld [14] first applied the method to defin-
ing fuzzy groups and groupoids, and the construction of
group/groupoid representations is relatively direct, al-
though modified by some complexities [15, 16].

II. COGNITION

Here we review, briefly, the development of [1, 2, 9,
10]. Atlan and Cohen [17] argue that cognitive function
involves comparison of a perceived signal with an inter-
nal, learned or inherited picture of the world, and then
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choice of one response from a much larger repertoire of
possible responses. Thus, instantiating the mechanism
of Attisano and Wrana [6], cognitive pattern recognition-
and-response proceeds by an algorithmic combination of
an incoming external sensory signal with an internal on-
going activity – incorporating the internalized picture of
the world – and triggering an appropriate action based
on a decision that the pattern of sensory activity requires
a response.

Incoming sensory input is, in this model, mixed in an
unspecified but systematic manner with a pattern of in-
ternal ongoing activity to create a path of combined sig-
nals x = (a0, a1, ..., an, ...). Each ak thus represents some
functional composition of the internal and the external.
An application of this perspective to a standard neural
network is given in [9, p.34].

This path is fed into a highly nonlinear, but otherwise
similarly unspecified, decision function, h, generating an
output h(x) that is an element of one of two disjoint
sets B0 and B1 of possible system responses. Let B0 ≡
{b0, ..., bk}, and B1 ≡ {bk+1, ..., bm}.

Assume a graded response, supposing that if h(x) ∈
B0, the pattern is not recognized, and if h(x) ∈ B1, the
pattern is recognized, and some action bj , k+ 1 ≤ j ≤ m
takes place.

Interest focuses on paths x triggering pattern
recognition-and-response: given a fixed initial state
a0, examine all possible subsequent paths x beginning
with a0 and leading to the event h(x) ∈ B1. Thus
h(a0, ..., aj) ∈ B0 for all 0 ≤ j < m, but h(a0, ..., am) ∈
B1.

For each positive integer n, let N(n) be the number
of high probability paths of length n that begin with
some particular a0 and lead to the condition h(x) ∈ B1.
Call such paths ‘meaningful’, assuming that N(n) will be
considerably less than the number of all possible paths
of length n leading from a0 to the condition h(x) ∈ B1.

Note that identification of the ‘alphabet’ of the states
aj , Bk may depend on the proper system ‘coarse graining’
in the sense of symbolic dynamics [18].

Combining algorithm, the form of the function h, and
the details of grammar and syntax, are all unspecified
in this model. The assumption permitting inference on
necessary conditions constrained by the asymptotic limit
theorems of information theory is that the finite limit

H ≡ lim
n→∞

log[N(n)]

n
(1)

both exists and is independent of the path x. Recall that
N(n) is the number of high probability paths of length
n.

Call such a pattern recognition-and-response cognitive
process ergodic. Not all cognitive processes are likely to
be ergodic, implying that H, if it indeed exists at all,
is path dependent, although extension to nearly ergodic
processes, in a certain sense, seems possible [9, pp. 31-
32].

Invoking the spirit of the Shannon-McMillan Theo-
rem, it is possible to define an adiabatically, piecewise
stationary, ergodic information source X associated with
stochastic variates Xj having joint and conditional prob-
abilities P (a0, ..., an) and P (an|a0, ..., an−1) such that
appropriate joint and conditional Shannon uncertainties
satisfy the classic relations [19]

H[X] = lim
n→∞

log[N(n)]

n
=

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)

n
. (2)

This information source is defined as dual to the un-
derlying ergodic cognitive process.

‘Adiabatic’ means that, when the information source
is parameterized according to some appropriate scheme,
within continuous ‘pieces’, changes in parameter values
take place slowly enough so that the information source
remains as close to stationary and ergodic as needed to
make the fundamental limit theorems work. ‘Stationary’
means that probabilities do not change in time, and ‘er-
godic’ (roughly) that cross-sectional means converge to
long-time averages. Between ‘pieces’ it is possible to in-
voke various kinds of phase change formalism [9].

Recall that the Shannon uncertainties H(...) are
cross-sectional law-of-large-numbers sums of the form
−
∑
k Pk log[Pk], where the Pk constitute a probability

distribution. See [19-21] for the standard details.
An equivalence class algebra can be constructed by

choosing different origin points, a0, and defining the
equivalence of two states, am, an, by the existence of a
high probability meaningful path connecting them to the
same origin point. Disjoint partition by equivalence class,
analogous to orbit equivalence classes for dynamical sys-
tems, defines the vertices of a network of cognitive dual
languages. Each vertex then represents a different infor-
mation source dual to a cognitive process. This is not a
representation of a neural network as such, or of some cir-
cuit in silicon. It is, rather, an abstract set of ‘languages’
dual to the set of cognitive biological processes.

Such a set of equivalence classes generates a groupoid,
whose algebraic properties – an important extension of
the idea of both a symmetry group and an equivalence
class – are summarized in [1]. An essential point is that
products need not be defined globally [22-24].

We now allow generalization of these ideas to fuzzy
groupoids, in Rosenfeld’s sense [14].

III. TUNING

Given a set of cognitive biological modules that become
linked to solve a problem, the no free lunch’ theorem of
Wolpert and Macready [25, 26] provides a context. They
established that there exists no generally superior compu-
tational function optimizer. There is no ‘free lunch’ in the
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sense that an optimizer ‘pays’ for superior performance
on some functions with inferior performance on others.
Thus gains and losses balance precisely, and all optimiz-
ers have identical average performance: superiority on
one subset of functions necessarily implies inferiority on
some complementary subset.

From the no free lunch argument, it is clear that dif-
ferent challenges facing an organism must be met by dif-
ferent arrangements of cooperating ‘low level’ cognitive
modules, and that changes in those arrangements must
be fairly rapid. It is possible to make a very abstract
picture of this phenomenon, not based on anatomy, but
rather on the network of linkages between the informa-
tion sources dual to the physiological and learned uncon-
scious cognitive modules (UCM). That is, the remapped
network of lower level cognitive modules is reexpressed in
terms of the information sources dual to the UCM. Given
two distinct problems classes, there must be two different
‘wirings’ of the information sources dual to the available
physiological UCM, with the network graph edges mea-
sured by the rate of information crosstalk between sets of
nodes representing the dual information sources. A more
complete treatment of coupling can be given in terms of
network information theory [19], incorporating the effects
of embedding contexts – signals from the environment.

The possible expansion of a closely linked set of infor-
mation sources dual to the UCM into a global broadcast
depends on the underlying network topology of the dual
information sources and on the strength of the couplings
between the individual components of that network.

For random networks the results are well known [27-
29]. Assume there are n network nodes connected to
each other with uniform probability p. For the simple
random case, parameterize as p = c/n. The essential
finding is that the behavior of the random network has
three sections:

1. If c < 1, all the linked subnetworks are very small,
and no global broadcast can take place.

2. If c = 1, there is a single large interlinked component
of a size ≈ n2/3.

3. If c > 1, then there is a single large component
of size yn – a global broadcast – where y is the positive
solution to the equation exp(−cy) = 1− y, which can be
calculated explicitly in terms of the Lambert W function.

For a highly nonrandom network, a star-of-stars-of-
stars in which every node is directly or indirectly con-
nected with every other one, there is no threshold, only
a single giant component, showing that the emergence of
a giant component in a network of information sources
dual to the UCM is dependent on a network topology
that may itself be tunable. A generalization of this re-
sult is possible.

The random network argument above is predicated,
however, on there being a variable average number of
fixed-strength linkages between components. Clearly, the
mutual information measure of cross-talk is not inher-
ently fixed, but can continuously change magnitude. This
suggests a parameterized renormalization. In essence,

the modular network structure linked by mutual informa-
tion interactions has a topology depending on the degree
of interaction of interest.

Define an interaction parameter Ω, a real positive num-
ber, and look at geometric structures defined in terms of
linkages set to zero if mutual information is less than,
and ‘renormalized’ to unity if greater than, Ω. A value
of Ω will define a regime of giant components of network
elements linked by mutual information greater than or
equal to it.

Now invert the argument: A given topology for the gi-
ant component will, in turn, define some critical value,
ΩC , so that network elements interacting by mutual in-
formation less than that value will be unable to partic-
ipate, will be locked out and not be ‘consciously’ per-
ceived. Thus, Ω is a tunable, syntactically-dependent,
detection limit that depends critically on the instanta-
neous topology of the giant component of linked cognitive
modules defining the global broadcast. That topology is
the tunable syntactic filter across the underlying modular
structure, and variation in Ω is only one aspect of a much
more general topological shift. Further analysis can be
given in terms of a topological rate distortion manifold
[30, 31].

IV. GLOBAL BROADCAST AS PHASE TRANSITION

It is possible to apply a statistical mechanics analog,
using Landau’s spontaneous symmetry breaking/lifting
approach via a Morse Theory argument [1, 32]. See [32,
33] for a summary of standard material on Morse The-
ory. In general, very many Morse functions can be con-
structed under a given circumstance, and what is perhaps
the simplest can be assembled using representations of
the appropriate fuzzy groupoids. Again, representations
of groupoids and fuzzy groupoids are similar to those of
groups, although there are necessary modifications [15,
16].

Taking an appropriate fuzzy groupoid representation
in a particular matrix, function, or other algebra, now,
following the example of [34], construct a ‘pseudo prob-
ability’ P for fuzzy groupoid element ν as

P[ν] =
exp[−|χν |/κΩ]∑
r exp[−|χr|/κΩ]

. (3)

χφ is the character of the fuzzy groupoid element φ in
that representation, i.e., the trace of the matrix or func-
tion assigned to φ, and |...| is the norm of the character, a
nonnegative real number. For systems that include com-
pact groupoids, the sum may be a generalized integral.

The central idea is that F in the construct

exp[−F/κΩ] =
∑
ν

exp[−|χν |/κΩ] (4)

is a Morse Function in the crosstalk free energy rate
temperature-analog Ω to which Landau’s spontaneous
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symmetry breaking arguments apply [1, 32, 35]. This
leads to the expectation of empirically observable, highly
punctuated, structure and reaction dynamics in the in-
dex Ω that are the analog to phase transitions in ‘sim-
ple’ physical systems. Recall Landau’s central insight:
for many physical phenomena, raising the temperature
makes accessible higher energy – and more symmetric –
states of the system Hamiltonian, the quantum mechani-
cal energy operator, and the inherent symmetry changes
are necessarily be punctuated. Here the focus is directly
on a Morse Function constructed from a representation
of underlying fuzzy groupoids.

Consider, now, an inverse order parameter defined in
terms of some system attention index, a nonnegative real
number R. Thus R would be a measure of the attention
given by the fuzzy cognitive system to the signal defin-
ing the tuning parameter temperature-analog Ω. Ac-
cording to the Landau argument, R disappears when
Ω ≤ ΩC , for some critical value. That is, when Ω < ΩC ,
there is spontaneous symmetry breaking: only above
that value can a global broadcast take place entraining
numerous ‘unconscious’ cognitive submodules, allowing
R > 0. Below ΩC , the system breaks up into a number
of separate modules, and attention is fragmented, so that
R = 0. A classic Landau order parameter might simply
be Q = 2/(1 + exp[aR]), or Q = 1/[1 + (aR)n], where
a, n� 1.

V. A FUZZY INDEX THEOREM MODEL

Topology, as discussed above, has long been known to
profoundly affect phase transition, but another route to
this result is possible, using the rich structure of stochas-
tic differential equations.

Define a ‘symmetry entropy’ based on the Morse Func-
tion F of equation (4) over a set of structural parameters
Q = [Q1, ..., Qn] (that may include Ω) as the Legendre
transform

S = F (Q)−
∑
i

Qi∂F (Q)/∂Qi . (5)

The dynamics of such a system will be driven, at least
in first approximation, by Onsager-like nonequilibrium
thermodynamics relations having the standard form [36]:

dQi/dt =
∑
j

Ki,j∂S/∂Qj , (6)

where the Ki,j are appropriate empirical parameters and
t is the time. A biological system involving the trans-
mission of information may, or may not, have local time
reversibility: in English, for example, the string ‘ eht ’
has a much lower probability than ‘ the ’. Without mi-
croreversibility, Ki,j 6= Kj,i.

Since, however, biological systems are quintessentially
fuzzy, an even more fitting approach might be through a

set of stochastic differential equations having the form

dQit = Ki(t,Q)dt+
∑
j

σi,j(t,Q)dBj , (7)

where the Ki and σi,j are appropriate functions, and dif-
ferent kinds of ‘noise’ dBj will have particular kinds of
quadratic variation affecting dynamics [37], as will be ex-
plored below. Thus we have added even more stochastic
fuzz to the fuzzy symmetries of the previous section.

Setting the expectation of this system to zero and solv-
ing for stationary points gives attractor states, since noise
precludes unstable equilibria, although the solution may,
in fact, be a highly dynamic strange attractor set. Some
of these states may not, however, be stable in higher or-
der moments [38].

But setting the expectation of equation (7) to zero also
generates an index theorem [39] in the sense of Atiyah
and Singer [40], i.e., an expression that relates analytic
results – the solutions of the equations – to an underlying
set of topological structures. These are the eigenmodes of
a complicated geometric operator whose group/groupoid
spectrum – fuzzy or not – represents the symmetries of
the possible changes that must take place for informa-
tion to be transmitted at a large scale, i.e., for a global
workspace to be activated.

VI. DISCUSSION AND CONCLUSIONS

Cognition, it has long been asserted, pervades, and
indeed may define, the living state [41-43]. Many cogni-
tive phenomena can be associated with dual information
sources constrained by the asymptotic limit theorems of
information theory [7, 8]. These sources, in turn, build
equivalence classes incorporating a groupoid structure
whose dynamics can be modeled using spontaneous sym-
metry breaking arguments, via the crosstalk inevitable
between closely associated information channels. Evolu-
tionary exaptation of this phenomenon appears ubiqui-
tous across biology. But biology is not physics, and bio-
logical structure and process are inherently messy. Sim-
ple spontaneous symmetry breaking arguments can, how-
ever, be significantly expanded using Zadeh’s fuzzyness
methodology, in which a generalization of the character-
istic function imposes itself on algebraic structures and
resulting dynamics, via groupoids and their representa-
tions.

The resulting ‘fuzzy’ symmetry breaking/lifting phase
transition models, while sufficiently messy to perhaps
better approximate biological phenomena, nonetheless
show the same highly punctuated accession to global
broadcast and its associated attention measure as does
the simpler treatment. An even fuzzier index theorem ap-
proach based on stationary states of a system of stochas-
tic differential equations leads to much the same conclu-
sion.
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