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Background. Severe equine asthma is a chronic inflammatory disease of the lung in

horses similar to low-Th2 late-onset asthma in humans. This study aimed to determine the

utility of RNA-Seq to call gene sequence variants, and to identify sequence variants or

potential relevance to the pathogenesis of asthma. Methods. RNA-Seq data were

generated from endobronchial biopsies collected from 6 asthmatic and 7 non-asthmatic

horses before and after challenge (26 samples total). Sequences were aligned to the

equine genome with Spliced Transcripts Alignment to Reference software. Read

preparation for sequence variant calling was performed with Picard tools and Genome

Analysis Toolkit (GATK). Sequence variants were called and filtered using GATK and

Ensembl Variant Effect Predictor (VEP) tools, and two RNA-Seq predicted sequence

variants were investigated with both PCR and Sanger sequencing. Supplementary analysis

of novel sequence variant selection with VEP was based on a score of <0.01 predicted with

Sorting Intolerant From Tolerant (SIFT) software, missense nature, location within the

protein coding sequence and presence in all asthmatic individuals. For select variants,

effect on protein function was assessed with Polymorphism Phenotyping (PolyPhen) 2 and

Screening for Non-Acceptable Polymorphism (SNAP) 2 software. Sequences were aligned

and 3D protein structures predicted with Geneious software. Difference in allele frequency

between the groups was assessed using a Pearson's Chi-squared test with Yates'

continuity correction, and difference in genotype frequency was calculated using the

Fisher's exact test for count data. Results. RNA-Seq variant calling and filtering correctly

identified substitution variants in PACRG and RTTN. Sanger sequencing confirmed that the

PACRG substitution was appropriately identified in all 26 samples while the RTTN

substitution was identified correctly in 24 of 26 samples. These variants of uncertain

significance had substitutions that were predicted to result in loss of function and to be

non-neutral. Amino acid substitutions projected no change of hydrophobicity and
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isoelectric point in PACRG, and a change in both for RTTN. For PACRG, no difference in

allele frequency between the two groups was detected but a higher proportion of

asthmatic horses had the altered RTTN allele compared to non-asthmatic animals.

Discussion. RNA-Seq was sensitive and specific for calling gene sequence variants in this

disease model. Even moderate coverage (<10-20 cpm) yielded correct identification in

92% of samples, suggesting RNA-Seq may be suitable to detect sequence variants in low

coverage samples. The impact of amino acid alterations in PACRG and RTTN proteins, and

possible association of the sequence variants with asthma, is of uncertain significance, but

their role in ciliary function may be of future interest.
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32 ABSTRACT

33 Background. Severe equine asthma is a chronic inflammatory disease of the lung in horses 

34 similar to low-Th2 late-onset asthma in humans. This study aimed to determine the utility of 

35 RNA-Seq to call gene sequence variants, and to identify sequence variants or potential relevance 

36 to the pathogenesis of asthma.

37 Methods. RNA-Seq data were generated from endobronchial biopsies collected from 6 asthmatic 

38 and 7 non-asthmatic horses before and after challenge (26 samples total). Sequences were 

39 aligned to the equine genome with Spliced Transcripts Alignment to Reference software. Read 

40 preparation for sequence variant calling was performed with Picard tools and Genome Analysis 

41 Toolkit (GATK). Sequence variants were called and filtered using GATK and Ensembl Variant 

42 Effect Predictor (VEP) tools, and two RNA-Seq predicted sequence variants were investigated 

43 with both PCR and Sanger sequencing. Supplementary analysis of novel sequence variant 

44 selection with VEP was based on a score of <0.01 predicted with Sorting Intolerant From 

45 Tolerant (SIFT) software, missense nature, location within the protein coding sequence and 

46 presence in all asthmatic individuals. For select variants, effect on protein function was assessed 

47 with Polymorphism Phenotyping (PolyPhen) 2 and Screening for Non-Acceptable 

48 Polymorphism (SNAP) 2 software. Sequences were aligned and 3D protein structures predicted 

49 with Geneious software. Difference in allele frequency between the groups was assessed using a 

50 Pearson's Chi-squared test with Yates' continuity correction, and difference in genotype 

51 frequency was calculated using the Fisher's exact test for count data. 

52 Results. RNA-Seq variant calling and filtering correctly identified substitution variants in 

53 PACRG and RTTN. Sanger sequencing confirmed that the PACRG substitution was appropriately 

54 identified in all 26 samples while the RTTN substitution was identified correctly in 24 of 26 

55 samples. These variants of uncertain significance had substitutions that were predicted to result 

56 in loss of function and to be non-neutral. Amino acid substitutions projected no change of 

57 hydrophobicity and isoelectric point in PACRG, and a change in both for RTTN. For PACRG, no 

58 difference in allele frequency between the two groups was detected but a higher proportion of 

59 asthmatic horses had the altered RTTN allele compared to non-asthmatic animals. 

60 Discussion. RNA-Seq was sensitive and specific for calling gene sequence variants in this 

61 disease model. Even moderate coverage (<10-20 cpm) yielded correct identification in 92% of 

62 samples, suggesting RNA-Seq may be suitable to detect sequence variants in low coverage 
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63 samples. The impact of amino acid alterations in PACRG and RTTN proteins, and possible 

64 association of the sequence variants with asthma, is of uncertain significance, but their role in 

65 ciliary function may be of future interest.

66

67

68
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69 INTRODUCTION

70 Severe equine asthma (recurrent airway obstruction, heaves) is a chronic inflammatory lung 

71 disease caused by inhalation of environmental dust and microbial components [1]. Exacerbation 

72 of the disease triggers excessive mucus production, cough, neutrophilic airway inflammation, 

73 bronchial hyperreactivity, and bronchospasm. Recurrent exacerbations induce smooth muscle 

74 hyperplasia and hypertrophy, fibrosis and eventual irreversible airway remodeling [2-5].

75  Asthma in humans is recognized to be a heterogeneous disease that is classified 

76 considering genetic, molecular and clinical features [6,7]. Severe equine asthma is most similar 

77 to human severe, late-onset asthma characterized by absence of Th2 cytokines, and presence of 

78 neutrophilic inflammation and bronchial neutrophil chemokines [6,8]. Severely asthmatic horses 

79 do not have a hypersensitivity response [2] and efforts to associate equine asthma with a Th2 

80 cytokine profile have yielded inconsistent or inconclusive results [9-17]. Mechanisms leading to 

81 the development of both severe equine asthma and late-onset low-Th2 severe asthma in humans 

82 remain largely undefined. 

83 Interactions between genes and environmental factors have been recognized to contribute 

84 to development of equine asthma for many years [18]. Genetic factors likely reside in multiple 

85 gene sequence variants, and may be influenced by age and sex [18-20]. Several susceptibility 

86 sequence variants, haplotypes and regions have been associated with human asthma [21-34] but 

87 no specific markers have been identified in the late-onset low-Th2 sub-phenotype [6,8]. 

88 Similarly, genetic markers of equine severe asthma were identified in certain families, but were 

89 not significantly associated across different families and genetic backgrounds [20,35-38]. 

90 RNA-Seq is a promising approach for calling sequence variants concurrent with analysis 

91 of gene and allele-specific expression, alternative splicing, and pathways. In this study we 

92 investigated whether SNV detected by RNA-Seq were also present in Sanger-sequenced 

93 amplicons. We hypothesized that RNA-Seq would identify gene sequence variants with high 

94 accuracy.

95

96 METHODS

97 Animals and procedures 

98 Animal and sample procedures were previously described [39]. Briefly, six asthmatic and seven 

99 non-asthmatic horses without signs of asthma exacerbation belonging to the institutional research 
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100 herd (mean ages of 15 and 12 years, respectively, p =0.352, unpaired t test) were placed indoor 

101 in a dust-free environment. After 24 hours, asthmatic horses were exposed to dusty hay until 

102 exacerbation (range 1 to 3 days, average 2.2 days), while non-asthmatic horses were exposed for 

103 3 days. Before and after the dusty hay asthmatic challenge, physical examination, pulmonary 

104 function test, and bronchoalveolar lavage were performed, and endoscopic bronchial biopsies 

105 were collected from lung lobes contralateral between first and second samples. Samples from an 

106 additional four asthmatic and seven non-asthmatic horses were used for PCR-amplification of 

107 specific sequence variant regions and Sanger sequencing. All procedures were approved by the 

108 Institutional Animal Care Committee of the University of Guelph (protocol R10-031) and 

109 conducted in compliance with Canadian Council on Animal Care guidelines. 

110

111 RNA-Seq sample preparation and sequence alignment

112 RNA extraction, preparation and sequencing procedures were as described previously [39]. In 

113 brief, total RNA was extracted from endobronchial biopsies (Qiagen, Toronto, ON) and tested 

114 for quality and concentration with the Bioanalyzer RNA Nanochip (Agilent, Mississauga, ON) 

115 and capillary electrophoresis. RNA-Seq library preparation (unstranded) and sequencing were 

116 performed using the Illumina TruSeq RNA sample preparation and appropriate sequencing 

117 protocols (Illumina, San Diego, CA) at The Centre for Applied Genomics (TCAG; Toronto, 

118 ON). Sequencing of 100-base paired-end reads was performed following the manufacturer9s 

119 instructions on an Illumina HiSeq 2500 instrument.

120 FastQC software version 0.10.1 (bioinformatics.babraham.ac.uk/projects/fastqc/) was 

121 used to assess quality of raw reads, and alignment to the horse reference genome [40] (Ensembl 

122 v70) was performed with STAR version 2.4 [41]. Specifically, the STAR_pass2 alignment 

123 protocol was followed using the horse Ensembl version 70 GTF annotation file for first- and 

124 second-pass, and the junction SJ.tab file generated by STAR for the second-pass after non-

125 canonical junctions were removed. Default settings were used except for: --runThreadN 8 --

126 outFilterScoreMinOverLread 0.5 --outFilterMatchNminOverLread 0.5. Details and results for 

127 read alignment were previously described [39].

128

129 Sequence variant calling and filtering
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130 Read processing, sequence variant calling and initial filtering were performed following the 

131 Genome Analysis ToolKit (GATK) best practice guide for variant calling on RNA-Seq, except 

132 for the Indel realignment step considering the pass-2 STAR alignment initially performed. Initial 

133 read processing was first performed with Picard tools version 1.114 

134 (broadinstitute.github.io/picard/) to add read groups and mark duplicates. Split n9 Trim as well as 

135 base recalibration were performed using the GATK software version 3.2.2 [42] and the -T 

136 SplitNCigarReads, -rf ReassignOneMappingQuality, -RMQF 255, -RMQT 60 and -U 

137 ALLOW_N_CIGAR_READS options.

138 The GATK variant calling and filtering workflow yielded 2,823 and 1,788 sequence 

139 variants present in all horses of the asthmatic group pre- and post-challenge, respectively (Suppl. 

140 Figure 1). Sequence variants were subsequently called using the Haplotype Caller function in 

141 GATK with the same genome annotation file used in the read alignment phase and the following 

142 options: -recoverDanglingHeads, -dontUseSoftClippedBases, -stand_call_conf 20.0 and -

143 stand_emit_conf 20.0 options. Resultant sequence variants were processed with the variant 

144 filtration function of GATK software and the following options to establish a confidence 

145 threshold of reported variants: -window 35, -cluster 3, -filterName FS, -filter "FS > 30.0", -

146 filterName QD and -filter "QD < 2.0".  Sequence variants were analyzed individually in each of 

147 26 samples (6 asthmatics and 7 non-asthmatics, before and after asthmatic challenge).

148

149 PCR

150 Primers for amplification of sequence variant regions from bronchial DNA were parkin co-

151 regulated (PACRG) forward (52-CTC TGA ACC TCC GAA ACC GAC-32) and reverse (52-CTC 

152 CTG GGA TAA CTC ACC ATT C-32), and rotatin (RTTN) forward (52-TCC TGA GTT GTA 

153 TCA AGA AGT G-32) and reverse (52-CCA GCC TGC AAT TCC TTT CT-32). A Taq 

154 polymerase PCR kit (Invitrogen, Mississauga, ON) was used for PCR amplifications. Each 

155 reaction was performed in a 25 ¿L final volume, including 5 ¿L of 10X PCR buffer, 0.2)mM 

156 dNTPs, 2)mM MgSO4, 0.3)¿M of each primer, 2 U of Platinum Taq, and 5 ¿L (100)ng) of 

157 template DNA. PCR conditions for amplification were 3)min at 94 °C followed by 35)cycles of 

158 94 °C for 45)s, 60 °C or 58 °C for 30 s for PACRG and RTTN, respectively, and 72 °C for 90 sec, 

159 followed by final elongation for 10)min at 72 °C. Twenty ¿L of each PCR product was separated 

160 by electrophoresis in a 1% agarose gel stained with SYBR Safe (Invitrogen). Amplicons of 
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161 appropriate size were cut out and DNA extracted and purified (QIAquick, Qiagen). Extracted 

162 and purified PCR products were Sanger sequenced (Laboratory Services Division, Guelph, ON).

163

164 RESULTS

165 Sequence variant calling and filtering

166 The mean of the total number of RNA-Seq reads for all samples was 36,252,701.08, and the 

167 mean of uniquely mapped number of reads was 33,127,466.35. The number of individual total 

168 reads, total mapped reads, uniquely mapped reads and multiple mapped reads is detailed 

169 elsewhere (39). The GATK workflow resulted in 2,823 and 1,788 sequence variants present 

170 specifically in the asthmatic group pre- and post-challenge, respectively (Suppl. Figure 1). Of 

171 these, 10 were missense substitution variants, coded for proteins and had SIFT scores <0.01. 

172 Substitution variants in PACRG (Fig. 1A) and RTTN (Fig. 1B) were detected at higher proportion 

173 in asthmatic compared to non-asthmatic horses. A missense G/A substitution was detected in the 

174 coding sequence of PACRG at position 265,643 (Ensembl sequence ENSECAG00000014308) 

175 /264,806 (NCBI accession number 100050378) (Fig. 1A). A missense T/A substitution was 

176 detected in the coding sequence of RTTN at position 27,190 (Ensembl sequence 

177 ENSECAG00000009711)/ 27,871 (NCBI accession number 100052029) (Fig. 1B).

178

179 Amino acid sequence alignment 

180 In PACRG, the G/A substitution resulted in replacement of valine (V) for methionine (M) at 

181 position 182 (Fig. 2A). PACRG sequence alignment of wild type (WT) and altered proteins 

182 predicted changes from beta-strand to alpha-helix structure in the altered protein a few amino 

183 acids distant from the site of substitution (182) at positions 187 and 188 (Fig. 2B). 

184 Hydrophobicity and isoelectric point were expected to remain similar despite the substitution 

185 (Geneious). In the RTTN sequence alignment, T/A substitution resulted in replacement of 

186 arginine (R) with tryptophan (W) at position 1807 of the ENSECAT00000010304 protein 

187 isoform (Ensembl sequence, corresponding to position 1812 of isoform X1 in NCBI 

188 [XP_001493238]) in NCBI sequence) (Fig. 3A). Sequence alignment of WT and altered proteins 

189 indicated a change from alpha helix to beta strand structure near the site of substitution (bp 

190 1,807) at position 1,816 (Fig. 3B). In addition, increased hydrophobicity and decreased pI were 

191 projected at the site of substitution (1,807) in the altered compared to the WT protein.
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192

193 Expression of PACRG and RTTN 

194 Counts per million (cpm) for PACRG ranged from ~30.7 to 66.3 (mean = 44.17) in asthmatic 

195 horses (Fig. 4A) and ~25.1 to 65.6 (mean = 39.31) in non-asthmatic horses (Fig. 4B), while 

196 expression of RTTN varied from ~11.5 to 24.9 (mean =17.61) and ~13.1 to 29.9 (mean = 21.46) 

197 in asthmatic (Fig. 4C) and non-asthmatic (Fig. 4D) horses, respectively. 

198

199 Confirmation of RNA-Seq with DNA Sanger sequencing 

200 The PACRG substitution variants identified by RNA-Seq were confirmed on DNA with Sanger 

201 sequencing of PCR amplicons in 10 asthmatic (Fig. 5A) and 14 non-asthmatic (Fig. 5B) horses. 

202 In the asthmatic group, four horses were heterozygous [A/G] and two were homozygous with 

203 altered alleles [A/A] (Fig. 5A). In the non-asthmatic group, one horse was heterozygous with 

204 alleles [A/G], three horses were homozygous-WT [G/G] and three horses were homozygous-

205 altered [A/A] (Fig. 5B). DNA was not available to confirm the genotype of horse 1. Hence, all 

206 genotypes derived from RNA-Seq were identical to Sanger sequencing results.

207 For RTTN, results of RNA-Seq and Sanger sequencing were very similar (Fig. 6). Four 

208 asthmatic horses were heterozygous [A/T] and two were homozygous altered [A/A] (Fig. 6A). In 

209 the non-asthmatic group, horse 5 was heterozygous [A/T] and four horses were identified as 

210 homozygous WT [T/T]. However, horse 1 was identified as homozygous before and 

211 heterozygous after the asthmatic challenge, while horse 4 was identified as heterozygous before 

212 and homozygous after the asthmatic challenge. Based on Sanger sequencing the genotype of 

213 horse 4 was homozygous. DNA was not available to confirm the genotype of horse 1. In all 

214 asthmatic horses, genotypes were consistent between pre- and post-challenge and sequencing 

215 methods.

216

217 Sequence alignment

218 Sanger DNA sequences of PACRG from 10 asthmatic horses and 14 non-asthmatic horses 

219 (including those that were analyzed by RNA-Seq) were aligned. Among asthmatic horses, eight 

220 had the heterozygous [A/G], two had the homozygous altered [A/A] and none had the 

221 homozygous WT [G/G] genotype. Among non-asthmatic horses, six had the heterozygous [A/G], 

222 five had the homozygous altered [A/A] and three had the homozygous WT [G/G] genotype (Fig. 
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223 7A). RTTN alignment in asthmatic horses yielded five heterozygous [A/T], two homozygous 

224 altered [A/A], and three homozygous WT [T/T] genotypes. In non-asthmatic horses, four had the 

225 heterozygous [A/T], 10 had the homozygous-WT [T/T], and no horse had the homozygous 

226 altered [A/A] genotype (Fig. 7B).

227

228 DISCUSSION

229 The goal of this study was to assess the reliability of an adapted RNA-Seq sequence variant 

230 calling workflow compared to Sanger sequencing. Sequence variant calling using RNA-Seq 

231 reads is recent practice, and reliability of results is a function of sequencing platform, depth, 

232 quality, precision of read mapping, and appropriate sequence variant calling and filtering 

233 methods. The reliability of identifying gene sequence variants using RNA-Seq has been 

234 considered uncertain. In some reports RNA-Seq was considered useful for identifying gene 

235 variants [54,55] while in other reports differences between RNA and DNA sequences were 

236 relatively frequent [56-58].

237 In this study we applied a modification of GATK best practices for sequence variant 

238 calling with RNA-Seq, and verified the results with Sanger sequencing. In 24 of 26 samples 

239 substitution variants in PACRG and RTTN were identified by both methods, while two horses9 

240 genotypes were discordant by RNA-Seq with inconsistent genotypes before and after challenge. 

241 Sanger sequencing confirmed one of the discordant genotypes, while the other could not be 

242 further assessed. 

243 Two candidate substitution variants in the PACRG and RTTN coding sequence were 

244 identified after stringent filtering. Presence of the substitution variants was confirmed with PCR 

245 and Sanger sequencing in 24 samples. Correlation between RNA-Seq and Sanger sequencing 

246 showed that for PACRG both alleles of the gene were properly identified in all horses and 

247 conditions by the modified GATK workflow. For RTTN, two of the samples were misidentified 

248 by the workflow with alleles inconsistently identified before and after challenge. Lower mean 

249 expression suggesting lower sequencing coverage for RTTN might have affected the likelihood 

250 of inaccurate sequence variant calling. Nonetheless, the vast majority of alleles were identified 

251 appropriately, suggesting that the workflow is suitable for sequence variant calling in RNA-Seq 

252 at gene coverage in the 10 to 20 cpm range. 
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253 For supplementary analysis, SIFT was initially applied, followed by PolyPhen2 and 

254 SNAP2, to predict sequence variant effects on protein function for both substitution variants. 

255 SIFT uses phylogenetic data [45-49], while PolyPhen2 uses structural information and multiple 

256 alignments [50] to predict whether or not a sequence variant may cause loss of function. The two 

257 methods often yield similar results, but limited specificity suggests that results should be 

258 interpreted with caution [59]. SNAP2, on the other hand, uses evolutionary, structural, solvent-

259 access and annotation information, as well as data from available homologs to predict whether a 

260 sequence variant is likely to have an effect on protein function [51-53]. While these three 

261 approaches can yield different results [60,61], inferences regarding PACRG and RTTN amino 

262 acid substitutions were consistent. However, ultimately conclusions regarding the effect of 

263 substitution variants require stringent protein functional analysis, and results from this study 

264 should be considered preliminary.

265 The substitutions identified changed V182M (valine to methionine) and R1807W 

266 (arginine to tryptophan) in PACRG and RTTN, respectively. For PACRG, the V->M 

267 substitution minimally affected hydrophobicity and pI, while the R->W substitution in RTTN 

268 increased hydrophobicity and decreased pI. The substitution variants were considered to 

269 potentially cause loss of function and to have non-neutral effects (Suppl. Tables 1 and 2). 

270 PACRG is a gene conserved across species [62] that shares a bi-directional promoter with parkin 

271 (PARK2) [63]. PACRG is affiliated with axonemal doublet microtubules, and contributes to the 

272 signaling pathway that controls dynein-driven microtubule sliding [62,64-66]. A single 

273 nucleotide variant (SNV) in PACRG was strongly associated with an increased risk of 

274 developing childhood asthma following early-life tobacco smoke exposure [67]. 

275 For the RTTN substitution variant, tryptophan is an aromatic, non-polar and hydrophobic 

276 amino acid often buried in hydrophobic cores, while arginine is a polar and positively charged 

277 amino acid often found on outside chains [68]. RTTN is a cilium-associated protein [69] 

278 essential for assembly of centrosomes in non-motile and motile cilia [70]. Absence of RTTN, or 

279 presence of gene sequence variants that disrupt the interaction of RTTN with SCL/TAL1 

280 interrupting locus (STIL), abrogate proper ciliary development and function [70], and recessive 

281 mutations in RTTN are linked to abnormal primary ciliary development in humans [71]. A 

282 change in the structural stability or binding affinity of the entire protein or the affected residue 

283 could impact ciliary structure and function. The R1807W substitution variant in the carboxy-
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284 terminal region is not immediately proximal to the suggested centrosome-targeting and STIL-

285 binding site [70] but could nevertheless result in defective centrioles and hence affect cilium 

286 structure and function.

287 Substitution variant sequence determination in 13 RNA-Seq and 11 additional samples 

288 showed that 80% of asthmatic animals were heterozygous and 20% were homozygous-altered for 

289 PACRG, and that no individual had the homozygous-WT genotype (G/G). Conversely, among 

290 non-asthmatic animals more than half were homozygous, whether WT or altered (5 [A/A] and 3 

291 [G/G]). For RTTN, 20% of asthmatic horses were homozygous-altered (A/A), 30% were 

292 homozygous WT (T/T) and 50% were heterozygous. Among non-asthmatics, none was 

293 homozygous altered (A/A), while 71% of horses were homozygous WT (T/T) and 29% were 

294 heterozygous. Therefore, the substitution was present in 70% of asthmatic horses and in only 

295 30% of non-asthmatic horses (heterozygous or homozygous altered). Albeit, the variants have 

296 been identified in only a small sample of asthmatic and non-asthmatic animals, and have to be 

297 considered as variants of unknown significance (VUS). A comprehensive genome-wide 

298 association study (GWAS) would be necessary to determine association between these VUS and 

299 asthma, and statistical analysis of potential associations would need to be performed prior to 

300 filtering of variants. 

301 Pearson's Chi-squared test with Yates' continuity correction applied detected no 

302 difference in allele frequency for PACRG, or in genotype frequency for RTTN and PACRG, 

303 between asthmatic and non-asthmatic horses. A significantly higher frequency of the altered 

304 allele (A) in asthmatic compared to non-asthmatic horses was identified. For PACRG, although 

305 not significant, the p-value obtained after testing for differences in genotype frequency (P = 

306 0.213) was lower than when testing for allele frequency (P = 1). This finding may be attributed 

307 to the higher proportion of asthmatic horses with a heterogeneous genotype (WT/alt for eight of 

308 ten horses) compared to non-asthmatics (WT/alt for six of 14 horses). However, changes in allele 

309 frequency and potential roles in the pathogenesis of asthma are of unknown significance due to 

310 the small sample size in this study. Notwithstanding, a significant difference in the frequency of 

311 the PACRG heterozygous genotype has been reported in pulmonary tuberculosis in humans [72]. 

312 A genome-wide interaction study also identified a PACRG SNP to be linked to an increased risk 

313 of developing childhood-onset asthma following early-life exposure to tobacco smoke [67]. 

314 SNPs in PACRG also contributed to susceptibility to tuberculosis [73]. 
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315 For RTTN, the difference in allele frequency was encouraging and further analysis with a 

316 larger number of samples to assess association with asthma may be warranted. RTTN is a 

317 centrosome-associated protein first discovered for its role in axial rotation and left-right 

318 specification in the mouse embryo [69]. The R->W substitution altered the hydrophobicity and 

319 isoelectric point at position 1807, and R <=> W substitutions were predicted to be most 

320 problematic in the human genome [74]. In addition, R->W substitution is generally disfavored in 

321 all protein types [75]. Overrepresentation of mutated arginine was a prominent feature among 

322 disease-causing mutations in a range of conditions [76]. 

323 As landmarks in epithelial-environmental interaction, cilia are highly specialized cellular 

324 projections. Most vertebrate cells have a single non-motile (8primary9) cilium that transduces 

325 signals from the environment or other cells, while motile cilia occur in multiples on specialized 

326 cells of the respiratory tract, oviduct and ventricles of the brain [77,78]. Motile cilia directionally 

327 propel cells or extracellular fluid through <metachronal wave= beating movements [79,80]. The 

328 ability of motile cilia to beat in a synchronized manner requires specialized proteins that are 

329 absent in non-motile primary cilia, but otherwise both types of cilia have similar internal 

330 architecture. The main part of the cilium is the axoneme, which is comprised of nine outer 

331 microtubule doublets, one central microtubule pair (in motile multiple cilia) and a multitude of 

332 affiliated proteins. Prominent among these are tektins that stabilize microtubules and regulate 

333 axoneme length [81], and protofilament ribbon proteins that are essential for sliding of adjacent 

334 microtubule doublets to generate ciliary movement [82]. Abnormalities in cilia are now 

335 appreciated as cause for the development of respiratory diseases, often through gene sequence 

336 variants associated with a loss of function affecting unique ciliary proteins [77]. Ultrastructural 

337 changes were previously reported in the ciliated epithelium of horses with severe asthma 

338 (formerly called chronic obstructive pulmonary disease [COPD]), and included loss of ciliated 

339 cells [83]. Factors that affect beating, synchronization or orientation of motile cilia result in 

340 accumulation of mucus in airways [77], which is a prominent feature of equine asthma. 

341 Furthermore, hedgehog (HH) signaling is strongly linked to ciliary function, and many 

342 components of the HH signaling pathway localize to cilia [84,85]. However, considering the 

343 relatively small number of individuals tested, allele frequencies identified in this manuscript, and 

344 their potential impact on ciliary function, remain to be confirmed on a larger scale.
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345 PACRG may be linked to HH signaling in mice where patched1 (PTCH1) and PACRG-

346 PARK2 loci are thought to interact and regulate ciliary function in ependymal cells [86]. 

347 Interestingly, PTCH1 is differentially expressed in asthmatic compared to non-asthmatic horses 

348 following challenge [39], linking PACRG and an asthmatic response to environmental agents 

349 with the HH pathway. The PACRG protein associates with protofilaments [87] of the ciliary 

350 axoneme [62,88,89], has a role in ciliary morphogenesis and function [65] and is directly 

351 involved in ciliary motility through control of dynein-driven microtubule sliding [64]. PACRG 

352 also has a variety of interacting partners such as microtubules, ³- and ³-tubulin and 

353 meiosis/spermiogenesis associated 1 (MEIG1) protein, heat shock protein (HSP) 70 and HSP 90 

354 [66,90,91]. Impaired function or interaction of PACRG with its partners could weaken or impair 

355 ciliary stability and motility. The exact nature and function of methionine in protein structure 

356 remains incompletely understood, and substitutions involving methionine has been associated 

357 with several diseases [92]. Both valine and methionine are hydrophobic residues grouped among 

358 the least polar amino acids [93]. Methionine is a sulfur-containing amino acid that is among the 

359 most hydrophobic residues and also easily oxidized if exposed [94]. Although V->M 

360 substitutions are generally neutral, methionine9s sulfur connected to a methyl group would make 

361 it less likely to interact with other proteins [75]. Methionine was overrepresented as a mutant 

362 residue in several mutations associated with decrease or loss of function [76], including the 

363 human androgen receptor [95]. Although the effect of a V->M substitution is unknown, any 

364 change in PACRG structure or binding affinity could impact ciliary function, and may be of 

365 great interest in the context of severe asthma.

366

367 CONCLUSIONS

368

369 Sequence variants can be confidently called with RNA-Seq, although the required minimal 

370 coverage remains to be clearly defined and may be variable. Single point substitution variants in 

371 PACRG and RTTN were detected in all asthmatic horses, and although there was no significant 

372 difference in allele and genotype proportions between the two groups, the altered allele in the 

373 RTTN gene was more prevalent in asthmatic compared to non-asthmatic horses. Functional cilia 

374 are crucial for lung health, and sequence variants resulting in impaired protein function are likely 
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375 to have a negative impact. The significance of the substitutions in PACRG and RTTN remains to 

376 be determined but they are of potential interest for future investigations.

377
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662 LEGENDS

663

664 Figure 1. Substitution variants in PACRG (A) and RTTN (B) genes. Diagrams show position of 

665 gene (thick green line), mRNA (red line) and coding region (yellow line). Whole gene (upper) 

666 and close-up view surrounding the substitution variant (lower) are included with gene sequence 

667 at the bottom. Location of the substitution variant is indicated in blue for NCBI and Ensembl 

668 databases.

669

670 Figure 2. Alignment of wild type (WT) and altered (alt) PACRG proteins with associated 

671 predicted hydrophobicity and isoelectric point. Replacement of methionine for valine at position 

672 182 changes a beta strand to an alpha helix at position 187 and 188. Alpha helices (pink), coils 

673 (gray line), turns (blue arrows) and beta strands (yellow arrows). 

674

675 Figure 3. Alignment of WT and altered RTTN protein with predicted hydrophobicity and 

676 isoelectric point. Replacement of arginine with tryptophan at position 1812 changes alpha helix 

677 to beta strand at position 1816. Alpha helices (pink), coils (gray line), turns (blue arrows) and 

678 beta strands (yellow arrows).

679

680 Figure 4. Expression of PACRG (A, B) and RTTN (C, D) in asthmatic and non-asthmatic horses 

681 in counts-per-million (CPM; y-axis) pre- and post-challenge. PACRG expression varied from 

682 ~30.7 to 66.3 CPM in asthmatic horses (A) and ~25.1 to 65.6 CPM on non-asthmatic horses (B), 

683 while RTTN expression varied from ~11.5 to 24.9 CPM and ~13.1 to 29.9 CPM in asthmatic (C) 

684 and non-asthmatic (D) horses, respectively. 

685

686 Figure 5. Comparison of GATK substitution variant calls and Sanger sequencing results for 

687 PACRG in asthmatic (A) and non-asthmatic (B) horses. For both groups, the bar graph indicates 

688 the IGV count for each allele (A-red, G-yellow), horse and condition. Below the bar graph is the 

689 GATK variant call, the electropherogram of the Sanger sequence, and agreement. (A) Four 

690 asthmatic horses (1, 2, 5, 6) had heterozygous alleles [A/G] and two (3 and 4) were homozygous 

691 for the altered allele [A/A]. (B) In non-asthmatic horses, one horse (6) had heterozygous alleles 

692 [A/G], three horses (1, 2 and 4) were homozygous for the wild-type allele [G/G] and three horses 
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693 (3, 5 and 7) were homozygous for the altered allele [A/A]. All genotypes were consistent across 

694 horses and methods. DNA was not available for non-asthmatic horse 1.

695

696 Figure 6. Comparison of GATK substitution variant calls and Sanger sequencing results for 

697 RTTN in asthmatic (A) and non-asthmatic (B) horses. Details as in Fig. 5. (A) Four asthmatic 

698 horses (3-6) had heterozygous alleles [A/T] and two (1 and 2) were homozygous for the altered 

699 allele [A/A]. Genotypes were consistent across horses and methods. (B) In non-asthmatic horses, 

700 one (5) had heterozygous [A/T] alleles, four horses had homozygous wild type [T/T] alleles, and 

701 two horses (1 and 4) were inconsistently identified as homozygous wild type and heterozygous in 

702 different samples. Sanger sequencing confirmed the genotype of horse 4 as heterozygous. DNA 

703 was not available for non-asthmatic horse 1. 

704

705 Figure 7. Alignment of PACRG (A) and RTTN (B) Sanger sequences for 10 asthmatic and 14 

706 non-asthmatic horses with the reference genome. (A) For PACRG, 8 asthmatic horses (80%) 

707 were heterozygous [A/G], 2 (20%) were homozygous-altered [A/A] and none was homozygous 

708 wild-type [G/G]. Six non-asthmatic horses (43%) were heterozygous [A/G], 5 (36%) were 

709 homozygous-altered [A/A] and 3 (21%) were homozygous wild type [G/G]. (B) For RTTN, in 

710 the asthmatic group, there were 5 (50%) heterozygous [A/T], 2 (20%) homozygous-altered [A/A] 

711 and 3 (30%) homozygous wild type [T/T] genotypes. In the non-asthmatic group, 4 (29%) were 

712 heterozygous [A/G], 10 (71%) were homozygous wild type [T/T], and none had the 

713 homozygous-altered [A/A] genotype.

714
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Figure 1

Substitution variants in PACRG (A) and RTTN (B) genes.

Diagrams show position of gene (thick green line), mRNA (red line) and coding region (yellow

line). Whole gene (upper) and close-up view surrounding the substitution variant (lower) are

included with gene sequence at the bottom. Location of the substitution variant is indicated

in blue for NCBI and Ensembl databases.
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Figure 2

Alignment of wild type (WT) and mutant (mut) PACRG proteins with associated

predicted hydrophobicity and isoelectric point.

Replacement of methionine for valine at position 182 changes a beta strand to an alpha helix

at position 187 and 188. Alpha helices (pink), coils (gray line), turns (blue arrows) and beta

strands (yellow arrows).
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Figure 3

Alignment of WT and mutant RTTN protein with predicted hydrophobicity and isoelectric

point.

Replacement of arginine with tryptophan at position 1812 changes alpha helix to beta strand

at position 1816. Alpha helices (pink), coils (gray line), turns (blue arrows) and beta strands

(yellow arrows).
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Figure 4

Expression of PACRG (A, B) and RTTN (C, D) in asthmatic and non-asthmatic horses in

counts-per-million (CPM; y-axis) pre- and post-challenge.

PACRG expression varied from ~30.7 to 66.3 CPM in asthmatic horses (A) and ~25.1 to 65.6

CPM on non-asthmatic horses (B), while RTTN expression varied from ~11.5 to 24.9 CPM and

~13.1 to 29.9 CPM in asthmatic (C) and non-asthmatic (D) horses, respectively.
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Figure 5

Comparison of GATK variant calls and Sanger sequencing results for PACRG in asthmatic

(A) and non-asthmatic (B) horses.

For both groups, the bar graph indicates the IGV count for each allele (A-red, G-yellow), horse

and condition. Below the bar graph is the GATK variant call, the electropherogram of the

Sanger sequence, and agreement. (A) Four asthmatic horses (1, 2, 5, 6) had heterozygous

alleles [A/G] and two (3 and 4) were homozygous for the mutant allele [A/A]. (B) In non-

asthmatic horses, one horse (6) had heterozygous alleles [A/G], three horses (1, 2 and 4)

were homozygous for the wild-type allele [G/G] and three horses (3, 5 and 7) were

homozygous for the mutant allele [A/A]. All genotypes were consistent across horses and

methods. DNA was not available for non-asthmatic horse 1.
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Figure 6

Comparison of GATK variant calls and Sanger sequencing results for RTTN in asthmatic

(A) and non-asthmatic (B) horses.

Details as in Fig. 6. (A) Four asthmatic horses (3-6) had heterozygous alleles [A/T] and two (1

and 2) were homozygous for the mutant allele [A/A]. Genotypes were consistent across

horses and methods. (B) In non-asthmatic horses, one (5) had heterozygous [A/T] alleles, four

horses had homozygous wild type [T/T] alleles, and two horses (1 and 4) were inconsistently

identified as homozygous wild type and heterozygous in different samples. Sanger

sequencing confirmed the genotype of horse 4 as heterozygous. DNA was not available for

non-asthmatic horse 1.
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Figure 7

Alignment of PACRG (A) and RTTN (B) Sanger sequences for 10 asthmatic and 14 non-

asthmatic horses with the reference genome.

(A) For PACRG, 8 asthmatic horses (80%) were heterozygous [A/G], 2 (20%) were

homozygous mutant [A/A] and none was homozygous wild-type [G/G]. Six non-asthmatic

horses (43%) were heterozygous [A/G], 5 (36%) were homozygous mutant [A/A] and 3 (21%)

were homozygous wild type [G/G]. (B) For RTTN, in the asthmatic group, there were 5 (50%)

heterozygous [A/T], 2 (20%) homozygous mutant [A/A] and 3 (30%) homozygous wild type

[T/T] genotypes. In the non-asthmatic group, 4 (29%) were heterozygous [A/G], 10 (71%)

were homozygous wild type [T/T], and none had the homozygous mutant [A/A] genotype.
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