

Dams effects on potamodromous *Prochilodus magdalenae*: evidence from endocrine response

 $\textbf{Daniela De Fex-Wolf}^{\text{ Corresp., } 1,2} \text{ , Silvia L\'opez-Casas } ^{1,3} \text{ , Luz Fernanda Jim\'enez-Segura } ^{1} \text{ , Clara Mar\'ia P\'erez-Gallego } ^{1}$

Corresponding Author: Daniela De Fex-Wolf Email address: danieladefex@gmail.com

Background. Prochilodus magdalenae is a neotropical fish that synchronizes reproduction with flood river pulses.

Methods. We used an endocrine method to test the influence of hydropeaking on hormone production related with reproduction. We analyzed P. magdalenae reproduction in individuals from two sectors of a Neotropical river basin: one with natural flow and the other with a regulated hydrological regime.

Results. In the section of the basin with natural flow we found that the production of hormones related with fish reproduction (FSH and LH) was correlated with the gonadosomatic index, while in fish experiencing hydropeaking due to hydroelectric operation no such correlation was detected.

Discussion. We conclude that potamodromous fish reproductive hormone production is sensitive to changes in water level/discharge, consequently, fish exposed to hydropeaking receive ambiguous stimuli that affect hormone production, reproduction synchronization with environmental cues, and ripening, which are essential for reproductive success.

¹ Instituto de Biología, Universidad de Antioquia, Medellín, Antioquia, Colombia

² Coordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil

³ Northern Andes and South Central America Conservation Program, The Nature Conservancy, Bogotá, DC, Colombia

⁴ ISAGEN S.A E.S.P, Medellín, Antioquia, Colombia

- 1 Dams effects on potamodromous Prochilodus magdalenae: evidence from endocrine
- 2 response
- 3 Daniela De Fex-Wolf ^{1,2}, Silvia López-Casas ^{1,3}, Luz Fernanda Jiménez-Segura ¹ and Clara María
- 4 Pérez-Gallego⁴
- ¹Instituto de Biología, Universidad de Antioquia, Medellín, Antioquia, Colombia
- 6 ² Coordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia (INPA),
- 7 Manaus, Amazonas, Brazil
- 8 ³ Northern Andes and South Central America Conservation Program, The Nature Conservancy,
- 9 Bogotá, DC, Colombia
- 10 ⁴ ISAGEN S.A. E.S.P, Medellín, Antioquia, Colombia

- 12 Corresponding Author:
- 13 Daniela De Fex-Wolf

14

15 Email address: danieladefex@gmail.com

16

- 17 Abstract
- 18 **Background.** Prochilodus magdalenae is a Neotropical fish that synchronizes reproduction with
- 19 flood pulses.
- 20 **Methods.** We used an endocrine method to test the influence of hydropeaking on hormone
- 21 production related with reproduction. We analyzed *P. magdalenae* reproduction in individuals
- 22 from two sectors of a Neotropical river basin: one with natural flow and the other with a
- 23 regulated hydrological regime.
- 24 **Results.** In the section of the basin with natural flow we found that the production of hormones
- 25 related with fish reproduction (FSH and LH) was correlated with the gonadosomatic index, while
- 26 in fish experiencing hydropeaking due to hydroelectric operation no such correlation was
- 27 detected.

- 28 **Discussion.** We conclude that potamodromous fish reproductive hormone production is sensitive
- 29 to changes in water level/discharge, consequently, fish exposed to hydropeaking receive
- 30 ambiguous stimuli that affect hormone production, reproduction synchronization with
- 31 environmental cues, and ripening, which are essential for reproductive success.

32 Keywords

- 33 Dams, Freshwater fish, Gonadotropic cells, Magdalena River Basin, Neotropical fish
- 34 reproduction.

35 36

37

Introduction

- 38 Biology and ecology of fishes in tropical large rivers are linked to the hydrological regime in the
- main channel and regular flooding in associated floodplains (Welcomme, 1985; Junk et al.,
- 40 1989). The hydrological cycle in these rivers is mainly determined by fluctuations in rainfall,
- 41 which changes water level resulting in wet and dry periods (Lowe-McConnell, 1987; Wootton,
- 42 1999). Water level variations result in numerous environment changes that modify seasonally
- 43 habitat and food availability, influencing reproduction, migrations, growth, ecology and regional
- 44 fisheries (Agostinho et al., 2004). In tropical freshwater fishes, reproductive responses are
- associated with the flooding regime and discharge (Lowe-McConnell, 1987; Junk et al., 1989;
- 46 Jiménez-Segura et al., 2010). In response to human demands especially for energy- natural flow
- 47 regimes of rivers suffer several modifications with the construction of dams. These changes
- 48 might affect fish reproduction, specifically by changes in the natural amplitude and duration of
- 49 river flows, creating physical barriers for migrations (Agostinho et al., 2001, 2003; Murchie et
- al., 2008) and affecting aquatic organisms' behavior (Agostinho et al., 2000, 2001). At the
- 51 population level, the transformations in regulated rivers involve alterations in physical and
- 52 chemical characteristics and changes in aquatic habitat availability, that may disrupt
- environmental cues for reproduction that influence maturation, spawning and migrations
- 54 (Macnaughton et al., 2015).
- 55 Reproduction is a multifactorial process involving interactions between environmental, social,
- 56 neural, endocrinological and nutritional components (Urbinati, 2005). In fishes, reproduction
- 57 starts by synchronised actions of the Hypothalamus-Pituitary-Gonadal (HPG) axis (Gonzalez et

- al., 2012), which responds to environmental signals activating the production of specific 58 hormones related with defined reproductive stages (Vongvatcharanona, 2006). The stimuli that 59 influence hormone production are associated with gonadal maturation during rainy seasons 60 (Donaldson, 1981; Donaldson and Hunter, 1983; Victoria et al., 2005; Murchie et al., 2008), and 61 these hormones are synthesized in the adenohypophysis by gonadotrophs, pituitary cells that are 62 developed in response to environmental factors (Donaldson and Hunter, 1983). Follicle-63 stimulating hormone (FSH) contributes to early spermatogenesis and oogenesis, while 64 luteinizing hormone (LH) is related with seasonal gonadal growth, sex steroid production, sperm 65 production in males, and ovulation in females during spawning (Vongvatcharanona et al., 2006; 66 Gonzalez et al., 2012). Their concentrations and proportions in fishes bodies depend on 67 reproductive stage (FSH concentration values are higher during immature stages and LH 68 69 increases during maturity), which in Neotropical freshwater fishes are determined by the hydrologic regime (Donaldson, 1981; Donaldson and Hunter, 1983; Victoria et al., 2005; 70 Murchie et al., 2008). In reproductive biology, endocrinological tools have begun to be used to 71 understand how reproduction is controlled and coordinated by the environment. Due to the 72 73 existence of about 25,000 species of fishes, each with different reproductive strategies, the majority of studies are for just a few selected species such salmon or goldfish, that have 74 75 representative characteristics which are used as a model of hormonal studies for other fish species (Melamed and Sherwood, 2005). 76 Change in reproductive response of tropical fishes due to hydropower is well documented, but 77 conclusions are based mainly on shape and size of adult gonadal tissue (Murchie et al., 2008; 78 González et al., 2010). There are many methodologies that can be employed to better understand 79 effects of regulated rivers on freshwater fishes at the cellular level. Endocrinology, for example, 80 brings a series of tools that can be used to support ecological interpretations related with 81
- immunochemical detection of FSH and LH gonadotrophs in fish like *Odontestes bonariensis* and

reproduction, such as the use of anti-chum salmon FSHβ and LHβ (specific antisera) for

- 84 *Oreochromis niloticus* (Vongvatcharanona et al., 2006). That approach could work for
- 85 prochilodontids (pers. comm. Prof. Shunsuke Moriyama, 2011) to help explain how fishes
- 86 respond when facing barriers such as dams. Until now, changes in environmental signals
- 87 associated with modified river flow, and hormonal response related to spawning of a migratory
- 88 freshwater fishes had not been confirmed. We tested the hypothesis that hydropeaking due to

hydropower production negatively affects hormone production and the reproduction of 89 Prochilodus magdalenae (Steindachner, 1879) individuals in the Magdalena River Basin. Our 90 results show that changes in water lever due to hydropeaking affect reproductive hormone 91 92 response of this potamodromous fish. 93 1.1. Description of the study area 94 The Magdalena River (Fig. 1) is a sixth-order river that flows northwest, between the central and 95 east branches of the Andes (3° and 11° N). It is 1,540 km long, discharges 7,500 m³.s⁻¹ into the 96 Caribbean Sea (Likens, 2010), and is considered a focal axis of Colombian economic 97 development. The annual hydrological pulse is bimodal (two low water and two flooding 98 periods). Due to geomorphology, many of its tributaries have been dammed for hydropower 99 generation, and have an installed capacity of around 14,000 MW, which is the most important 100 source of hydropower generation in Colombia (UPME, 2012). One of the Magdalena River's 101 tributaries is the La Miel River, which was dammed for hydropower in 2002. Mean flow is 84.3 102 m³.s⁻¹ (Marulanda et al., 2003), but due to hydropower generation, the hydrological regime has 103 104 been modified and daily hydropeaking occurs downstream of the dam (Fig. 2). FIGURE 1 105 106 107 **Materials & Methods** To evaluate the effect of hydropeaking on hormone production, we collected potamodromous 108 fish under hydropeaking conditions and under natural flow conditions. Individuals of P. 109 magdalenae were captured at two different sites in the Magdalena River Basin: La Miel River (a 110 regulated river influenced directly by dam hydropeaking), and the main channel of Magdalena 111 River at Puerto Berrío (a natural flow river with a natural hydrological regime). Although the 112 Magdalena River has some dammed stretches (for example Betania Reservoir (2°41′06″N 113 75°26′24″O')), the contributions of other tributaries cushion the effects of localized hydroelectric 114 operation (see Fig. 2). Water levels (m) and discharge (m³/s) for the natural river were obtained 115 from the national hydrology database (Instituto de Hidrología, Meteorología y Estudios 116

Ambientales - IDEAM), and the ISAGEN S.A. E.S.P hydropower company supplied the 117 information for the regulated flow river. This hydrologic data is collected daily in fixed points 118 throughout the river basin. We used average daily water level (m) and discharge (m³/s) (Fig. 2). 119 FIGURE 2 120 121 P. magdalenae from natural and regulated hydrological regimes rivers were bought monthly 122 from fishermen. Fifty specimens were obtained each month, in the same week, from June 2010 123 to June 2011 from each sampling site. After capture, fish were fixed in 10% formalin in situ and 124 transported to the Ichthyology Laboratory of the University of Antioquia. 125 For each fish we recorded: standard length (L_S , mm), total body weight (W_T , g), eviscerated body 126 weight (W_E, g) , liver weight (L_W, g) , gonads weight (G_W, g) , and sex (male or female). 127 Macroscopic observations were made of ovaries to determine sexual maturation stage of females, 128 like color and vascularization or presence of oocytes in the ovaries. For males, testicles size, 129 color and vascularization were observed. Reproductive stages for females and males were 130 defined following Vazzoler scale (1996), which classified Stage A: Immature, B: Maturing, C: 131 Mature, D: Spawned, and E: Resting. 132 The stage of reproductive activity was determined using gonad and liver weight relation with 133 total weight, since the behavior of these organs is correlated with reproduction (Vazzoler, 1996). 134 We calculated gonadosomatic (G_I) indexes for gonad or liver weight proportion to total fish body 135 weight, in a specific time or reproductive stage: 136 $GI = (Gw \div Wt) \times 100$ 137 Where W_T is total body weight and G_W is gonad weight. To test if these indices were different 138 between sampling sites we used a non-parametric test in GraphPad Prism 7. 139 To estimate the relationship between discharge, gonadosomatic index, FSH and LH cell densities 140 we used Spearman correlation. 141 Hormonal analysis 142

143	From each sampling site (natural and regulated flow river), we selected one pituitary gland of
144	each macroscopic maturity state collected (one for stage A, one for B, one for C, one for D and
145	one for E), from males and females, each month (12 months in each site). Each pituitary gland
146	was embedded in paraffin wax and sectioned in, at least, 10 cuts (three to five-µm thickness)
147	with a microtome in the par proximal distalis sector, where cellular density is higher compared
148	with other pituitary sectors, and trying to cut in the same deep for all the pituitary gland
149	collected. The response variable was the number of immunostained cells by mm ² .
150	Antisera used in this study were anti-chum salmon FSH β and LH β . Suzuki and collaborators
151	(1988a, 1988b) (in Vongvatcharanon et al., 2006) previously described the origin and
152	characteristics of these antibodies. We used a 1/5,000 dilution for anti-GTH-I β (FSH) and anti-
153	GTH-IIβ antibody (LH) as suggested by Prof. Shunsuke Moriyama (pers. comm. 2011).
154	Monthly, pituitary glands were removed, fixed in 10% formalin for preservation and processed
155	for paraffin embedding, cutting and placing in charged microscope slides. We used UltraVision
156	Quanto Detection System HRP DAB kit (Thermo Scientific), and we follow the protocol
157	described by Shi et al., (1999) for each sample:
158	The photographs were taken with a digital camera (Nikon D500) installed in an optical binocular
159	microscopic (Zeiss) and the number of stained cells by mm ² were counted.
160	To determine if there were differences in hormone production between gonadal ripeness states
161	we tested for significant differences in the number of immunostained cells for each gonadal
162	development state with a one way ANOVA for each cells type: FSH cells and LH cells.
163	Because rainy season is known to influence hormone production and gonadal maturation (Mishra
164	and Sarkar, 2013), we used Spearman correlation to test for a relationship between the type and
165	variations of hormone production (FSH and LH) with modifications in the water level and
166	discharge for individuals from the natural flow river and the regulated river.
167	

Results

168

We analyzed 1271 individuals, of which 588 (332 males and 256 females) came from the natural flow river and 683 (376 males and 307 females) from the regulated flow river. Individuals in all 170 maturity states were collected at both sampling sites and the majority were found in A, B and C 171 maturity stage in both natural and regulated flow rivers (Table 1). 172 TABLE 1 173 174 The gonadosomatic index (G_I) in males changed through time at both sample sites. In the natural flow river, differences were found in G_I among months (H= 187.824, DF= 11, p <0.005), where 175 June, July, August and October showed the highest values. Individuals from the regulated flow 176 river, also had differences among months (H= 208.509, DF= 12, p <0.005), with the highest G_I 177 values from June to August 2010, October 2010 and from March to April 2011. There was no 178 significant difference in G_I values in males for the natural (M= 0.309, SD= 0.298) and regulated 179 (M=0.481, SD=0.377) rivers (t(23)=-1.259, p>0.005). 180 For females, we found differences in the G_I values through time at both sites. In the natural flow 181 river, we found differences among months (H = 124.260, DF= 11, p: <0.005), with highest GI 182 values in June and August 2010. We found differences among months for females in the 183 regulated flow river (H = 151.490, DF= 12, p: <0.005), with the highest G_I values from August 184 to October 2010. There was no significant difference in G_I values in females for the natural 185 186 (Mnd= 12) and regulated (M= 13) rivers (U= 55, p>0.005) (Fig. 3). FIGURE 3 187 A total of 113 pituitary glands was analyzed. The number of LH immunostained cells was 188 different among maturity stages in males from the natural river ($F_{(2,21)}$ = 5.49, p<0,005), as well 189 from individuals from the regulated river ($F_{(3,27)} = 26.652$, p<0,005). There was no significant 190 difference in the number of LH immunostained cells between males from the natural and 191 regulated river (t $_{(7)}$ = -0.889, p>0,005). For females, the number of LH immunostained cells was 192 193 different among maturity stages in individuals from the natural river (F $_{(2,17)}$ = 10.684, p<0,005), as well from individuals from the regulated river (F $_{(3,27)}$ = 24.401, p<0,005). There was no 194 significant difference in the number of LH immunostained cells between females from the 195 natural and regulated river (t $_{(7)}$ = 0.415, p>0,005). 196

For the number of FSH immunostained cells, we found differences among maturity stages in 197 males from the natural river $(F_{(2,21)} = 8.945, p < 0.005)$, as well from those from the regulated river 198 $(F_{(3,27)} = 9.462, p < 0.005)$. There was no significant difference in the number of FSH 199 immunostained cells between males from the natural vs. the regulated river (t $_{(7)}$ = 1.874, 200 p>0,005). For females, the amount of FSH immunostained cells was different among maturity 201 stages in individuals from the natural river ($F_{(3,18)}$ = 4.318, p<0,005), as well from individuals 202 from the regulated river ($F_{(3,27)} = 13.592$, p<0,005). There was no significant difference in the 203 amount of FSH immunostained cells between females from the natural and regulated river (t $_{(6)}$ = 204 0.763, p>0,005). 205 We found that immature and maturing specimens (A and B maturity stages) had higher number 206 207 of FSH immunostained cells, while individuals in advanced maturity stage (C) had higher values of LH immunostained cells (Fig. 4). 208 FIGURE 4 209 210 In the natural river, we found a negative and significant relationship between discharge (m³/s) and the gonadosomatic index (r= -0.168, p<0.05), between gonadosomatic index and 211 immunostained FSH cell densities (r = -0.324, p<0.05), and a positive and significant relationship 212 between gonadosomatic index and immunostained LH cell densities (r= 0.404, p<0.05), showing 213 214 an expected behavior between discharge variations and gonadal response, and an association between hormonal response with reproductive stages. 215 In counterpart, in the regulated river we found a positive and significant relation between 216 discharge (m³/s) and gonadosomatic index (r=0.195, p<0.05) and a negative and significant 217 relationship between FSH and LH immunostained cell densities (r= -0.460, p<0.05). Which 218 means that in this river there is no correlation between reproduction and hormonal response. 219 220 **Discussion** 221 Our results show that flow pattern influences the hormone production of potamodromous fish in 222 the Magdalena River Basin, with changes in migratory fish hormone response that is correlated 223

with modified flow pattern, exhibiting a lack of synchrony between reproductive hormones 224 response and water level in the regulated river. 225 In the natural flow river, P. magdalenae synchronized their reproductive cycle with water level 226 signals. Conversely, in the regulated river, reproductive response was not related to the river 227 water level. 228 229 Just as flow pulse has been shown to be the principal cue to initiate most biological processes of aquatic biota, spawning and migration of potamodromous fish in the Magdalena River has also 230 been linked to changes in water levels, and regional climatic events such as ENSO cycles 231 (López-Casas et al., 2016) and their associated physiochemical variables (pH, temperature and 232 dissolved solids) (Jiménez-Segura et al., 2010). Flow pulse of a regulated river with hydropower 233 scheme flows (like La Miel River) undergoes changes that disturb the historical climate and 234 water discharge patterns that fishes use to respond to environmental stimuli. We suggest that lack 235 of synchrony between hormonal behavior and gonadosomatic index is a response to the daily 236 hydropeaking behavior of the river, which modifies environmental information perceived by 237 fishes (Payne, 1986). This might influence their spawning behavior, recruitment and modify 238 community structure (Agostinho et al., 2004). 239 Our results for *P. magdalenae* are similar to those obtained by Santos et al., (2001), where levels 240 241 of FSH in rainbow trout decreased before sexual maturity starts, and increased after ovulation. This was because FSH contributes to early spermatogenesis and follicular growth, while LH 242 promotes gamete maturation and is involved in sperm production and ovulation 243 (Vongvatcharanona, 2006). Therefore, higher levels of FSH were found in immatures and resting 244 245 individuals, and lowest in mature and recovery individuals. This pattern was found in Salmonidae and another species with synchronous gonadal development where FSH levels 246 increase during the beginning of gonadal growth, and decrease during spawning (Victoria et al., 247 2005). In a development experiment with captive specimens of the subfamily Serrasalmidae. 248 Iseki et al., (2003) found an increase in FSH from resting to initial maturation and signals of 249 decrease starting from gonadal maturation. 250 Our outcomes indicate that water level/ discharge and hydrologic regime changes influenced 251 hormone production related with reproduction of potamodromous fish in the Magdalena River 252

Basin. In the Magdalena River Basin (natural flow river), mature migratory individuals were 253 recorded in rainy seasons, from April to May and from October to December (Jiménez-Segura et 254 al., 2010). Similarly, mature individuals were reported in La Miel River (a regulated river) from 255 January to June and between September to October 2010 (Reinoso-Flórez et al. et al., 2010; 256 López-Casas et al., 2016). Fish from natural flow and regulated rivers behaved as previously 257 reported during the first half of the year but during the second half fish were always ripe. This 258 could be explained partially by the succession of ENSO events that occurred during the study 259 period in the Magdalena River Basin: "La Niña" 2007/2009, "El Niño" 2009/2010 and again "La 260 Niña" 2010/2011, this last La Niña ended around June of 2011. Thus, in a transition from La 261 Niña to El Niño occured in June 2009, and subsequently a change back to a La Niña event in 262 mid-2010 (León, 2010). This was reflected in the individuals performing the 2010 migrations, 263 especially the *subienda* (first reproductive migrations of the year). These fish may mainly belong 264 to cohorts of 2008 and 2009, which grew under "La Niña" conditions, i.e. abundance of nursery 265 habitats and food (López-Casas, 2015). At the same time increased food availability and rapid 266 growth for adults and juveniles has also been reported (Gomes and Agostinho, 1997; Agostinho 267 268 et al., 2004). An increase in nursery areas, food availability and spawning areas result in a stronger cohort of P. magdalenae that show larger size and weight and higher numbers (López-269 270 Casas, 2015), stimulating gonads to ripen and bringing a longer spawning period in response to these atypical environmental signals, explaining population patterns of P. magdalenae during 271 272 2011. Changes in river flow modified the reproductive hormone response in individuals of P. 273 magdalenae independently of river flow, thus, GI was higher when fish were ripe, during June to 274 September 2010 in the natural flow river, and from May to October 2010 and for February to 275 April 2011 in the regulated river. GI and sexual maturity are closely related variables, involving 276 energy use obtained by feeding and accumulated as fat (Vazzoler, 1996). This relationship is 277 controlled by a set of signals that precedes the beginning of reproductive events, including fish 278 migrations (Vazzoler, 1996). In tropical rivers, spawning occurs during flows (Lowe-McConnell, 279 1987). In the Magdalena River Basin, two high water (flood) seasons have been recorded: The 280 first one begins in March and ends in May, and the second one starts in October and finishes in 281 November (Restrepo et al., 2005; Jiménez-Segura et al. 2010; López-Casas et al. 2016). All 282 large rivers in northern South America show marked seasonality on the hydrograph; most of 283

284	them show a unimodal seasonal discharge pattern, but the Magdalena has a more complex
285	pattern including dual minima (January, August) (Lewis et al., 2006). With an increase in water
286	level due to regional increase of precipitation twice a year, all biotic and abiotic conditions for
287	reproduction processes occur two times per years, allowing two reproductive events for P .
288	magdalenae.
289	Hydropower production generates daily hydropeaking downstream from the dam, causing a
290	permanent alteration in flow pulse that may change reproduction process signals. In regulated
291	flow rivers, the presence of mature individuals during almost all sampling months, and hormonal
292	behavior without relation with river level signals suggested that continuous changes in water
293	levels produced a blurred and permanent reproductive signal for individuals of <i>P. magdalenae</i> ,
294	hindering perception of changes in water level, affecting in this way the reproductive success of
295	individuals inhabiting rivers with these attributes.
296	
297	Conclusions
298	We found that minimal changes in flow regime are strong enough to cause the pituitary gland to
299	start it reproductive hormonal response. Due to the daily hydropeaking of hydropower
300	production, the environmental signal (mainly water level) that stimulates hormone production for
301	the reproduction process is constantly altered, affecting the natural relation between
302	environmental signals and gonadal and hormonal responses, which is essential for the welfare of
303	fish like Prochilodus magdalenae and the perpetuation of the species.
304	Acknowledgements
305	The authors dedicate this work to Mauricio Arias-Gallo for his contribution to the initial idea of
306	this work and for his unforgettable presence. We are grateful to Professor Shunsuke Moriyama
307	(Kitasato University, Iwate, Japan) who kindly supplied the antisera used in this study, helped
308	with the laboratory process and interpretation of results, to the Pathology Laboratory of San
309	Vicente de Paul Hospital, to Alejandra De Fex Wolf for assisting map elaboration, to Prof.
310	Donald Taphorn for review and improve the English of this paper, and to ISAGEN S.A. E.S.P.
311	provided financial support (contract 46/3296).

313	References
314	Agostinho AA, Thomaz SM, Minte-Vera CV, Winemiller KO. 2000. Biodiversity in Wetlands:
315	Assessment, Function and Conservation. In: Gopal B, Junk WJ, Davis JA, editors.
316	Biodiversity in the high Parana River floodplain. Leiden: The Netherlands Backhuys
317	Publishers:89–118.
318	Agostinho AA, Gomes LC, Zalewski M. 2001. The importance of floodplains for the dynamics
319	of fish communities of the upper river Parana. Ecohydrology and Hydrobiology, 1:209-
320	217
321	Agostinho AA, Gomes LC, Suzuki HI, Julio HF. 2003. Migratory fish from the upper Parana
322	River basin, Brazil. In: Carolsfeld J, Harvey B, Ross C, Baer A, Ross C, editors.
323	Migratory Fishes of South America: Biology, Social Importance and Conservation
324	Status. Victoria: World Fisheries Trust, the World Bank and the International
325	Development Research Centre:19–99.
326	Agostinho AA, Gomes LC, Veríssimo S, Okada EK. 2004. Flood regime, dam regulation and
327	fish in the Upper Paraná River: effects on assemblage attributes, reproduction and
328	recruitment. Reviews in Fish Biology and Fisheries, 14:11-19. DOI: 10.1007/s11160-
329	004-3551-y
330	Donaldson EM. 1981. The pituitary—interrenal axis as an indicator of stress in fish. In:
331	Pickering AD, editor. Stress and Fish. New York: Academic Press:11-48.
332	Donaldson EM, Hunter GA. 1983. Induced final maturation, ovulation, and spermiation in
333	cultured fish. In: Hoar WS, Randall DJ, Donaldson EM, editors. Fish Physiology Vol.
334	IXB. New York: Academic Press:351-404.
335	Gomes LC, Agostinho AA. 1997. Influence of the flooding regime on the nutritional state and
336	juvenile recruitment of the curimba, Prochilodus scrofa, Steindachner, in upper Paraná
337	River, Brazil. Fisheries Management and Ecology, 4(4):263-274. DOI: 10.1046/j.1365-
338	2400.1997.00119.x

339	Gonzalez J, Hernandez G, Messia O, Perez A. 2010. Extracto hipofisiario de Coporo
340	(Prochilodus mariae) como agente inductor sustitutivo en la reproducción de su misma
341	especie. Zootecnia Tropical, 28(1):25-32.
342	Gonzalez R, Shepperd E, Thiruppugazh V, Lohan S, Grey CL, Chang JP, Unniappan S. 2012.
343	Nesfatin-1 Regulates the Hypothalamo-Pituitary-Ovarian Axis of Fish. Biology of
344	Reproduction, 87(4):1–11. DOI: 10.1095/biolreprod.112.099630.
845	Iseki KK, Correa SA, Negrão JA, Castrucci AML. 2003. Seasonal changes in LH and 17β-
346	estradiol levels in the freshwater teleost Piaractus mesopotamicus. Salvador: World
347	Aquaculture, Book of Abstracts.
348	Jiménez-Segura LF, Palacio J, Leite R. 2010. River flooding and reproduction of migratory fish
349	species in the Magdalena River basin, Colombia. Ecology of Freshwater Fish, 19:178-
350	186. DOI: 10.1111/j.1600-0633.2009.00402.x
351	Junk W, Bayley PB, Sparks RE. 1989. The flood pulse concept in river flood plain systems.
352	Canadian Journal of Fisheries and Aquatic Sciences, 106:110-127
353	León G. 2010. Aspectos de la circulación atmosférica de gran escala sobre el noroccidente de
354	Suramérica asociada al ciclo ENSO 2009-2010 y sus consecuencias en el régimen de
355	precipitación en Colombia. Bogotá: IDEAM.
356	Lewis L Jr., Hamilton SK, Saunders JF. 2006. Rivers of northern South America. In: Colbert E,
357	Cushing KW, Cummins G, Minshall W, editors. River and Stream Ecosystems of the
358	World. Berkeley, CA: University of California Press:219–256.
359	Likens GE. 2010. River Ecosystem Ecology: A global perspective. San Diego, CA: Academic
860	Press.
861	Lowe-McConnell RH. 1987. Ecological studies in tropical fish communities. New York:
362	Cambridge University Press.
363	López-Casas S. 2015. Magdalena potadromous migrations: Effects of regulated and natural
364	hydrological regimes. [PhD thesis]. Medellín, Colombia: Universidad de Antioquia.

365	Lopez-Casas S, Jimenez-Segura LF, Agostinho AA, Perez CM. 2016. Potamodromous
366	migrations in the Magdalena River basin: bimodal reproductive patterns in neotropical
367	rivers. Journal of Fish Biology: 1(89):157-171. DOI: 10.1111/jfb.12941
368	Macnaughton CJ, McLaughlin F, Bourque G, Senay C, Lanthier G, Harvey-Lavoie S, Legendre
369	P, Lapointe M, Boisclair D. 2015. The Effects of Regional Hydrologic Alteration on Fish
370	Community Structure in Regulated Rivers. River Research and Applications: 33(2):249-
371	257.
372	Marulanda A, Castro A, Silva J. 2003. Miel I dam, seepage control and behavior during
373	impoundment. In: Berga L, Buil JM, Jofré C, Chonggang S, editors. Roller Compacted
374	Concrete Dams: Proceedings of the IV International Symposium on Roller Compacted
375	Concrete Dams. Lisse: AA Balkema Publishers: 1161-1168.
376	Melamed P, Sherwood N, editors. 2005. Hormones and their receptors in fish reproduction.
377	Singapore: World Scientific Publishing Co. Pte. Ltd.
378	Mishra A, Sarkar UK. 2013. Perspectives of gonadal maturation in tropical fish, a review. In:
379	Goswami UC, editor. Advances in Fish Research VI. Delhi: Narendra Publishing House:
380	15–30.
381	Murchie KJ, Hair KPE, Pullen CE, Redpath TD, Stephens HR, Cooke, S. 2008. Fish response to
382	modified flow regimes in regulated rivers: research methods, effects and opportunities.
383	River Research and Applications, 24:197–217. DOI: 10.1002/rra.1058
384	Payne AI. 1986. The ecology of tropical lakes and rivers. Great Britain: John Wiley & Sons Ltd.
385	Reinoso-Flórez G, Vejarano-Delgado M., García-Melo J, Pardo-Pardo G, Pérez-Gallego C,
386	García-Melo L, Parra-Trujillo Y, Bohórquez-Bonilla H, Patiño L, López-Delgado A,
387	Vásquez-Ramos J. 2010. Plan de ordenación pesquera de la cuenca baja del río La Miel.
388	Ibagué: Instituto Colombiano Agropecuario ICA, ISAGEN, Universidad del Tolima.
389	Restrepo JD, Zapata P, Díaz JM, Garzón-Ferreira J, García C, Restrepo JC. 2005. Aportes
390	fluviales al mar caribe y evaluación preliminar del impacto sobre los ecosistemas

391	costeros. In: Restrepo JD, editor. Los sedimentos del rio Magdalena: reflejo de la crisis
392	ambiental. Medellín: Fondo Editorial Universidad EAFIT: 187-215.
393	Santos EM, Rand-Weaver M, Tyler CR. 2001. Follicle stimulating hormone and its alpha and
394	beta subunits in rainbow trout (Oncorhynchus mykiss): Purification, characterization,
395	development of radioimmunoassays, and their seasonal plasma and pituitary
396	concentrations in females. Biology of Reproduction, 65:288-294. DOI:
397	10.1095/biolreprod65.1.288
398	Shi SR, Guo J, Cote RJ, Young L, Hawes D, Shi Y, Thu S, Taylor CR. 1999. Sensitivity and
399	Detection Efficiency of a Novel Two-Step Detection System (PowerVision) for
100	Immunohistochemistry. Applied Immunohistochemistry & Molecular Morphology,
401	7(3):201-208. DOI: 10.1097/00129039-199909000-00005
102	Suzuki K, Kawauchi H, Nagahama Y. Isolation and characterization of two distinct
403	gonadotropins from chum salmon pituitary glands. Gen Comp Endocrinol. 1988; Part a,
404	71:292-301.
405	Suzuki K, Kawauchi H, Nagahama Y. 1988. Isolation and characterization of subunits from two
406	distinct salmon gonadotropins. General and Comparative Endocrinology: Part b, 71:302-
107	306. DOI: 10.1016/0016-6480(88)90257-2
408	Urbinati E. Bases fisiológicas de la reproducción en peces tropicales. 2005. In: Victoria P,
109	Landines M, Sanabria AI, editors. Reproducción de peces en el Trópico. Bogotá:
410	Imprenta Nacional de Colombia: 23-42.
411	Unidad de Planeación Minero Energética- UPME. 2012. Informe de Gestión 2012. Bogotá:
412	Gráficas Ducal Ltda.
413	Vazzoler AEAM. 1996. Biologia da reprodução de peixes teleósteos: teoria e prática. São
414	Paulo: EDUEM/SBI.
415	Victoria P, Landines MA, Sanabria AI. 2005. Reproducción de los peces en el trópico. Bogotá:
416	INCODER, Universidad Nacional de Colombia; 2005.

17	Vongvatcharanona U, Binaleeb F, Suwanjaratb J, Boonyounga P. 2006. Immunocytochemical
118	identification of gonadotropic cell types and changes in cell numbers during annual
119	reproductive cycle in pituitary gland of adult male sand goby, Oxyeleotris marmoratus.
120	ScienceAsia: 32:337-343. doi: 10.2306/scienceasia1513-1874.2006.32.337
121	Welcomme RL. 1985. River fisheries. Rome: FAO Fisheries Technical Paper 262.
122	Wootton R. 1999. Ecology of Teleost Fishes. London: Chapman & Hall.

Table 1(on next page)

Number of invidivuals of P. magdalenae by sex, maturity stage and site

Number of individuals of *Prochilodus magdalenae* by maturity stage (according to Vazzoler classification), by sex and by sample site (natural or regulated flow river), collected between June 2010 to June 2011 in the Magdalena River Basin.

SITE	Total by sex	Stage A	Stage B	Stage C	Stage D	Stage E
Natural flow river	♀: 254	154	35	51	12	4
	♂: 332	164	56	103	8	1
	♀: 307	147	62	65	32	1
Regulated flow river	♂: 376	127	77	162	8	2

Map of the study area and sampling sites

Location of the study area and sampling sites on the Magdalena River (Natural flow river) and sampling sites on the La Miel River Basin (Regulated flow river). The Magdalena River flows from south to north.

Water level (m) and discharge (m³/s) by sampling sites

Water level (m) and discharge (m³/s) from June 2010 to June 2011 for natural and regulated flow rivers

Natural river 2010 - 2011

Regulated river 2010 - 2011

Mean value and SD of Gonadosomatic Index by site, month and sex for P. magdalenae

Mean value and standard deviation of Gonadosomatic Index (GI) by sampling site, month and sex for *Prochilodus magdalenae* from natural and regulated rivers of the Magdalena River Basin. Same letter or number means equals mean values

Relation between gonadal maturity and number of immunostained FSH and LSH cells for *P. magdalenae*

Relation between gonadal maturity and number of immunostained cells for Follicle-Stimulating Hormone (FSH) and Luteinizing Hormone (LH) for *Prochilodus magdalenae* by river and sex. Same letter or number means equal mean values.

