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Despite recent efforts that have produced data sets with hundreds and thousands of gene

regions to resolve regions of the tree of life, recalcitrant nodes persist and disagreement

among genes as well as disagreement between individual gene trees and species trees are

common. There are a number of evolutionary processes that contribute to these conflicts

between gene trees and species trees, including deep coalescence (lineage sorting),

horizontal gene transfer or hybridization, etc. While for some of these processes, we have

very powerful and sophisticated models that uses the conflict in the gene trees as

information that contributes materially to correctly inferring the species tree, such as the

multispecies coalescent (MSC). However, usage of these models require a priori

recognition of relevant processes, which is often unknown for empirical dataset. Here we

propose a new perspective to not only identify the cause of discord among gene trees, but

also use it to classify loci by the underlying cause of discord to identify subsets of loci for

analysis with the goal of improving phylogenetic accuracy. This approach differs

fundamentally from all other criteria used for making decisions about which loci to include

in a phylogenetic analysis. In particular, the choice of loci in this framework is based on

identifying those that reflect descent from a common ancestor (as opposed to other

processes), and thereby can minimize problems with model misspecification. We present

preliminary results that demonstrate the potential of this framework in distinguishing the

lateral gene transfer (LGT) from incomplete lineage sorting (ILS) process, as implemented

in a new software package CLASSIPHY, while also highlighting areas for further

development and testing. We discussed why such methods (i) are critical to improving

phylogenetic accuracy with the increased complexity of genomic/transcriptomic datasets,

and that (ii) characterizing patterns of discordance and the contribution of different

processes to this discordance is itself of interest for generating hypotheses about the role

of lateral gene transfer, gene duplication, and incomplete lineage sorting during the

divergence of different taxa.
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Abstract

Despite recent efforts that have produced data sets Lith hundreds and thousands of gene regions 

to resolve regions of the tree of life, recalcitrant nodes persist and disagreement among genes as 

Lell as disagreement betLeen individual gene trees and species trees are common.  There are a 

number of evolutionary processes that contribute to these conflicts betLeen gene trees and 

species trees, including deep coalescence (lineage sorting), horizontal gene transfer or 

hybridization, etc. While for some of these processes, Le have very poLerful and sophisticated 

models that uses the conflict in the gene trees as information that contributes materially to 

correctly inferring the species tree, such as the multispecies coalescent (MSC). HoLever, usage 

of these models require a priori recognition of relevant processes, Lhich is often unknoLn for 

empirical dataset. Here Le propose a neL perspective to not only identify the cause of discord 

among gene trees, but also use it to classify loci by the underlying cause of discord to identify 

subsets of loci for analysis Lith the goal of improving phylogenetic accuracy. This approach 

differs fundamentally from all other criteria used for making decisions about Lhich loci to 

include in a phylogenetic analysis. In particular, the choice of loci in this frameLork is based on 

identifying those that reflect descent from a common ancestor (as opposed to other processes), 

and thereby can minimize problems Lith model misspecification. We present preliminary results 

that demonstrate the potential of this frameLork, as implemented in a neL softLare package 

CLASSIPHY, Lhile also highlighting areas for further development and testing. In addition, Le 

present an argument Lhy such methods (i) are critical to improving phylogenetic accuracy Lith 

the increased complexity of genomic/transcriptomic datasets, and that (ii) characterizing patterns 

of discordance and the contribution of different processes to this discordance is itself of interest 

for generating hypotheses about the role of lateral gene transfer, gene duplication, and incomplete

lineage sorting during the divergence of different taxa.
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Introduction

Recent advances in sequencing technology have encouraged massive data collection efforts aimed at 

resolving regions of the tree of life that have eluded confident reconstruction (Rokas et al., 2003). 

HoLever, the resulting phylogenomic datasets present a major challenge as phylogenetic methods for 

estimating the species tree Lhile accommodating the inherent complexity of these large datasets do not 

exist and are not computationally feasible (Jeffroy et al., 2006). The discord among individual genes is 

clear Lith these genome-scale datasets Lhen the phylogenetic relationships among species are examined 

in detail (Smith et al. 2015), Lhich in some cases every gene in the dataset has a unique tree (e.g., Song et 

al., 2012). 

Ignoring gene-tree discord can lead to incorrect species-tree inferences (e.g., Nosenko et al., 2013;

Sharma et al., 2014; Smith et al., 2015). For example, phylogenetic estimates from concatenated datasets 

that ignore gene tree discord arising from incomplete lineage sorting (ILS) can be statistically inconsistent

(Kubatko and Degnan, 2007). Coalescent theory makes it possible to effectively model ILS and construct 

a species tree conditioned on a distribution of gene trees in empirical data (Ane et al., 2007; KnoLles, 

2009; KnoLles and Kubatko, 2011; KnoLles et al., 2012; Liu et al., 2009; Mirarab et al., 2014).  HoLever,

ILS may not be the primary contributor to patterns of gene tree discord in phylogenomics (e.g., Arcila et 

al., 2017). There are many other factors related to evolutionary history (e.g., lateral gene transfer [LGT], 

hybridization [H], gene duplication and loss [DL]; Maddison (1997)) and molecular evolution (e.g., 

noise/lack of signal in the sequences, and nonstationarity in base composition) that can contribute to gene 

tree discord. Yet, Le lack a method that estimates phylogenetic relationships considering the many 

processes that contribute to gene tree discord (but see Boussau et al., 2013). As a consequence, empirical 

studies have difficulty in judging Lhether their chosen phylogenetic methods adequately model the 

sources of discord in the data, and Lhat effect this model mis-specification might have on the accuracy of 

the phylogenetic estimates. For example, several studies have observed that slight changes to dataset 

assembly and/or phylogenetic reconstruction methods often generate different species trees (Betancur et 

al., 2014; Jarvis et al., 2014; Wickett et al., 2014; Xi et al., 2014).
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Here, Le argue that an alternative approach to the joint modeling of multiple processes underlying

discord is to identify subsets of data Lith reduced heterogeneity such that the fit of the data to our models 

is better, and hence, the phylogenetic inference is more accurate. In particular, Le ask if it is possible to 

identify communities of loci Lith similar properties using methods that are not agnostic Lith respect to 

biological processes that generate discord? We are not discounting the recent developments for estimating 

phylogenetic relationships Lhile explicitly modeling specific sources of discord (e.g., gene duplication 

and loss, Boussau et al. (2013); hybrid origin of taxa,Meng and Kubatko (2009); netLorks, Solis-Lemus 

and Ane (2016) and Than et al. (2008)). Yet, considering that models are unlikely to accommodate all of 

the heterogeneity and complexity in full genomes and transcriptomes in the near future, and that the 

inherent heterogeneity of datasets Lill increase Lith increased taxon sampling, identifying data partitions 

that are most likely to reflect descent from a common ancestor (ILS as opposed to LGT and DL, for 

example) may be a more feasible goal. Furthermore, classifying loci according to different discord-

generating processes Lill also provide us Lith a better understanding of hoL each process shaped the tree 

of life. That is, the processes underlying the discord are interesting research questions in their oLn right 

(e.g., Lhat is the distribution of DL across the tree of life, and is it commonly associated Lith 

hypothesized ecological transitions?).

While Le acknoLledge this is a challenging and relatively unexplored area, Le also note that the 

approach is not Lithout precedent. For example, statistical procedures for identifying sets of loci Lith 

similar tree properties that might be used for phylogenetic inference, but Lhich are agnostic Lith respect 

to the biological processes, have been proposed (e.g., Arcila et al., 2017; de Vienne et al., 2012; Fong et 

al., 2012; Weyenberg et al., 2014). This contrasts Lith our approach in Lhich subsets of data for 

phylogenetic inference are identified Lith respect to the biological processes generating the discord. 

Specifically, Le apply a machine learning approach, called CLASSIPHY, in Lhich gene tree discord 

simulated under the actual biological processes that are knoLn to produce discord are used to discriminate

or classify genes according to cause of discord. 

Given the size of datasets generated today, a full probabilistic approach is often computationally 

infeasible. As such, Le focus on summary statistics as a means of distinguishing among sets of genes 
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based on the processes producing discord, as in other applications (e.g., using joint sample frequency 

spectrum to infer multiple population history, Gutenkunst et al. (2009); topology-based D-statistic to test 

for introgression, Eaton and Ree (2013)). By using multiple summary statistics, in addition to being 

computationally tractable, CLASSIPHY is also flexible, as additional summary statistics being applied for

future extensions (e.g., for an expanding into other sources of discord). Here, Le present the analysis 

pipeline, use simulation to illustrate its application to distinguish ILS and LGT, or more specifically, 

discord that arises from ILS alone versus those Lith some LGT (i.e., trees Lith LGT also are subject to 

ILS as Lell) discuss factors that might affect the method’s accuracy, and suggest future extensions for 

improvement.

Methods

CLASSIPHY Method 

CLASSIPHY is a simulation-trained machine learning method (see Figure. 1 for an overvieL of 

the simulation/ analysis pipeline). Hence, the first step is simulation— simulating phylogenies under 

regimes corresponding to different processes that might contribute to discord. Second, Le calculate 

summary statistics on these simulated gene trees (i.e., the training data), and then apply the Discriminant 

Analysis of Principal components (DAPC; Jombart et al., 2010) procedure to construct a discriminant 

analysis function based on extracted principal components. Lastly, application of the discriminant analysis

function to the empirical set of gene trees classifies the loci Lith respect to the different processes that 

might underlie gene-tree discord, along Lith the posterior probabilities of each process. All the code for 

CLASSIPHY is available in an R package and could be accessed from 

https://github.com/huatengh/Classiphy.

The first gene tree simulation step can be carried out by any softLare as along as it can simulate 

and keep track of the processes of interested. The CLASSIPHY R package provides a Lrapper function for

SimPhy (Mallo et al., 2016), a fast and versatile program that can simulate multiple sources of gene-tree 

discord. In this study, Le used this program to simulate the tLo processes—ILS and LGT.  In this study, 

Le Lill test Lhether the CLASSIPHY analysis frameLork can identify LGT-induced gene-tree discord 
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from ILS-generated discord. Briefly, SimPhy simulates gene trees in three hierarchical steps: i) a species 

tree is simulated under a speciation/extinction model (or can be given), ii) locus trees evolve in the species

tree Lith locus-specific LGT events, and iii) gene trees are simulated Lith lineage sorting process inside 

the locus tree (Figure 1). Hence, comparing betLeen species tree, locus tree and gene tree, the true 

contribution of the tLo processes to the gene-tree species-tree discord is knoLn.

The choice of summary statistics in the second step is important. The key, as Lith any approach 

that relies upon summaries of genetic data, is that they could capture some differences in the patterns 

generated by the processes/models being studied.  Both LGT and ILS can lead to gene-tree species-tree 

discordance. HoLever, LGT can generate gene-tree topologies that are more distant from the species tree 

and other gene trees. The distribution of gene-tree species-tree discord Lould also differ, because LGT 

does not depend on the species-tree shape as ILS (i.e., the probability of ILS is higher for internodes Lith 

short time interval betLeen speciation events). We developed a set of summary statistics to capture these 

differences based on discordance among gene trees and the distribution of discordance on species tree (see

Huang et al. 2017 for descriptions of the summary statistics applied here), as Lell as included some 

traditional gene-tree species-tree topological distances (e.g., Robinson–Foulds distance, Robinson and 

Foulds (1981). The current version of CLASSIPHY R package contains four sets of summary statistics 

based on tree topology. Note that the list of summary statistics can be easily expanded or adjusted by user 

for classification of LGT or other discord-generating processes.

It is important to note that the summary statistics are not used directly in the discriminant analysis,

but rather the principal components (PCs) extracted from the summary statistics are used. Hence, these 

summary statistics can be correlated, and some might be relatively uninformative for certain divergent 

histories Lithout biasing the results. It is the machine learning algorithm (i.e., DAPC in this case) that 

finds the combination of these summary statistics that can identify LGT-affected loci among gene trees 

Lith ILS-caused discord. To avoid the PCs being impacted by different scales of statistics, all summary 

statistics Lere scaled by their ranges (i.e., maximum minus the minimum). Because too many PCs Lill 

result in overfitting to the training data, Lhereas too feL Lill result in lack of poLer (Jombart et al., 2010),

Le select the number of PCs in the DAPC analysis using a heuristic optimization criterion. Specifically, 
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Le first construct an array of discriminant functions using different number of PCs, and re-classify the 

simulated training dataset using these functions. The optimal number of PCs is the one that maximizes the 

percent of correct re-classification.

As a simulation-trained method, assessing CLASSIPHY’s performance is straightforLard. 

Specifically, Le can keep some simulated gene trees as testing data and examine hoL accurately these 

trees are classified. It Lould provide information on Lhether the chosen summary statistics have enough 

poLer to differentiate the underlying processes. Furthermore, comparing the summary statistics betLeen 

simulated and empirical data gives an indication of Lhether the simulations are conducted in the right 

parameter space (e.g., having comparable levels of gene-tree discord).

Simulation Study

We use simulation to illustrate the utility and examine the performance of the CLASSIPHY 

approach. Specifically, Le simulated 1000 species trees Lith 100 taxa under a birth-death process (birth 

rate equal to tLice of the death rate) at a fixed depth of 50N generation, Lhere N is the effective 

population size. Here, Le only considered the case of one individual sequenced per species, the usual 

sampling configuration for phylogenomic studies.

For each species tree, a rate of LGT Las randomly sampled from a uniform distribution (i.e., 1e-9 

to 5e-9 LGT events per generation) and 2,000 locus trees Lere generated. The varying LGT rate means 

that the portion of LGT-affected trees varies across species trees, Lhich correspond to the fact that Le 

usually do not knoL the percent of LGT-affected genes in empirical datasets. Gene trees Lith ILS Lere 

then simulated, Lhere the probability of ILS differed across locus trees as a function of the branch lengths.

Our analyses are based on the simulated gene trees (as opposed to estimated gene trees from simulated 

nucleotide datasets). As such, our results do not address the issue of lack of phylogenetic information for 

gene-tree estimation (see our discussion). HoLever, by analyzing gene genealogies directly, Le can focus 

specifically on the challenges Lith classification of loci by process Lithout confounding influence from 

mutational variance (see Huang et al. 2010; Lanier et al. 2014). Depending on the “donor” and “receiver” 

lineage, LGT events may or may not cause a locus tree to differ topologically from its species tree. 

Therefore, only LGT events that alter tree topology Lere considered, and hereafter, the affected loci are 
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referred to as LGT loci or being in the “LGT regime”. The rest of loci are referred to as “ILS loci” or 

being in the “ILS regime”, unless explained otherLise. In total, Le simulated tLo million gene trees 

(1,000 x 2,000), and for each gene tree, Le calculated an array of summary statistics based on its 

topology, Lhich Lere constituted of 25 summary statistics Lhen applying CLASSIPHY’s default setting 

on our simulated data. Since majority of the gene trees are in ILS regime for the conditions examined 

here, Le equalized the number of loci by randomly dropping out ILS loci from the training dataset. As 

there Lere 1,000 species trees, DAPC Las run 1,000 times, each time Lith a different species tree (along 

Lith its 2000 gene trees) as the testing data and the rest trees as the training data.  

Performance Assessment

We characterized the classification ability of CLASSIPHY by investigating Lhether the posterior 

probability of LGT is a good predictor for LGT’s presence. This is evaluated by plotting the receiver 

operating characteristic (ROC) curve for each species tree, and calculating the area under curve (AUC) 

using the pROC R package (Robin et al., 2011). AUC is a statistic that ranges from 1 to 0.5, for perfect to 

zero discrimination ability, respectively. We also calculate the percentage of correct classification under 

tLo criteria: (i) the default of cutoff of greater than 0.5 as the simulation only has tLo regimes (i.e., LGT 

vs. ILS), And (ii) a cutoff that maximizes the Youden's index (i.e., sensitivity plus specificity of the 

classifier; Youden (1950)). We report the average AUC and proportion of correct identification across 

species trees.

In addition to performance evaluation, Le also used the simulated data to investigate possible 

factors affecting the performance. This included an examination of the variation among gene trees per 

species tree. We calculated tLo RF distances, RF distance betLeen species tree and locus tree, and that 

betLeen locus tree and gene tree, Lhich represent the true contribution of LGT and ILS to gene-tree 

discord, and check Lhether these RF distances are correlated Lith the posterior probabilities of LGT and 

ILS. We also examined the variation among species trees. More specifically, Lhy the discrimination 

ability of trained DAPC model differs among species trees? Llinear regression Las used to test of Lhether 

the model’s AUC correlates Lith the LGT rate (i.e., the percentage of true LGT gene trees) and average 
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amount of LGT/ILS in the gene trees (i.e., average species-to-locus-tree and locus-to-gene-tree RF 

distance).

Results

Our simulation study shoLs that the posterior Leight is a good predictor for the true discord-

generating process (Figure 2), Lith an average AUC (area under curve) of 0.81 across all species trees. 

The posterior probability of LGT and ILS are highly correlated Lith the true contribution of the respective

processes to gene-tree discord. Specifically, the topological differences induced by LGT (i.e., the RF 

distance betLeen locus tree and species tree, DSL) is positively and significantly correlated Lith the gene 

tree’s posterior probability of LGT (average Pearson correlation coefficient 0.82, Fig.3a and b). That is, 

LGT events Lith large effect are more likely to be detected than those only resulting in minor topological 

changes (Fig. 3b). The amount of ILS present in a gene tree (i.e., the RF distance betLeen gene tree and 

locus tree, DLG) is negatively and significantly correlated Lith the posterior probability of ILS (average 

Pearson correlation coefficient -0.66; Fig. 3c and d). This suggests that gene trees Lith more ILS Lould 

have higher chance of being misidentified as LGT. Yet, as ILS gene trees in general have relatively high 

posterior probability of the correct regime, only a small proportion Las misidentified (Fig 2b and Fig. 3d).

In addition to the variation among gene trees, there is considerable variation in terms of model 

performance among species trees (different AUC curves in Fig. 2a). As expected, the model’s AUC is 

positively correlated Lith average DSL (Fig 4a; p<0.001), and negatively correlated Lith average DLG (Fig 

4b; p<0.001). That is, Lith higher LGT contribution to the gene-tree discord, CLASSIPHY becomes more 

efficient in identifying LGT gene trees, Lhile ILS acts as noise that reduces the accuracy. Simple linear 

regression also shoLs that the model’s AUC is positively correlated Lith percentage of LGT gene trees in 

the data (Fig 4c; p<0.001). HoLever, this most likely reflects the greater chance of having gene trees Lith 

high DSL (and hence, high classification accuracy) as the correlation is no longer significant after 

controlling for DSL (Fig 4d; p=0.26).    

Discussion
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Here, Le describe CLASSIPHY—a simulation-based analysis frameLork to identify different 

sources of gene tree discord that has applications for current phylogenomic studies, and explored the 

potential of CLASSIPHY in distinguishing LGT and ILS using simulated data. Both ILS and LGT are 

considered important processes underlying gene-tree discordance. In particular, the aLareness of ILS has 

increased dramatically in the last decades as more large multi-locus data Lere collected and more species-

tree methods Lere developed—these methods noL are almost routinely applied in phylogenetic studies

(e.g., EdLards et al., 2007; Wickett et al., 2014). For LGT, the interest first came from studying 

prokaryotes’ evolution (BroLn, 2003), but more and more LGT evidences in eukaryotes are established

(Keeling and Palmer, 2008). Just as ILS, multiple methods have been developed to tree reconstruction 

Lhen genes have conflicting evolutionary history due to LGT events (Bansal et al., 2013; Sjostrand et al., 

2014). Studies have proposed various optimizing criteria, from minimizing the total Robinson-Foulds 

distance of the supertree (Bansal et al., 2010) to the Subtree Prune-and-Regraft distance (Whidden et al., 

2014), and robustness to LGT Las compared betLeen tree-building approaches (e.g., supertrees versus 

supermatrix; Lapierre et al., 2014). HoLever, most of the methods dealing Lith LGT do not model 

coalescent process, except that a revieL paper by Szollosi et al. (2015) discussed a potential model by 

extending and combining current methods (Szollosi et al., 2015). In this study, Le modelled ILS and LGT 

simultaneously, and it should be noted that Le tested CLASSIPHY’s performance in a very difficult 

simulated scenario—high levels ILS. We simulated species trees Lith 100 taxa at depth of 50N, Lhich 

corresponds to tLo lineages per million years on average if assuming a large effective population size of 

one million (smaller population means even higher diversification rates), and no gene tree is identical to 

locus tree in our simulated dataset. The consequence is that ILS causes much more topological discord 

than LGT (see the difference in x-axis’ scale betLeen Fig. 4a and 4b), Lhich makes LGT events difficult 

to detect. Simply ignoring ILS or only looking at single summary statistic (such as RF distance) Lould 

mistake a lot of ILS loci as LGT. In this sense, the performance of CLASSIPHY is promising that it 

identifies almost half of the LGT Lith only ~5% mis-identified ILS loci. For empirical datasets, high 

diversification rate is certainly possible in some radiations (e.g., cichlids; Seehausen, 2000), but most of 

the time, lineage diversification rate is much loLer (e.g., 0.078-0.14 lineages per my for majority of the 
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fish lineage; Rabosky et al., 2013). The simulation shoLed that the model’s AUC increases Lith 

decreasing ILS discord (Fig. 4b), so better performance of CLASSIPHY can be expected in easier 

scenarios. 

The performance of CLASSIPHY can also improve if more information is extracted from the 

divergent history itself. Imagining if Le have the true divergent history at hand (not only the topology but 

also the time of divergent events in unit of effective population size), identifying processes other than ILS,

Lould be quite straightforLard— the probability distribution of gene tree (e.g., COAL; Degnan and Salter,

2005) can be calculated and gene trees that are too unlikely could be identified as outliers. HoLever, in 

empirical studies, the goal often is to reconstruct an unknoLn divergent history from a heterogeneous 

gene-tree set Lith an unknoLn proportion of outliers. Here, Lhen testing CLASSIPHY’s performance, Le 

set up the simulation to reflect these “unknoLns”:  only tLo pieces of information are shared betLeen 

testing and training data— the tree depth and birth-death model of the species tree. As a result, species 

trees in the training dataset differ vastly in terms of the amount of ILS (Fig. 4b), and the rate of LGT 

(ranging from affecting 6% of the trees to 52%; Fig. 4a). With these settings, the trained DAPC model is 

applicable to divergent histories from a large parameter space. Yet, the divergent history itself clearly has 

an impact on the model performance (Fig. 2a and Fig . 4). HoL to incorporate some information about the 

divergent history in simulating training data Lithout risking having a model not in the right parameter 

space Larrants further investigation. In this study, Le also used gene-tree information “conservatively”—

Le only used topology-based summary statistics. Branch lengths Lould be a rich source of information, in

particular, helping identify LGT events that have little effect on topology. HoLever, they are more 

sensitive to mutational variance (Huang et al., 2010). Whether branch-length-based summary statistics 

(and Lhich statistics) Lould help improve the model performance need more evaluation Lith estimated 

gene trees. One advantage of CLASSIPHY analysis frameLork is its flexibility—it has simulation, 

summary statistic calculation, and DAPC modelling as separated parts, so users can easily alter the 

simulation setting, modify the list of summary statistics, and test hoL the changes affect the model 

performance.    
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The results from CLASSIPHY Lould have many applications for current phylogenomic studies. 

As the scope of phylogenomic studies expand in terms of genomic coverage and taxa, many empirical 

studies suggest that multiple processes are contribute more or less to discord in a heterogeneous Lay 

throughout a phylogeny (e.g., Fontaine et al., 2015; Smith et al., 2015; Wickett et al., 2014). For example, 

in the recent bird genome phylogeny (Jarvis et al., 2014), lack of signal, selection due to life history 

evolution, and incomplete lineage sorting Lere all thought to play a role in shaping the phylogeny. 

Successfully identifying different sources of discord Lould alloL us partition a large dataset into 

homogenous subsets that can be adequately modeled by existing methods (e.g., Chen et al., 2015; Xi et al.,

2014). In this sense, CLASSIPHY analysis frameLork Lould be complementary to various data filtering 

tools that have been proposed to address the negative impact of data heterogeneity on phylogenomic 

estimates. Although inferred topologies in phylogenomic studies typically have high support values due to

the large number of basepairs (Lhich is a problem by itself, see BroLn and Thomson (2017)), many of the

neL resolutions to difficult nodes on the tree of life are not accepted by researchers Lithout reservation—

there is a long list of such controversial examples from plants, fungi and animal (Shen et al., 2017). Do 

these neL resolutions represent “Lhole-genome evidence”? Or reflect biases in data processing steps and 

tree reconstruction methods (e.g., Dell'Ampio et al., 2014; Fernández-Mazuecos et al., 2017)? Or are 

driven by strong signals in small number of genes or sites (Lhich could be outliers; e.g., Shen et al., 2017; 

Xi et al., 2014)?  Many data filtering strategies Lere proposed based on “interrogating” large empirical 

datasets, from rate of evolution to gene functional categories (e.g., Betancur et al., 2014; Doyle et al., 

2015; Klopfstein et al., 2017; Romiguier et al., 2013; Salichos and Rokas, 2013). CLASSIPHY differs 

from these strategies based on sequence or gene-tree properties in that it employs machine learning to 

dissects the distribution of discord among the gene trees Lith respect to potential biological processes that 

could generate the discord-- do the pattern reflect neutral lineage sorting process (hence, a simple multi-

species coalescent model is enough?) Or are there significant deviations (i.e., other processes might 

contribute to the conflicts among trees)? Researchers can use its result for data filtering, testing the 

robustness of their tree-estimation methods Lhen mixing in varying proportions of loci affected by other 

processes, or as an evaluation of the prevalence of different processes to identify Lhat should be 

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3489v1 | CC BY 4.0 Open Access | rec: 27 Dec 2017, publ: 27 Dec 2017



integrated into phylogenetic models (i.e., choosing or developing appropriate species-tree estimation 

methods for the Lhole dataset).

CLASSIPHY Lould also help to understand more about discord-generating processes, Lhich are 

interesting biological phenomena in their oLn right. For example, although LGT is often considered as a 

signature characteristic for plant genome evolution and a challenge for phylogenetic estimates (Bock, 

2010), Le have little information and many basic questions remain. What is the average rate of LGT? 

HoL does it vary across time and phylogeny? Does the propensity to transfer differ among different 

functional categories? Or chromosomal locations? With classifying tools, Le can make use of large 

databases from projects such as the 1KP plant transcriptome project and Bird 10K project to ansLer these 

questions (Matasci et al., 2014; Zhang et al., 2015). Moreover, CLASSIPHY not only assigns loci into 

categories, but also outputs the posterior probability of a locus being affected by a process (Fig. 1), and Le

shoLed in simulation that this posterior probability is correlated Lith the true contribution of discord-

generating processes (Fig. 3). Hence, users can use correlations and regressions to ansLer questions 

mentioned above (e.g., Lhether regressing posterior probability of LGT against gene functional categories

is significant). 

Conclusions

As more and more genomic-scale datasets are collected, the complexity and heterogeneity Lithin 

the data becomes clear. The gap betLeen the data Le collect for phylogenetic analyses (i.e., large-scale 

transcriptomic and genomic data) and the methods that accommodate the inherent complexity of big data 

have created a tension Lhere the accuracy of phylogenetic inferences do not necessarily increase Lith 

more data (Jeffroy et al., 2006; Philippe et al., 2011). We expect CLASSIPHY, as a tool for understanding 

the processes generating these complexities and conflicts, to be applicable to many phylogenomic 

datasets, helping in reconstructing phylogenetic histories and facilitating our understanding of genome 

evolution.
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Figure Captions:

Figure 1. OvervieL of the CLASSIPHY analysis pipeline. The analysis can be conceptually divided into 

tLo parts—simulation and model training (left half of the figure), and applying the model to empirical 

gene tree sets (right half of the figure on grey background). Gene trees are simulated in hierarchical steps, 

in Lhich ILS and other processes of discord are incorporated. Underlined grey text shoLs some of the 

parameters used in this study. Summary statistics are then calculated for each simulate gene trees, 

constituting a large training data matrix, Lhich Las used by the DAPC method to build a discriminant 

function for different discord processes. This function is then applied to the summary statistics calculated 

from empirical gene trees. It calculates the posterior probability of each discord process (in this study, ILS 

and LGT) and classify trees into different processes.

Figure 2. CLASSIPHY performance across species trees. A) the ROC (Reviver Operating Characteristic) 

curves. In general, the closer the curve folloLs the left and then the top axis (i.e., closer to the upper-left 

corner), the more accurate is the classification; the closer the curve folloLs the diagonal dash line, the 

Lorse is the model performance. B) Percentage of correct classification for LGT and ILS process Lith 

different cutoffs on LGT posterior probability.

Figure 3. Variation of model performance among gene trees. For each species tree, the correlation betLeen

species-to-locus RF distance and the posterior probability of LGT Las calculated for LGT gene trees. A) 

shoLs the frequency distribution of these correlations across species trees, and B) shoLs an example of 

such correlation for one of the species tree. For each species tree, the correlation betLeen locus-to-gene 

RF distance and the posterior probability of ILS Las calculated for ILS gene trees. C) shoLs the frequency

distribution of these correlations across species trees, and D) shoLs an example of such correlation for one

of the species tree. RF distances Lere “jittered” (adding small noise) in C) and D) to shoL the density of 

points.  

Figure 4. Variation of the model performance (AUC) among species trees. A) Positive correlation betLeen

AUC and the average species-to-locus tree RF distance (DSL), each point represents data from one species 
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tree. B) Negative correlation betLeen AUC and the average locus-to-gene tree RF distance (DLG). C) 

Positive correlation betLeen AUC and the percentage of LGT trees. D) Correlation betLeen AUC and the 

percentage of LGT trees after controlling for DSL is not significant (p > 0.05).
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Figure 1

Figure 1. Overview of the CLASSIPHY analysis pipeline.

The analysis can be conceptually divided into two parts—simulation and model training (left

half of the figure), and applying the model to empirical gene tree sets (right half of the figure

on grey background). Gene trees are simulated in hierarchical steps, in which ILS and other

processes of discord are incorporated. Underlined grey text shows some of the parameters

used in this study. Summary statistics are then calculated for each simulate gene trees,

constituting a large training data matrix, which was used by the DAPC method to build a

discriminant function for different discord processes. This function is then applied to the

summary statistics calculated from empirical gene trees. It calculates the posterior

probability of each discord process (in this study, ILS and LGT) and classify trees into

different processes.
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Figure 2

Figure 2. CLASSIPHY performance across species trees.

A) the ROC (Reviver Operating Characteristic) curves. In general, the closer the curve follows

the left and then the top axis (i.e., closer to the upper-left corner), the more accurate is the

classification; the closer the curve follows the diagonal dash line, the worse is the model

performance. B) Percentage of correct classification for LGT and ILS process with different

cutoffs on LGT posterior probability.
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Figure 3

Figure 3. Variation of model performance among gene trees.

For each species tree, the correlation between species-to-locus RF distance and the posterior

probability of LGT was calculated for LGT gene trees. A) shows the frequency distribution of

these correlations across species trees, and B) shows an example of such correlation for one

of the species tree. For each species tree, the correlation between locus-to-gene RF distance

and the posterior probability of ILS was calculated for ILS gene trees. C) shows the frequency

distribution of these correlations across species trees, and D) shows an example of such

correlation for one of the species tree. RF distances were “jittered” (adding small noise) in C)

and D) to show the density of points.
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Figure 4

Figure 4. Variation of the model performance (AUC) among species trees.

A) Positive correlation between AUC and the average species-to-locus tree RF distance (DSL),

each point represents data from one species tree. B) Negative correlation between AUC and

the average locus-to-gene tree RF distance (DLG). C) Positive correlation between AUC and

the percentage of LGT trees. D) Correlation between AUC and the percentage of LGT trees

after controlling for DSL is not significant (p > 0.05).
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