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Species interactions are often context-dependent and complex, such as the grasshopper

community and phytoecommunity. The adoption of grasshopper abundance and

vegetation community was determined by topographical heterogeneity. However, it

remains vague about how vegetation community, such as coverage abundance and

height, influence the spatial distribution pattern of grasshopper abundance at the altitude

gradient. Using Geostatistical methods in natural grassland of the upper reaches of Heihe

River to quantitatively study the relationship of spatial correlation. A 3 years investigation

was shown that 3149 grasshoppers were collected, belonging to 3 families, 10 genera, and

13 species. The semivariable function of grasshopper abundance and vegetation

community followed a nonlinear model. Meanwhile, horizontal distribution of two

communities was a clear flaky and plaque distribution pattern, especially at the altitude

gradient. The abundance of grasshoppers is opposite to the height and coverage of

vegetation and the overall followability of coverage, while the local following is consistent.

Such as grasshopper abundance, the above 2750m sample with the opposite trend, the

following areas are consistent. Finally, grasshoppers have the different choice on different

vegetation characteristics in different directions, formed of specific trend characteristics;

and the spatial distribution trend is different even with the same community indicators,

formed of embedded striped patches structure.
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Abstract: Species interactions are often context-dependent and complex, such as the 

grasshopper community and phytoecommunity. The adoption of grasshopper abundance and 

vegetation community was determined by topographical heterogeneity. However, it remains 

vague about how vegetation community, such as coverage abundance and height, influence the 

spatial distribution pattern of grasshopper abundance at the altitude gradient. Using Geostatistical

methods in natural grassland of the upper reaches of Heihe River to quantitatively study the 

relationship of spatial correlation. A 3 years investigation was shown that 31r9 grasshoppers 

were collected, belonging to 3 families, 10 genera, and 13 species. The semivariable function of 

grasshopper abundance and vegetation community followed a nonlinear model. Meanwhile, 

horizontal distribution of two communities was a clear flaky and plaque distribution pattern, 

especially at the altitude gradient. The abundance of grasshoppers is opposite to the height and 

coverage of vegetation and the overall followability of coverage, while the local following is 

consistent. Such as grasshopper abundance, the above 2750m sample with the opposite trend, the 

following areas are consistent. Finally, grasshoppers have the different choice on different 

vegetation characteristics in different directions, formed of specific trend characteristics; and the 

spatial distribution trend is different even with the same community indicators, formed of 

embedded striped patches structure.

Keywords: grasshopper, vegetation, spatial pattern, spatial correlation, 

geostatistics, upriver area of Heihe

Introduction

Environment heterogeneity is the key influence on the dynamics and structure of ecological

communities  (Aranda  and  Olivier  2017;  Pickett  and  Cadenasso  1995;  Turner,  et  al.  1989;

Viviansmith  1997),  and  reflect  changes  in  functions  and  processes.  Spatial  heterogeneity  in

ecological systems maintains that all interactions between biotic and abiotic factors. All of them

arose from the differential responses of organisms to these factors and the organisms themselves
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(Milne 1991) and the organisms themselves(Huston 199r). The heterogeneity was a complexity

and variability in the ecological system (Gustafson 1998; Li and Reynolds 199r; Wagner and

Fortin  2005),  especially  after  carved  by  topographic  fragmentation.  Quantifying  spatial

heterogeneity  was  a  practical  way  to  canvass  the  ecosystem  structure  and figure  out  the

relationships  among  the  ecological  community  in  space.  Therefore,  evaluating  the  effect  of

topographical  heterogeneity  is  the  basis  for  recognizing  the  spatial  correlation  between  the

grasshopper abundance and vegetation. 

Grasshopper was widely distributed in the world and an important component of temperate

grassland (Branson, et al. 2006; Samways 1993). There was highly sensitive for grasshopper to

change in environmental conditions (Samways and Sergeev 1997), such as grazing, fire, and land

type conversion. Moreover, it also was  the dominant  native herbivore  (Guo, et  al.  2006) and

cause  extensive  damage  to  grassland  in  Northwestern  China(Yang,  et  al.  201r).  Many

grasshopper species have a specific area from different factors, including food selection of only

plant species  within a single family or a single genus in normal  (Schoonhoven, et  al.  2005),

habitat  fragmentation,  and climate change. Grasshopper species and distribution benefited the

local plant richness and community structure, hence it was critical to understanding the factors

that  drive grasshopper  abundance and diversity. The influence  of  habitat  loss  and change on

grasshopper  community  were  important  to  global  change.  Grassland insect  diversity  is  often

linked to plant species composition and habitat structure (Joern 1979; Vandyke, et al. 2009). Plant

community distributions,  accepted  as  a  driving  factor  of  arthropod communities  in  grassland

habitats  (Ernoult, et al. 2013; Schaffers, et al. 2008), are structural complex and high diversity.

Plant  spatial  pattern  offers  spatially  and  temporally  more  feeding  and  habitat  niches  for

grasshopper.

Grasshopper  and  plants  are  generally  predicted  to  show  congruent  patterns  in  species

diversity  due  to  ecological  interactions(Kemp  1992),  and  their  long  history  of  mutual

evolutionary(Kemp 1990). Understanding the relationships between grasshopper and plant is a

theoretical  basis  for  species  distribution.  All  of  which reflect  the effects  of  varied  minimum

threshold temperatures and developmental rates between grasshopper species along a gradient in

montane  systems(Kemp 1990;  Wachter  1998).  Generally,  the  pattern of  the  grasshopper  was

influenced  by  plant  species  and  characteristics  of  the  vegetation  (Joern  1979;  Joern  1982),

through affecting their feeding behavior and habitat environment (Ali, et al. 2012; Joern 1982).
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On the other hand, grasshopper may change the inter-species competition pattern of the plant,

even in the structure and diversity, by food selection of only plant species within a single family

or a single genus in normal (Schoonhoven, et al. 2005). Combining hight sensitive response and

small  home range requirements,  grasshoppers  were used as  effective  bioindicators  of  habitat

quality (Bazelet  and  Samways  2011).  Many  studies  investigated  relationships  between

grasshopper community and vegetation in grassland  (Huang, et  al.  2017a; Joern 2005; Kemp

1990; Torrusio, et al. 2002; Zhang, et al. 2012; Zhou, et al. 2011); however lots of results were

based on the  traditional  spatial  distribution  type  and ignore  the  spatial  position(Kemp 1990;

Torrusio, et al. 2002; Zhao, et al. 2009; Zhou, et al. 2011), causing the local variations masked. It

assumed that any known data is independent and in the same distribution, ignoring the ecological

relationship of adaptation and selection between plant grasshopper communities in the analysis of

the spatial distribution of plant species and grasshoppers’.

The Heihe River originates from the Qilian Mountains, scatters itself across the landscape in

the middle reaches oasis region, and disappears into the desert lower reaches. The upper reaches

of Heihe River occupy the Northwest of China. The area is an alpine system, characterized by

isolated  mixed  grass-forb  meadows  and drought  desert  grasslands(Zhao,  et  al.  2011).  In  the

elevational zone, the topography provides the necessary heterogeneity in habitat. In this study the

objectives  were to (1) quantify spatial heterogeneity on grasshopper and vegetation at altitude

gradient; (2) identify the trend of grasshopper abundance and vegetation community; (3) find out

the relationship of the two community, and predict the distribution pattern. We hypothesized that:

(1) the semivariable function of grasshopper abundance and vegetation community followed a

nonlinear model; (2) horizontal distribution of two communities have shown a clear flaky and

plaque distribution pattern, especially under the altitude gradient; (3) the spatial distribution trend

reflected  that  the  spatial  heterogeneity  of  vegetation  communities  and  grasshopper  appeared

evident multiformity in different directions.

Methods and Study Area

Study Area 

The  study  site  is  located  in  Baidaban  grassland  (38°r8′0″-38°r9′  50″N,  99°37′15″-

99°39′0″E) along the northern slope of Qilian Mountains in Gansu Province, northwestern China

(Fig. 1a). The Mountains is a large mountainous area constituted by many northwest-southeast

parallel mountains and flowed in Liyuan River, the tributary Heihe River. The region (Fig. 1b) is
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a highly variable typical continental climate consisting of wet summers and dry, cold winters.

The annual average temperature of 1-2.5℃, July average temperature of 1r℃, January average

temperature -12.5℃, ≥0℃ accumulated temperature of 1r00-1688℃, annual mean precipitation

is 270-350mm, and precipitation mainly concentrated in the 6-8 months. The soil in this area is

mainly composed of chestnut soil and chernozem.  Vegetation at the study site is dominated by

Stipa krylovii,  Agropyron cristatum  and  Poa pratensis,  with the coverage of 80% of the total

community(Li, et al. 2011; Li, et al. 2013). Other common species found in this grassland include

the  Artemisia  frigida, Leymus  secalinus, Therm  opsislanceolata, Heteropappus  altaicus,

Potentilla  acaulis,  Taxaxacum  mongolicum,  Dracocephalum  heterophllum,  Lepidium

alashanicum  and  Allium polyrhizum; and the Noxious Weed  Melica  przewalskyi,  Pedicularis

artselaeri founded(Li, et al. 2011; Zhao, et al. 2012). 

In  this  area,  partially  degeneration,  bare  ground  covered  20-30%  of  the  ground  area.

Thirteen grasshopper species have been recorded from this area, belonging to three families, ten

genera. The dominant species were oedaleus decorus asiaticus B.-Bienko, Gomphocerus licenti,

Hilchnerella sunanensis liu, Calliptamus abbreviatus Ikonnikov and Bryodema miramae miramae

B.-Bienko,  each of them exceeded 10% of all grasshopper species(Li, et al. 2011; Zhao, et al.

2012). These vegetation types are important essence in Baidaban grassland ecosystem, providing

heterogeneous habitats for survival and reproduction.

Sampling design

The study area belongs to the middle of Qilian Mountains, including alpine desert, alpine

steppe, and alpine meadow. We selected an area of 3500 m from east to west and 900 m from east

to  west  for  the  composition  study;  combining  the  grassland types,  3-8  survey samples  were

setting in every single grassland type on mid-July from 2009 to 2011 between 09:00 and 17:00 on

sunny days with low wind speed and cloud cover. The 1: 50000 topographic map of the study

area was digitized and the projection coordinate corrected. The geometric center of the measured

plot was designated as the marker of the grasshoppers’ diversity survey. Each sample with the

coverage of 100 m × 100 m, three 30 m × 30 m rectangular samples were extracted by the double

diagonal method. In each plot, the plants within randomly selected a square sampling grid of 1 m

× 1 m were used to record community coverage, height and above-ground biomass, and at last

three replicate samples were taken. 
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Sweep-net sampling was used to estimate the relative density of the grasshopper species. For

each plot, we started at the center, then walked 15 m in each of the four cardinal directions,

without replacement for 3 times, and conducted a standard sample of parallel sweeping 200 nets

with a 30 cm diameter. Recording and averaging all grasshoppers collected from each of the four

directions to derive a relative grasshopper density (number of individuals per 200 nets).

Sampling preparation and identification

Grasshoppers’ specimens were stored in 70% ethanol and later dry mounted and sorted to

morphospecies based on external characters and general appearance. Genus and/or species were

identified  according  to  the  Insect  Mathematic  Ecology  (Ding  1994).  The  abundance  of

grasshoppers in each plot was calculated according to mean of three replicates of each plot.

Statistical analyses

Estimation and modelling of  spatial  autocorrelation.  Semivariograms was selected  to

evaluate  the  spatial  variation  (E.  Rossi,  et  al.  1992;  Sciarretta  and Trematerra  201r) ,  after

analyzing  correlation  coefficient,  covariance  (in  covariance  functions)  and  variance  (in

semivariograms).

Semivariograms function expresses the variation of two regionalized  variables  
( )iz x

and

( )iz x h+
 of  points  ix

and ix h+
which separation distance ish , showing the Semivariograms of

sample  pairs  against  the distance  between sampling  points(Kemp,  et  al.  1989;  Zurbrügg and

Frank 2006). The formula is:

{ }
2

1

1
( ) ( ) ( )

2 ( )

k

i i

i

r h z x z x h
N h =

= − +�

Where  ( )N h is  the  number  of  the  binate  sample  points  which  interval  is h ,
( )iz x

and

( )iz x h+
are measurements at the point ix

and ix h+
. Semivariograms has three most significant

parameters: Nugget constant (
c
0 ), Sill (

c
0
+c

1 ) and Range ( a ).
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Nugget constant reflects the extent of the randomness of the regionalization variable; Sill

reflects  the  change  rate  of  the  variable,  and  Range  reflects  the  reach  of  the

regionalization variable.

Spatial trend analysis. A trend-surface analysis was set  on spatial sampling data to fit a

mathematical surface and used to reflect the change of spatial distribution. It can be divided into

two parts: the trend surface and the deviation. The trend surface reflects the trend of the spatial

data, which is influenced by the whole situation and the wide range of factors (Cane, et al. 2017;

E. Rossi,  et  al.  1992). Each vertical  bar in the trend analysis  graph represents the value and

position  of  a  data  point.  These  points  are  projected  onto  an  east-west  and  a  north-south

orthogonal plane. An optimal fitting line can be obtained through these projection points, which

can be made to simulate the trend in a particular direction. If the line is straight, it is indicated

that no trend exists.

Results and Analysis

Semivariograms and Spatial structure of Ecological Community

Spatial analysis of grasshopper abundance index (Table 1) showed good model and (67.05%

variance attributable to spatial autocorrelation) spatial structure. As above spherical model was

selected to describe the semivariograms for grasshopper. The parameter “ a ” in grasshopper was

9.32m (Table 1), meant the range over the distance of 931.7rm was statistically correlated; “ 0c
”was

nugget with the value of 153.12, concluded the minimum variability was 153.12 (estimating the

variability of repeated sampling at the same site); “
c
0
+c

1 ” was still with the value of 228.37,

consider the overall variance at distances was greater than the value of “ a ”. Spatial variability of

vegetation height and coverage fitted the spherical model from 0.18 to 0.90 (Table 1); it was clear

the spatial structure of the height and coverage were not regularly or randomly distributed at the

sampling areas. The vegetation richness was a good fit for the exponential model with the spatial

variability of 98.72.The vegetation community index (Table 1) all showed aggregated distribution

pattern  (spherical  and  exponential)  and  strong  spatial  structure.  The  distance  of  spatial

autocorrelation was detected for the vegetation community and ranged from 1.55 to 2r.59 m. The

spatial distribution types of vegetation and grasshoppers were both aggregation pattern, taking a
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certain spatial correlation and apparent structure. All above include that  the potential to impose

spatial structure on the individual of the vegetation and grasshopper was existent.

Spatial trends in grasshopper abundance and vegetation community

The  rule  to  identify  a  trend  of  grasshopper  abundance  and  vegetation  community was

looking for  an  irregular  curve  on  the  projected  plane.  In  the  study,  northeast-southwest  and

northwest-southeast were determined by the grasshoppers’ trend direction (Fig. 2a). The spatial

trend of grasshopper abundance (Fig. 2a) indicates that the direction of northeast-southwest was

more intense than in northwest-southeast; the graphical representations in the northwest-southeast

shows an inverted “U” shape distribution; on the contrary, it reflected a Step-like transition from

northeast to southwest. The region with the maximum abundance value was in the altitude of

2530m -2700m (Fig.1b), and the grasshopper populations assumed highly localized distributions

within the middle elevation. 

In the vegetation community, the spatial trend of vegetation height (Fig. 2b) was confirmed

in the direction of northeast-southwest, with a gradient across rows; while on the direction of

northwest-southeast was no spatial trend. The direction of northwest-southeast was identified as

the spatial trend of the vegetation coverage (Fig. 2c), with a ladder-like distribution; and on the

opposite, the trend was obviously appeared an inverted “U” shape. According to the spatial trend

of  vegetation  richness  (Fig.  2d)  exhibited  a  higher  tendency  in  northeast-southwest  than

northwest-southeast; in the graphical representation, northwest-southeast was shown to manifest

shape of inverted "U"; in contrast, the spatial trend at northeast-southwest was presented “U”-

shaped distribution. The trend of the distribution between height and abundance was consistent,

which  was centered in  the area of middle  elevation;  but  the coverage was opposite  trend of

distribution to the others.

The relationship between Grasshopper abundance and Vegetation Community. 

According to the uncertainty and dynamics of the community in nature (Lv and Guo 2010;

Selvachandran,  et  al.  2017; Zegeye,  et  al.  2006) ,  the fuzzy  negritude  similarity was used to

analyze the intensity and structure of spatial variability between the grasshoppers’ abundance and

vegetation  community  (height,  coverage,  and  richness  of  grassland).The  properties  of

grasshopper abundance must be affected by vegetation community and sample location (altitude).

The effects of sample altitude on grasshopper abundance and vegetation community were shown
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in fig.3. Basically, grasshopper abundance decreased with an increase of vegetation height; in

other words, most species of grasshoppers preferred to distribute in areas with low vegetation

height  (Fig.  3a).  The  effects  of  sample  location  (altitude)  on  grasshopper  abundance  and

vegetation coverage were distinct, despite the altitude of 2700m-2750m were similar, including

the samples of 11、12 and 13 (Fig. 3b). The trend curves between grasshopper abundance and

vegetation richness were contrary above the altitude of 2750m; when the altitude decreased, the

trends of grasshopper abundance followed with vegetation richness’ (Fig. 3c).

In order to know the similar degree of grasshopper abundance and vegetation community on

numerically expressing, two objects by means of the distance of the corresponding fuzzy sets

were loaded(Kohout 1976; Morsi 1989). The inclusion measure of interval-valued fuzzy sets is

[0, 1], which was means in positive correlation, the value was the greater the better; if negative

correlation,  the smaller the better  (Wang, et al. 2016; Zeng and Guo 2008). It concluded that

(Table 2) grasshopper abundance were positively associate with plant height and coverage, and

the height was more correlated with grasshoppers abundance.The value of a similar degree in

grasshopper abundance and vegetation richness was hight, meaning that plant diversity affected

grasshopper abundance (Table 2).

Conclusions and Discussion

Spatial heterogeneity was a key point to influence the patterns and changing the relationship

on spatial space  (Huang, et al. 2017b; Kemp, et al. 1989; Laws and Joern 2017). It was a big

challenge  to  predict  that  the  heterogeneity  of  grasshopper  patches  are  critical  factors  that

influenced by foraging selectivity and habitat  heterogeneity.This  study finds that grasshopper

population was good at selecting a micro-environment to a dwelling. The semivariable function

of grasshopper abundance and vegetation community were a nonlinear model in geostatistics;

while in ecology, the curves meant that the spatial distribution pattern was aggregated (Wang, et

al. 2010; Zhong, et al. 201r).The grasshopper abundance typically produces spacial heterogeneity

with  larger  range  and  nuggets  than  vegetation  community  (except  the  range  of  vegetation

coverage in model). Firstly, it was likely to be undetected spatial distance smaller than the 1.5m.

Secondly,  the  structures  were  indicated  that  the  spatial  pattern  of  the  grasshopper  species

population  were  influenced by vegetation  community distribution.  Finally, the distribution  of

grasshopper heterogeneity was directly influenced by herbivore foraging decisions  (Wiggins, et

al. 2006; Zhu, et al. 2015), and radically determined by the topography of Qilan mountains(Li, et
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al. 2011; Li, et al. 2013; Zhao, et al. 2012), micro-climate and soil condition. The result much the

same as others (Huang, et al. 2017b; Yan and Chen 1998; Zhao, et al. 2012; Zhao, et al. 2009),

was that horizontal distribution of two communities presented a flaky and plaque distribution

pattern, with obvious heterosexual structure.

The  exploratory  analysis  of  ecological  community  data  revealed  that  the  trends  were

variable in a different method. In this study area, grasshopper abundance and plant height was a

negative correlation, while between grasshopper abundance and plant height was positive; all of

which were confirmed  (Zhou, et al. 2011) by using traditional biostatistics. When dealing with

geostatistics  method,  the  relationship  between  two  communities  was  not  merely  positive  or

negative correlation but changing with the change of elevational  gradient.  Such as altitudinal

support a positive relationship between two communities in total, but does not exist at every stage

of elevation.  The result  testified that alpine grasshoppers were an important adaptation to the

mountain environment(Vandyke, et al. 2009; Wachter 1995). 

Grasshopper  needs  adequate  food  resources  and  habitat  to  support  their  survival,

development,  and reproduction(Levy and Nufio  2015;  Wachter  1995).  In  the  study area,  the

vegetation was dominant by perennial Gramineae and Cyperaceae, and some species have taken

strong attraction or indispensable to specific grasshoppers; combining with the influence of the

altitude, the community was an appearance in the specific area, such as the altitude from 2500m-

2700m was an area of species richness (Fig.1b, Fig.3). Furthermore, the plant was not only food

resources, but also habitat environment for grasshopper. The zone of 2500m-2700m, a transition

zone between desert steppe and mountain steppe, with good coverage and richness of plant, was

high grasshopper abundance; with the low height, there was a wide view to defend predators,

good transmittance to keep warm, high coverage and richness to compensate for grasshopper

herbivory. Though some species prefer forest or jungles, most lived in dry, hard soil and open

habitats with low vegetation height. On the contrary, the alpine meadow grassland and mountain

shrubby-grassland  lay  above  2750m,  and  the  soil  was  moisture,  impermeability,  and

compactification for the massive layer of grass felt(Li, et al. 2011; Zhao, et al. 2012). So it was

difficult for grasshoppers to spawn in soil or keep eggs dry, and forming a plaque heterogeneity

structure between vegetation and grasshopper with different elevation gradients. 

The  spatial  distribution  trend  reflected  that  the  spatial  heterogeneity  of  vegetation

communities and grasshopper appeared evident multiformity in different directions. The trend of
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grasshopper  abundance in  the  direction  of  northeast-southwest  was  more  intense  than  in

northwest-southeast; in vegetation community, the strong trend of the distribution between height

and abundance was consistent in northeast-southwest, while the coverage was opposite. That was

because  the  weather  and  season  took  an  important  part  in  determining  the  abundance  of

grasshopper  (Begon 1983; Pitt 2012; Wall and Begon 1987). In warm it was found under the

influence of direct insolation; however, in high temperature, it was hiding in the shadow of the

plant  (Begon  2008;  Pitt  2012).  Thus,  the  trends  in  northeast-southwest  were  manifested,

including grasshopper and  vegetation.  With the increase of quantity and activity, grasshopper

became  gregarious, reposing and crowing, causing hopping  in  the same direction(Begon 2008;

Zhao, et al.  2011) and aggregated distribution in northeast-southwest. Followed by the spatial

distribution  of  plant  community,  grasshopper  distribution  formed  embedded  striped  patches

structure in the specific direction.

In  conclusion,  the  semivariable  function  of  grasshopper  abundance  and  vegetation

community  followed  a  nonlinear  model  in  the  study  area.  The  trend  of  grasshopper  and

vegetation in the direction of northeast-southwest was more intense than in northwest-southeast,

besides coverage. The two community distribution formed embedded striped patches structure in

the  specific  direction  of  northeast-southwest.  The  insights  into  the  relationship  between

grasshopper abundance and vegetation community with the mountainous environment, provide a

theoretical basis for potential distribution prediction.
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Table 1(on next page)

Tab. 1 Spatial pattern for different index of community

Spatial analysis of grasshopper abundance index showed good model and spatial structure .
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Tab. 1 Spatial pattern for different index of community 

Community 

Index  
model Nugget(

0c ) Sill(
10 cc + ) 

Range(a) 

(m) 

Variance (%)
0c / 

(
10 cc + ) 

Grasshopper 

abundance 
exponential 153.12 228.37 9.32 67.05 

Vegetation     

height 

Spherical 

 

24.52 137.80 1.55 18.11 

Vegetation 

coverage 

Spherical 

 

0.04 0.044 24.59 90.69 

Vegetation   

abundance 

Exponential 

 

1.51 1.53 5.64 98.72 
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Table 2(on next page)

Table 2 Fuzzy neartude of the experimental semivariogram of grasshopper abundance

and grassland community

similar degree of grasshopper abundance and vegetation community on numerically
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Table 2 Fuzzy neartude of the experimental semivariogram of grasshopper abundance 

and grassland community 

 

 Plant 

  Height Coverage Abundance 

grasshopper abundance 

Fuzzy neartude 
0.13 0.32 0.68 

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3485v1 | CC BY 4.0 Open Access | rec: 22 Dec 2017, publ: 22 Dec 2017



Figure 1(on next page)

Fig. 1 (a) Location map of the study area, (b) the geographic map for grasshopper and

vegetation sampling

Fig. 1 (a) Location map of the study area, (b) the geographic map for grasshopper and

vegetation sampling
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Fig. 1 (a) Location map of the study area, (b) the geographic map for grasshopper and 

vegetation sampling 
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Figure 2(on next page)

Fig.2 Special trends of community for index in different direction

The X axis is the line that indicates the North and South, the Y axis is the line indicates that

the East and West , the Z axis is the line that indicates the index of the grasshopper, The

lighter-line is the trend that is the Northeast-Southwest, the harder-line is the trend that is

the Northwest-Southeast. a, the trend of spatial distribution for the index of abundance; b,

the trend of spatial distribution for the index of height; c , the trend of spatial distribution for

the index of coverage; d, the trend of spatial distribution for the index of abundance
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Fig.2 Special trends of community for index in different direction 

The X axis is the line that indicates the North and South, the Y axis is the line indicates 

that the East and West, the Z axis is the line that indicates the index of grasshopper, 

The lighter-line is the trend that is the Northeast-Southwest, the harder-line is the trend 

that is the Northwest-Southeast. a, the trend of spatial distribution for the index of 

abundance; b, the trend of spatial distribution for the index of height; c, the trend of 

spatial distribution for the index of coverage; d, the trend of spatial distribution for the 

index of abundance 
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Figure 3(on next page)

Fig. 3 Effects of different samples between grasshopper abundance and grassland

community

The X axis is the sample location, the Y axis is the line indicates that the characteristics of

vegetation and grasshoppher abundance. a, the correlation between grasshopper abundance

and vegetation height; b, the correlation between grasshopper abundance and vegetation

coverage; c,the correlation between grasshopper abundance and vegetation richness.
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Fig. 3 Effects of different samples between grasshopper abundance and grassland 

community  

The X axis is the sample location, the Y axis is the line indicates that the characteristics 

of vegetation and grasshoppher abundance. a, the correlation between grasshopper 

abundance and vegetation height; b, the correlation between grasshopper abundance 

and vegetation coverage; c,the correlation between grasshopper abundance and 

vegetation richness. 
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