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Abstract 20 

Soils are reservoirs of antibiotic resistance genes, but dynamics of antibiotic resistance genes in 21 

the environment are largely unknown. Long-term disturbances offer extended opportunities to 22 

examine microbiome responses at scales relevant for both ecological and evolutionary processes, 23 
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and therefore can be insightful for studying the dynamics of antibiotic resistance genes in the 24 

environment. We examined antibiotic resistance genes in soils overlying the underground coal 25 

seam fire in Centralia, PA, which has been burning since 1962. As the fire progresses, previously 26 

hot soils can recover to ambient temperatures, which creates a gradient of contemporary and 27 

historical fire impact. We examined metagenomes from fire-affected, recovered, and reference 28 

surface soils to examine gene-resolved dynamics of antibiotic resistance using a gene-targeted 29 

assembler. We targeted 35 distinct types of clinically-relevant antibiotic resistance genes and two 30 

horizontal gene transfer-related genes (intI and repA). We detected 17 antibiotic resistance genes  31 

in Centralia, including AAC6-Ia, adeB, bla_A, bla_B, bla_C, cmlA, dfra12, intI, sul2, tetA, tetW, 32 

tetX, tolC, vanA, vanH, vanX, and vanZ. The diversity and abundance of several antibiotic 33 

resistance genes (bla_A, bla_B, dfra12, tolC) decreased with soil temperature, and changes in 34 

ARGs could largely be explained by associated changes in community structure. We also 35 

observed sequence-specific dynamics along the temperature gradient and observed 36 

compositional shifts in bla_A, dfra12, and intI. These results suggest that increased temperatures 37 

can reduce soil antibiotic resistance genes but that this is largely due to a concomitant reduction 38 

in community-level diversity.  39 

 40 

Keywords  41 
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 43 

Introduction 44 

The dissemination of antibiotic resistance genes (ARGs) is a pressing public health 45 

concern. The One Health initiative recognizes the intrinsic link between evolution of bacterial 46 
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resistance in clinical and environmental settings (Kahn 2016). Clinically relevant antibiotic 47 

resistance genes (ARGs) have been detected in “pristine environments” (Lang et al. 2010) as 48 

well as a variety of marine, plant, and soil microbiomes (Fierer et al. 2012; Gibson, Forsberg and 49 

Dantas 2014; Wang et al. 2015a; Fitzpatrick and Walsh 2016). Soil is considered to be an 50 

environmental reservoir of ARGs, with greater ARG diversity than the clinic (Nesme and 51 

Simonet 2015). Despite that we can easily detect ARGs in soil, dynamics of soil ARGs are not 52 

fully understood (Allen et al. 2010). Understanding of the dissemination of ARGs in the 53 

environment are impeded by our modest understanding of their diversification, maintenance, and 54 

dissemination (Hiltunen, Virta and Laine 2017). 55 

 Understanding the propagation and dissemination of ARGs in soil is difficult because 56 

multiple interacting factors influence their fate (Allen et al. 2010; Berendonk et al. 2015). 57 

Perhaps most obviously, ARGs can be selected when there is environmental exposure to 58 

antibiotic (Laine, Hiltunen and Virta 2016). Environmental exposure can result from the 59 

anthropogenic use of antibiotics, for example in agriculture or via wastewater treatment outputs 60 

(Kumar et al. 2005; Rizzo et al. 2013), or it can result from environmental antibiotic production 61 

by microorganisms in situ (Nesme and Simonet 2015). Antibiotic exposure can kill sensitive 62 

populations and allow for propagation of resistant strains. Additionally, ARGs can be 63 

horizontally transferred (Hiltunen, Virta and Laine 2017) and are often detected on plasmids and 64 

other mobile genetic elements (Van Hoek et al. 2011; Pal et al. 2015). Thus, ARGs on mobile 65 

genetic elements may be disseminated more rapidly than through population growth alone. 66 

Furthermore, several ARGs are thought to have evolved >2 billion years ago (Aminov and 67 

Mackie 2007), and these may be maintained in the absence of selective pressure from antibiotics 68 

and transferred vertically. Another complicating factor for understanding ARG dissemination is 69 
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the influence of the dynamics of soil microbial communities. While interspecies competition can 70 

impact ARG abundance, one study of many habitats showed that abiotic soil conditions can be 71 

important drivers of ARG profiles (Fierer et al. 2012). Anthropogenic influences, such as 72 

nitrogen addition to the soil, also can impact ARGs (Forsberg et al. 2014). Similarly, studies 73 

with changing abiotic conditions, such as increased temperatures, have reported subsequent 74 

reductions in ARG abundance (Qian et al. 2016; Tian et al. 2016). In these examples and others, 75 

environmental disturbance can alter soil microbial community structure (Shade et al. 2012; 76 

Garner et al. 2016; Nunes et al. 2016), and then can impact local ARGs and their dissemination. 77 

Long-term disturbances that impact multiple microbial generations can provide 78 

opportunities to investigate the dynamics of ARGs in response to environmental stress. One such 79 

disturbance is Centralia, PA, the site of an underground coal seam fire that ignited in 1962. As 80 

this town was evacuated in 1984, it also represents a post-urban ecosystem of minimal 81 

contemporary anthropogenic influence. This fire continues to advance along the coal seam, 82 

creating a gradient of contemporary and historical fire impact and allowing for observation of 83 

multiple microbial generations’ responses to disturbance and their potential recovery. Surface 84 

soil microbial communities in Centralia are exposed to elevated temperatures (21-57°C) (Lee et 85 

al. 2017) and coal combustion pollutants (Janzen and Tobin-Janzen 2008) which include trace 86 

elements such as arsenic, copper, aluminum, and lead (Janzen and Tobin-Janzen 2008; Melody 87 

and Johnston 2015). While temperature increases are large, deposition of coal combustion 88 

pollutants occurs at a slow rate and varies based on the subsurface structure and geochemical 89 

properties of the burning coal (Janzen and Tobin-Janzen 2008). Depth of the coal seam varies 90 

from the surface to 46 m (Elick 2011). Furthermore, surface temperatures cool to ambient levels 91 

as the fire progresses, but coal combustion pollutants are not necessarily removed. Previously, 92 
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we observed changes in bacterial and archaeal community structure with fire history that was 93 

well explained by temperature rather than soil properties such as arsenic concentration (Lee et al. 94 

2017).    95 

We leveraged the long-term disturbance in Centralia to examine ARG dynamics given 96 

both the abandonment of human habitation and a the presence of multigenerational stressor for 97 

the microorganisms. We investigated 12 metagenomes of microbial communities from surface 98 

soils along the Centralia temperature gradient for 35 clinically-relevant ARGs conferring 99 

resistance to eight classes of antibiotics, as well as multi drug efflux pumps and two HGT-100 

relevant genes repA and intI. We used gene targeted assembly of the metagenomes to capture a 101 

breadth of ARG diversity. To examine the potential extent of HGT in Centralia, we asked 102 

whether changes in community structure explained any changes in ARG profiles. Because we 103 

previously identified changes in community structure along the stressor (Lee et al. 2017), we 104 

also asked whether functional redundancy (e.g., different ARG sequences belonging to the same 105 

resistance class) within the soil microbial community moderated the impact of a disturbance on 106 

ARG profiles. Functional redundancy allows that changes in community structure can occur 107 

without subsequent change in ARG abundance. Also, because we focused on clinically relevant 108 

ARGs rather than potentially novel ARGs from thermophilic lineages, we hypothesized that 109 

ARG abundance would decrease with temperature, as observed in other studies (Diehl and 110 

Lapara 2010; Qian et al. 2016; Tian et al. 2016). We were, however, also interested in dynamics 111 

of specific gene sequences and hypothesized that they may have unique responses, even within 112 

the same resistance class.  113 

 114 

Methods 115 
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Reference Database construction 116 

Reference gene databases of diverse, near full length sequences were constructed using selected 117 

sequences from FunGene databases (Fish et al. 2013) for the following genes: AAC6-Ia, adeB, 118 

ANT3, ANT6, ANT9, bla_A, bla_B, bla_C, CAT, cmlA, dfra1, dfra12, ermB, ermC, intI, mexC, 119 

mexE, qnr, repA, strA, strB, sul2, tetA, tetD, tetM,  tetQ, tetW, tetX, tolC, vanA, vanC, vanH, 120 

vanT, vanW, vanX, vanY, and vanZ. Seed sequences and Hidden Markov Models (HMMs) for 121 

each gene were downloaded from FunGene, and diverse protein and corresponding nucleotide 122 

sequences (reference sequences) were selected with gene-specific search parameters (Table S1). 123 

Briefly, minimum size amino acid was set to 70% of the HMM length; minimum HMM 124 

coverage was set to 80% as is recommended by Xander software for targeted gene assembly 125 

(Wang et al. 2015b); and a score cutoff was manually selected based on a notable score 126 

reduction between consecutive sequences, as suggested by the Ribosomal Database Project 127 

(personal communication). Reference sequences were de-replicated before being used in 128 

subsequent analysis, and final sequence numbers are included in Table S1.  129 

 130 

Sample collection, sequencing, and quality control  131 

Study site, soil sampling and soil biogeochemistry were all performed as described (Lee et al. 132 

2017). Briefly, surface soils were sampled along a gradient of fire-impact that was determined 133 

from historical characterizations of the site (Elick 2011): fire-affected (n = 6), recovered (n = 5), 134 

and reference (n = 1). Fire-affected soils had elevated temperatures due to fire; recovered soils 135 

were at ambient temperature but historically had elevated temperatures from the fire; and the 136 

reference soil was never impacted by the fire. The reference sample was used as a qualitative 137 

control and is not intended as an quantitative and definitive comparison to non-impacted soils. 138 
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Microbial community DNA was obtained using a phenol chloroform extraction (Cho et al., 139 

1996) and purification with MoBio DNEasy PowerSoil kit without vortexing. All samples were 140 

sequenced on the Illumina HiSeq 2500 platform with 2x150bp paired end format at the Joint 141 

Genome Institute (JGI) and quality filtered using BBDuk 142 

(https://sourceforge.net/projects/bbmap/). Metagenome coverage was estimated using Nonpareil 143 

(Rodriguez-R and Konstantinidis 2014).  144 

 145 

Gene targeted assembly and quality control 146 

A gene targeted metagenome assembler (Wang et al. 2015b) was used to assemble antibiotic 147 

resistance genes of interest from quality-filtered metagenomes. For each gene of interest, seed 148 

sequences, HMMs, and reference gene databases, as described above, were included. The rplB 149 

reference gene database, seed sequences, and HMMs from the Xander package were used. In 150 

most instances, default assembly parameters were used, except to incorporate differences in 151 

protein length (i.e. if the protein was shorter than default 150 aa, as was the case for dfra1, 152 

dfra12, AAC6-Ia, ermB, ermC, qnr, vanX, and vanZ) (Table S1). While the assembler includes 153 

chimera removal, additional quality control steps were added. Specifically, final assembled 154 

sequences (contigs) were searched against the reference gene database as well as the non-155 

redundant database (nr) from NCBI (August 28, 2017) using BLAST (v. 2.2.26,(Camacho et al. 156 

2008)). Genes were re-examined if the top hit had an e-value > 10-5 or if top hit descriptors were 157 

not the target gene. Genes with low quality results were re-assembled with adjusted parameters. 158 

Aligned sequences from each sample were dereplicated and clustered at 90, 97, and 99% amino 159 

acid identity using the RDP Classifier (Wang et al. 2007). Our quality control analyses can be 160 

accessed on GitHub (‘assembly_assessments’ repository in 161 
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https://github.com/ShadeLab/PAPER_Dunivin_Antibiotics_2017/tree/master/assembly_assessm162 

ents). 163 

 164 

Ecological analyses 165 

Phylum-level rplB relative abundance was used to examine differences in community structure. 166 

Relative abundance for each site was averaged among samples of the same fire classification (i.e. 167 

fire-affected, recovered, reference) and compared to 16S rRNA gene sequence data from a 168 

previous work (Lee et al. 2017). For subsequent ecological analyses, the RDP Classifier was 169 

used to generate an OTU table from 90, 97, and 99% amino acid identities. We refer to contigs 170 

clustered at 99% identity as “ARG sequences” throughout the remainder of the text. The OTU 171 

tables were analyzed in R (R Development Core Team 2008). OTU tables were separated based 172 

on the gene of interest (rplB and ARGs). Due to Nonpareil-estimated differences in coverage, 173 

OTU tables were rarefied to an even sampling depth (258 and 180 assembled sequences 174 

respectively) using the vegan package (Oksanen et al. 2017). Pieluo’s evenness was calculated, 175 

and richness was estimated using PhyloSeq (McMurdie and Holmes 2013). The Psych package 176 

was used to calculate Spearman’s rank correlations between alpha diversity (richness and 177 

evenness) and soil temperature for both rplB and ARGs. Bray-Curtis distance was used to obtain 178 

dissimilarity matrices, and principal component analysis was used to visualize beta diversity. 179 

Distance matrices of rarefied, relativized data were analyzed using Mantel tests with Spearman’s 180 

rank correlations. Mantel tests were performed on rplB, ARG, and spatial distance matrices of 181 

sample locations.  182 

 183 

Resistance gene comparison 184 
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We assessed ARG biogeography at the gene, taxonomic class, and sequence levels. To compare 185 

the abundance of ARGs among data sets, total counts of rplB were used to normalize the 186 

abundance of each ARG sequence. Total counts of each ARG were calculated as the sum of the 187 

relative abundance of each ARG sequence. The Psych package (Revelle 2017) was used to 188 

calculate Spearman’s rank correlations between soil geochemical properties and total gene 189 

counts for each ARG. Pairwise correlations for the total abundance of each resistance gene were 190 

also calculated. For taxonomic analysis of each ARG, the top BLAST result and the taxize 191 

package (Chamberlain et al. 2017) were used to assign taxonomy to each ARG sequence. When 192 

the top hit was an uncultured bacterium, the second or third hit was used, and when all three top 193 

hits were unknown, the taxonomy was labeled unknown. Total counts of each taxonomic class 194 

were summed for each ARG, and Spearman’s rank correlations were used to test for correlations 195 

between class abundance and temperature for all ARGs with representatives from at least three 196 

taxanomic groups. Spearman’s rank correlations were performed on normalized and relativized 197 

abundance information, but only relativized abundance is shown because it agreed with 198 

normalized data and also had unique features. Furthermore, we examined individual ARG 199 

sequence dynamics. A Venn analysis was performed between ARGs in fire affected and 200 

recovered samples using the VennDiagram package (Chen and Boutros 2011). The mean 201 

normalized abundance for each ARG sequence among samples was plotted against the number 202 

of sites it was observed in (occurrence). ARG sequences present in only one site were 203 

subsequently removed, and we used hierarchical cluster analysis with the stats package to 204 

examine similar sequence dynamics along the temperature gradient. Relative abundance of each 205 

resulting cluster was plotted against temperature.  206 

 207 
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Reproducibility, code, and data 208 

Our computing workflows and R script can be accessed on GitHub 209 

(https://github.com/ShadeLab/PAPER_Dunivin_Antibiotics_2017).  Metagenomes are available 210 

from IMG/GOLD study ID: Gs0114513. 211 

 212 

 213 

Results and Discussion  214 

Soil samples and gene targeted assembly 215 

We previously collected soils along the Centralia temperature gradient (Lee et al. 2017). 216 

We submitted DNA extracted from twelve soils (temperature range = 12.1-54.2°C) to the Joint 217 

Genome Institute for small-scale Community Science Project; we did not submit all 18 originally 218 

collected samples because there was a 12-sample limit with the small-scale award, and so we 219 

chose samples for sequencing that were representative of the thermal gradient. We sequenced 220 

metagenomes from soils that had elevated temperatures due to the fire (fire-affected, n = 6), 221 

those that were historically impacted (recovered, n = 5), and those with no documented impact 222 

(reference, n = 1) (Figure S1). Quality filtered metagenome size ranged from 21-51 Gbp, and 223 

Nonpareil-estimated coverage (Rodriguez-R and Konstantinidis 2014) varied from 29.12 to 224 

89.96% (Table S2). Though we measured a suite of geochemical data (Table S3), our previous 225 

work found temperature to be the strongest driver of community structure (Lee et al. 2017); we 226 

found that ARGs only correlated with temperature (Table S4).  227 

We used a gene-targeted metagenome assembler to probe Centralia metagenomes for 228 

ARGs. While this gene-centric methodology does not permit analysis of entire gene cassettes or 229 

flanking regions, it improves detection of low abundance genes, increases the length of 230 
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assembled gene sequences, and is capable of detecting strain-level sequence variation (Wang et 231 

al. 2015b). In addition to assembling ARGs of interest, we assembled rplB, a single copy gene 232 

and phylogenetic marker. We found that rplB assembled using these methods was comparable 233 

16S rRNA gene data (Supplementary results; Figure S2), showing that gene targeted assembly 234 

produced results consistent with previous work.  235 

 236 

Detected ARGs and changes in their abundance with temperature 237 

 We examined a suite of genes encoding resistance to aminoglycosides, beta-lactams, 238 

chloramphenicol, sulfonamides, tetracyclines, trimethoprim, and vancomycin, as well as 239 

plasmid-related and genes encoding multidrug efflux pumps (Table 1). From Centralia 240 

metagenomes, we assembled 1,165 unique ARG clustered at 99% amino acid identity. Though 241 

we targeted 35 distinct types of ARGs and two HGT-related genes, only 17 of these could be 242 

assembled from Centralia metagenomes. The genes ANT3, ANT6, ANT9, CAT, dfra1, ermB, 243 

ermC, mexC, mexE, qnr, repA, strA, strB, tetD, tetM, tetQ, vanC, vanT, vanW, and vanY were not 244 

observed, suggesting that they were either below detection or absent. For detected ARGs, we 245 

found positive correlations between vanA, H, and X genes and between tolC and dfra12 (Figure 246 

S3). vanAHX genes are known to be associated with one another in VanA-type operons 247 

(Périchon and Courvalin 2009), and genes tolC and dfra12 have previously been observed in 248 

isolates (Wannaprasat, Padungtod and Chuanchuen 2011). While sul2 and intI1 have been 249 

previously shown to be correlated (Johnson et al. 2016), we did not observe a significant 250 

correlation between these genes. This discrepancy could be because our analysis does not 251 

distinguish between integron classes. Several ARGs in Centralia were negatively correlated with 252 

soil temperature (Figure 1; Table S4), but no ARGs were correlated with other measured soil 253 
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geochemical properties (results not shown, Table S3). The most abundant ARGs detected in 254 

Centralia were adeB, bla_B, and dfra12 (Figure 1, Figure S4). We note that the highest ARG 255 

normalized abundance was typically in Cen04 (13.3°C) but that this is due to low rplB 256 

abundance in the sample.  257 

 Our results are generally in agreement with other studies of ARGs in soils. For example, 258 

Fitzpatrick and Walsh 2016 also reported low abundance or absence of qnr, tet and van genes in 259 

soil. Several studies also reported that genes encoding dihydrofolate reductases and/or beta-260 

lactamases were abundant in soils (Forsberg et al. 2014; Fitzpatrick and Walsh 2016; Li, Xia and 261 

Zhang 2017). Previous studies reported reductions in clinically-relevant ARGs with increased 262 

temperatures in digesters and compost (Diehl and Lapara 2010; Qian et al. 2016; Tian et al. 263 

2016). Diehl and Lapara (2010) observed a negative relationship between temperature and genes 264 

encoding tetracycline resistance and class 1 integrons in anaerobic digesters, but not aerobic 265 

ones. This may be further relevant to Centralia soils, as there likely are pockets of anaerobic 266 

activity in hot soils, especially at venting sites, which have measurably higher percent moisture 267 

content due to steam escaping (Table S3). To our knowledge, this is the first description of a 268 

reduction in ARG abundances with temperature in situ with soil. These results suggest that 269 

ARGs may be reduced in soil environments by increasing temperature. Thus, we speculate that 270 

increases in temperatures expected to reduce microbial community diversity may result in 271 

decreased clinically relevant ARGs in the environment.  272 

 273 

Diversity of ARGs 274 

  We also examined the amino acid-level diversity of ARGs in Centralia metagenomes. 275 

We tested sequence cutoffs of 90, 97, and 99% amino acid identity, but overarching patterns did 276 
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not vary based on sequence cutoff (results not shown). Thus, our subsequent diversity analysis 277 

applied the most stringent cutoff (99% amino acid identity), as was applied in the original gene 278 

targeted assembly paper (Wang et al. 2015b). ARG richness was negatively correlated with 279 

temperature (ρ = -0.57; p < 0.05), but evenness had a variable response with temperature (ρ = -280 

0.47; p > 0.05) (Figure 2BD). ARG alpha diversity (within-sample) trends were thus similar to 281 

rplB and 16S rRNA gene diversity trends (Supplementary results; Figure 2AC), highlighting 282 

the influence of community structure on soil ARG profiles. In addition, overall differences in the 283 

composition of ARGs among sites were related to differences in rplB community structure 284 

(Mantel’s r = 0.54; p < 0.05 on 999 permutations; Figure S5). This result also supports that 285 

compositional shifts in membership among Centralia sites were driving the observed differences 286 

in ARGs, not propagation of ARGs by gene transfer. These results agree with a recent analysis 287 

that reported congruence between community structure and ARG profiles in soils (Forsberg et al. 288 

2014). Similar to patterns in rplB and 16S rRNA genes, ARG profiles could not be explained by 289 

distance between sample sites (Mantel’s r = 0.01, p > 0.05 on 999 permutations). This suggests 290 

that local dispersal of ARGs, which could be indicative of HGT, is not a common mechanism of 291 

ARG dissemination in this system. However, when we considered fire-affected and recovered 292 

metagenomes separately, we found that rplB community structure explained ARG composition 293 

in fire-affected soils (Mantel’s r = 0.71; p < 0.05 on 719 permutations), but not in recovered soils 294 

(Mantel’s r = 0.30; p > 0.05 on 119 permutations). We determined that this result was not driven 295 

by one anomalous sample by performing iterative “leave-one-out” Mantel tests with four of five 296 

recovered soils, and all tests showed no correlation between rplB and ARGs (results not shown). 297 

The reason for no relationship between rplB and ARG in recovered soils is unclear (one 298 

hypothesis is that there is no signal given higher diversity), but this observation very indirectly 299 
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suggests a potential larger influence of HGT in recovered soils than fire-affected soils that could 300 

be explored in future work. 301 

 302 

ARG distribution and sequence-specific biogeography 303 

Only twelve ARG sequences were shared between fire-affected and recovered soils 304 

(Figure 3A). On one hand, this is expected because soils are heterogeneous and have high ARG 305 

diversity (Fitzpatrick and Walsh 2016). Forsberg and colleagues (2014) observed 2,895 ARG 306 

sequences in a functional antibiotic resistance screen from 18 agricultural and grassland soils. Of 307 

these, only 2.6% were present in two or more soils, which is comparable to our data (1.1%). 308 

Similarly, the distinction between fire-affected and recovered soil in our study is in part 309 

explained by generally high ARG diversity, with minimal overlap of ARG sequences detected 310 

between all sites. Furthermore, most ARG sequences (94.16%), whether they were rare (< 1.5% 311 

normalized abundance to rplB) or prevalent, were detected only in one metagenome (Figure 312 

3B). Though the gene-targeted assembly approach maximizes observation of diversity given 313 

metagenome coverage, it is possible that even greater coverage of these metagenomes could 314 

result in detection of more shared ARG sequences between samples. There were 13 distinct 315 

biogeographical dynamics that indicated genes sensitive to the fire, and these were classified into 316 

two categories based on their prevalence and patterns of detection: abundant-transient, and rare-317 

transient sequences (Figure 4). Abundant-transient ARG sequences belonged to genes adeB, 318 

bla_B, dfra12, intI, sul2, and vanZ. These sequences had a rplB-normalized abundance of ≥ 1.5% 319 

of the total community within at least one metagenome. Rare-transient biogeographic patterns 320 

were observed for ARG sequences belonging to adeB, bla_A, bla_B, CEP, dfra12, intI, tolC, 321 

vanA, vanX, and vanH. Rare-transient sequences represented those with ≤ 1.5% of the total 322 
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community. However, step-wise relationships with temperature were observed for several ARG 323 

sequences, suggesting the potential enrichment by fire for microbes harboring these ARG 324 

sequences. Two clusters of rare-transient sequences with no temperature relationship were 325 

observed based on differences in normalized abundance (Figure 4), suggesting that they had no 326 

relationship with fire or temperature. Thus, we observed sequence-specific biogeography for 327 

ARG sequences along the temperature gradient, showing that the average changes in ARG 328 

abundance does not always fully explain the dynamics of each unique resistance gene sequence 329 

detected within that gene family.  330 

 331 

ARG Compositional shifts 332 

 We examined both rplB-normalized and relativized abundance patterns to compare 333 

changes in composition of ARGs and changes in proportional contributions of ARGs.  For this 334 

analysis, composition was considered at the phylum or Proteobacteria class levels based on top 335 

BLAST hits. For ARGs that represented more than three phyla or Proteobacteria classes, (bla_A, 336 

bla_B, dfra12, intI) (Table S5; Table S6), we explored for correlations with temperature. We 337 

observed changes in ARG composition with temperature for bla_A, dfra12, and intI (Figure 5).  338 

Generally, community structure was associated with ARG composition. rplB-level 339 

reduction in Betaproteobacteria corresponded with reductions in Betaproteobacteria-related 340 

ARG. Betaproteobacteria-related bla_A and dfra12 genes decreased with temperature (Figure 5; 341 

Table S6). Thus, reductions in total bla_A and dfra12 counts is largely explained by a reduction 342 

in Betaproteobacteria. This pattern does not extend to bla_B since Betaproteobacteria-related 343 

bla_B genes were only detected in one soil (Cen16). We did not detect changes in 344 

Gammaproteobacteria based on rplB. This corresponded with consistent relative abundances of 345 
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Gammaproteobacteria-related bla_A, bla_B, dfra12, and intI (Table S6). 346 

Gammaproteobacteria-related dfra12 increased in relative abundance with soil temperature (ρ = 347 

0.95, p < 0.05), further highlighting that a reduction in total dfra12 relative abundance is not due 348 

to changes in Gammaproteobacteria-related sequences. Phylum-level community structure, 349 

therefore, corresponded with compositional changes in ARGs, highlighting the influence of the 350 

underlying community on soil ARGs.  351 

We observed evidence for functional redundancy of ARGs in Centralia through 352 

compositional shifts along the temperature gradient. Total bla_A relative abundance decreased 353 

with temperature (Figure 1); however, taxonomic groups of bla_A were differentially impacted 354 

along the temperature gradient (Figure 5; Table S6). Both normalized and relativized abundance 355 

of Actinobacteria-related bla_A genes increased (ρ > 0.6, p < 0.05) while Betaproteobacteria-356 

related bla_A genes decreased (ρ < 0.6, p < 0.05) with temperature (Table S6). Thus, fire 357 

impacted the abundance and composition of bla_A. A decrease in total bla_A (Figure 1) was 358 

accompanied by an increase in Actinobacteria-related bla_A This asymmetric response with 359 

temperature suggests an impact of functional redundancy on soil ARG profiles. We also 360 

observed a shift in intI composition despite consistent intI abundance along the temperature 361 

gradient. The relative abundance of Beta- and Gammaproteobacteria-related intI decreased with 362 

temperature (ρ < 0.6, p < 0.05), but the relative abundance of Nitrospirae-related intI increased 363 

with temperature (ρ > 0.6, p < 0.05) (Figure 5; Table S6). We therefore observed changes in 364 

composition of intI with fire despite a lack of change in total intI abundance. Notably, previous 365 

studies have described Nitrospirae-related intI.  Oliveira-Pinto and colleagues (2016) isolated an 366 

intI gene cassette related to Nitrospirae from a metal-rich stream, and Goltsman and colleagues 367 

(2009) identified both integrase and ARGs on chromosomes of Nitrospirae strains isolated from 368 
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acid mine drainage. It is unclear, however, whether Nitrospirae-related intI genes are associated 369 

with ARG transfer. As intI encodes for a DNA integrase, this result suggests that Nitrospirae 370 

might contribute more to HGT in fire affected soils, but we cannot determine whether this 371 

putative gene transfer would include ARGs. We posit that reductions in ARG abundance due to 372 

increased temperature could increase subsets of clinically relevant ARGs, and studies using 373 

temperature as a control for ARGs should consider sequence-level ARG dynamics within the 374 

system.  375 

 376 

Conclusions 377 

This case study of ARG biogeography over a long-term, severe thermal disturbance 378 

demonstrates the importance of community structure on soil ARG abundance and composition. 379 

Despite the stressor and the withdrawal of human activity, the diversity of ARG observed in 380 

Centralia is comparable to other soil systems (Forsberg et al. 2014; Fitzpatrick and Walsh 2016). 381 

For several clinically relevant ARGs, we observed a reduction in total abundance with increased 382 

temperature. While this has been reported in anthropogenic systems (Diehl and Lapara 2010; 383 

Qian et al. 2016; Tian et al. 2016), we further probed Centralia datasets for compositional and 384 

sequence-specific ARG dynamics and found nuanced results. Generally, the reduction in ARG 385 

abundance could be explained by indirect effects (i.e. compositional shifts in the community). 386 

We posit that increased temperatures could result in a reduction in the diversity and abundance 387 

of ARGs in the environment, but our data also suggest that this reduction will not impact all 388 

ARG sequences similarly. ARG biogeographical dynamics in soil are thus largely dependent on 389 

community structure, which may also drive observed fine-scale abundance-occurrence patterns.   390 

 391 
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Table 1. Resistance genes tested in this study.  
 

Antibiotic specificity Gene 

Aminoglycoside AAC6-Ia, ANT3, ANT6, ANT9, strA,B 
β-Lactams Class A (bla_A), Class B (bla_B), Class C (bla_C) 
Chloramphenicol CAT, cmlA 

Macrolide ermB,C, qnr 
Multidrug efflux adeB, mexC,E, tolC 
Plasmid intI, repA 
Sulfonamide sul2 

Tetracycline tetA,D,M,Q,W,X 

Trimethoprim dfra1, dfra12 
Vancomycin vanA,C,H,T,W,X,Y,Z 
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Figure 1. Negative correlations between normalized abundance of ARGs and soil 
temperature. Coverage-adjusted abundance for bla_A, bla_B, tolC, and dfra12 was normalized 
to total abundance of the single copy gene rplB. Normalized abundance is plotted against soil 
temperature. Note the differences in y-axes. The linear trend line and p value corresponding to 
the Spearman’s rank correlation are shown. Shape indicates soil classification based on fire 
history. 
 
Figure 2. Observed richness (AB) and evenness (CD) of rplB (AC) and ARG (BD) along the 
Centralia temperature gradient. Assembled sequences were clustered at 99% amino acid 
identity and rarefied to an even sampling depth. Observed number of sequences (richness) and 
Pielou’s evenness is plotted against soil temperature. Shape indicates soil classification based on 
fire history. 
 
Figure 3. Presence of ARG sequences in Centralia metagenomes. (A) Venn diagram of ARG 
sequences observed in recovered and fire-affected soils. (B) ARG abundance-occurrence patterns 
in Centralia metagenomes. Percent normalized abundance of ARG sequences was averaged 
among 12 metagenomes and plotted against the number of sites each sequence occurs in. Each 
point represents one cluster, and color indicates gene.  
 
Figure 4. Normalized abundance of ARG sequences in Centralia metagenomes. Abundance 
of each gene sequence (clustered at 99% amino acid identity) present in ≥2 metagenomes was 
normalized to rplB. Complete-linkage clustering was calculated with the rplB-normalized 
abundance of each ARG sequence. Heatmap shows normalized abundance on a blue scale. Soil 
sites (column) are ordered by increasing soil temperature. Each row represents one ARG 
sequence, and ARG is noted by color.  
 
Figure 5. Relative abundance of taxonomically similar ARGs. Phylum-level taxonomy for 
bla_A, bla_B, dfra12, intI, and rplB for each site is shown. Color indicates phylum- and 
Proteobacteria class-level taxonomy of ARGs, and sites are ordered by increasing soil 
temperature. dfra12 was not detected in Cen01.   
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Supplementary Results 
We recently reported changes in community structure in surface soils along the Centralia 

coal seam fire, and this conclusion was based on analysis of 16S rRNA gene amplicon data (Lee 
et al. 2017). In this work, we used rplB community structure to compare ARG profiles because 
both were determined by the same annotation and assembly methods from shotgun 
metagenomes. Thus, we first asked whether patterns observed using rplB sequences were similar 
to patterns we observed previously with 16S rRNA gene amplicons. Overall, patterns in 
community structure were consistent between these analyses (Figure S2). This was verified 
based on significant Mantel tests between rplB and 16S rRNA genes (Mantel’s r = 0.5877, p = 
0.001 on 999 permutations, at the OTU level. There was no relationship between spatial 
proximity of soils and rplB community structure (Mantel’s r = -0.14, p > 0.05 on 999 
permutations), confirming our previous report that community structure is not strongly driven by 
local dispersal. rplB evenness was negatively correlated with temperature (ρ = -0.66; p < 0.05), 
and rplB richness also trended negatively (ρ = -0.55; p = 0.05) (Figure 2AC). Decreased alpha 
diversity with increased temperature was expected because of the complex and extreme fire 
stressor (e.g., exposure to high temperature and coal combustion pollutants, Janzen and Tobin-
Janzen 2008), and, again, is in agreement with our previous study (Lee and Sorensen et al. 2017). 
The only obvious difference was that the rplB dataset had a greater abundance of Firmicutes than 
the 16S rRNA gene dataset, which may be due to differences in DNA extraction methods (Rubin 
et al. 2014) or marker gene target.  
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Figure S1. Sampling strategy along the Centralia temperature gradient. Twelve surface 
soils were collected along two fire fronts. Sampling sites are classified based on historical fire 
activity (Elick 2011) and observations of fire activity at the time of sampling: fire affected (red), 
recovered (yellow), and recovered (green, reference). Red bullseye indicates fire origin, and fire 
fronts one and two are indicated with arrows (F1 and F2, respectively).  
 
Figure S2. Comparison of community structure assessed using two different methods. 
Community structure determined by rplB (A) is similar to previously described community 
structure determined by 16S rRNA gene sequencing reported in Lee and Sorensen et al. 2017(B). 
Samples are classified by their fire history: fire affected (n = 6), recovered (n = 5), and reference 
(n = 1).  
 
Figure S3. Pair-wise Spearman’s correlations of normalized ARG abundances in Centralia. 
Spearman’s rho is indicated in each cell and by color, where negative correlations are red and 
positive correlations are blue. False discovery rate adjusted significance is noted by asterisks.  
 
Figure S4. Relationship between normalized abundance of ARGs and soil temperature. 
Point shape indicates soil fire classification. Coverage-adjusted abundance for each gene was 
normalized to total abundance of single copy gene rplB. Normalized abundance is plotted against 
soil temperature. Note the differences in y-axes. Shape indicates soil classification based on fire 
history.  
 
Figure S5. Beta diversity of Centralia microbial communities with rplB and ARGs. 
Principal coordinate analysis (PCoA) based on weighted Bray-Curtis distances of community 
structure (A) and ARG structure (B). Colors represent soil temperature, and shape indicates soil 
classification based on fire history.  
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