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ABSTRACT10

The reconstruction of genomes using mapping based approaches with short reads experiences difficulties

when resolving repetitive regions. These repetitive regions in genomes result in low mapping qualities

of the respective reads, which in turn lead to many unresolved bases of the genotypers. Currently, the

reconstruction of these regions is often based on modified references in which the repetitive regions

are masked. However, for many references such masked genomes are not available or are based on

repetitive regions of other genomes. Our idea is to identify repetitive regions in the reference genome de

novo. These regions can then be used to reconstruct them separately using short read sequencing data.

Afterwards the reconstructed repetitive sequence can be inserted into the reconstructed genome. We

present the program DACCOR, which performs these steps automatically. Our results show an increased

base pair resolution of the repetitive regions in the reconstruction of Treponema pallidum samples,

resulting in fewer unresolved bases.
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INTRODUCTION22

Modern genome reconstruction often relies on mapping programs such as BWA (Li and Durbin, 2009) to23

align short reads generated by Next-Generation-Sequencing (NGS) technologies to a known reference24

genome (Veeramah and Hammer, 2014). The consensus sequence of the aligned reads can then be used to25

generate the genomic sequence of the newly sequenced sample, assuming that the sample was sequenced26

with a sufficent coverage depth. This allows for the fast identification of short insertions, deletions, and27

single-nucleotide polymorphisms (SNPs). The mapping programs typically calculate a score for each28

aligned read that corresponds to the quality of the alignment (Li et al., 2008). The score quantifies the29

probability that a read is placed at the correct genomic position. Reads with a low mapping quality can be30

filtered out to remove reads that might stem from contaminations or were sequenced with low sequencing31

quality (Smith et al., 2008). Besides bad quality reads, also reads mapping to repetitive regions could yield32

low quality scores if they cannot be mapped to a unique position. Filtering of reads with low mapping33

qualities would also include these reads. This filtering is often conducted in the context of ancient DNA34

(aDNA) (Bos et al., 2016), so that for such samples the repetitive regions of the respective reconstructed35

genomes are generally affected.36

However, repetitive regions play an important role in the genome (Shapiro and von Sternberg, 2005).37

Hundreds to thousands of such regions are present in prokaryotic and eukaryotic chromosomes (Treangen38

et al., 2009). The human genome, for example, consists of approximately 50% repetitive regions (Lander39

et al., 2001). Tandem repeat regions appear to encode outer membrane proteins, which suggests that they40

help pathogens to adapt to their hosts (Denoeud and Vergnaud, 2004). In the case of the bacterium Tre-41

ponema pallidum, repetitive sequences in the arp gene are used to distinguish between the subspecies that42

cause veneral syphilis (Treponema pallidum pallidum), nonveneral yaws (Treponema pallidum pertenue),43

and bejel (Treponema pallidum endemicum), which is not possible using serological tests (Harper et al.,44

2008).45
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Figure 1. Workflow of the identification of repetitive sequences, is separated into six steps.

New sequencing technologies like the Illumina SLR platform, PacBio, or Oxford Nanopore are able46

to create long reads that can span most repetitive regions in order to resolve them (Huddleston et al.,47

2014). However, it is not always possible to apply these technologies to DNA samples. For example, in48

aDNA projects the average extracted fragment length is approximately 44 to 72 base pairs (Sawyer et al.,49

2012). Sequencing these fragments with long read technology would not result in any information gain.50

Additionally, the sequencing of hard to cultivate pathogens, like Treponema pallidum, also result in short51

DNA fragments similar to aDNA (Arora et al., 2016).52

In order to better resolve the repetitive regions using short reads, researchers often first mask duplicated53

and low-complexity regions prior to the read mapping (Frith et al., 2010). For the human reference genome,54

for example, a masked reference is already available (UCSC, 2014). If no masked genome is available,55

programs like RepeatMasker (Smitt et al., 1996) can identify these regions and create a masked reference.56

RepeatMasker uses libraries of known repetitive regions and compares them to the input sequence. While57

this allows masking of the genome, de novo identification of repetitive regions is not possible.58

A program that can identify repetitive regions de novo is VMatch (Kurtz, 2003). It uses suffix-59

arrays (Weiner, 1973) to identify the repetitive regions. VMatch has been applied in multiple genome60

projects for annotation of repetitive regions (e.g. by Lindow and Krogh (2005)), as well as masking61

tasks (Assuncao et al., 2010).62

The general idea of our approach first starts with a de novo identification of all repetitive regions in a63

given reference genome. These identified regions, together with the full reference genome, are then used64

as separate references to reconstruct them for each individual sample, again using a mapping approach.65

The reconstructed repetitive regions can then be combined with the reconstruction of the full genome to66

increase the base-pair resolution of the reconstructed genome for each sample.67

METHODS68

The methodology of DACCOR (see Figure 1) first identifies all repetitive regions in a genome de novo.69

Each of these regions are then reconstructed individually, before they are combined with the rest of the70

reconstructed genome.71

To create an integrated version to identify repetitive regions, our de novo approach uses a k-mer based72

approach, similar to WindowMasker (Morgulis et al., 2005). The workflow to identify these regions can73

be split up into six steps (see left part of Figure 1). In the first step, the reference genome is divided into74

its distinct k-mers and all k-mers that occur more than once are stored. In the second step, matching75

k-mer pairs overlapping at (k−1) positions are combined into (k+1)-mers and stored again. This second76

step is repeated until all maximal unique repetitive regions are identified. Afterwards low complexity77

regions, e.g. long regions consisting only of one base, are identified. This step is necessary, because78

they are identified as two identical repetitive regions directly next to each other and can be combined79
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into one region. In the following two steps, repetitive regions with mismatches are identified. Here, a80

mismatch-marker representing any unknown base is added to the end of all currently identified maximally81

exact repetitive regions. This representation allows us to combine two previously identified repetitive82

regions that are separated by these mismatches. Matching pairs of separated regions can then be combined83

into repetitive regions with mismatches. In the last step, leading and trailing mismatch markers are84

removed. All remaining mismatch markers are replaced with the character N.85

DACCOR is not limited to this repeat finding approach. It fully supports the output format of Vmatch,86

meaning that the integrated repeat finding approach can be substituted with the result of a previous run87

of Vmatch. The regions identified by Vmatch are then extracted and saved in separate fasta files to be88

used in the next step.89

The repetitive regions that are identified after the six steps are saved to a multi-fasta file. In order90

to be able to use each repetitive region directly as reference for a mapping pipeline, it is also possible91

to write each identified sequence to a separate file. Additionally a summary of all identified repetitive92

regions, as well as a bed file to view the location of the regions in a genome viewer are created. Users93

can specify a minimal length for all reported repeats.94

The repeat regions can be used as separate references for the reconstruction of the individual repeat95

regions in multiple NGS sequencing samples in addition to the reconstruction of the full genome. To96

correctly reconstruct both ends of each respective repetitive region, a user-defined length for the flanking97

region on both the 3’ and 5’ end of each region is added, so that reads overlapping only part of the98

respective region can be mapped correctly.99

In order to reconstruct the repetitive region from sequenced fastq files, we use the EAGER pipeline100

developed by Peltzer et al. (2016). It can preprocess the raw reads, including adapter clipping and quality101

trimming, map them against a given reference, and generate a consensus sequence in the fasta file102

format. For the consensus reconstruction, it uses the results of the genotyping results, following GATK103

BEST Practice’s guidelines (Van der Auwera et al., 2013).104

The de novo identification of repeats in a genome, the automatic separate mapping of NGS data105

against all repetitive regions, as well as the subsequent enhanced reconstruction of the genome of NGS106

samples has been implemented in DACCOR (Detection charACterization and reConstruction of Repetitive107

regions in genomes), a stand-alone program written in Java.108

The repeat identification methodology, as described above, is implemented in the identify sub-109

program of our program and can be used to identify repetitive regions in a given reference genome de110

novo.111

The reconstruct subprogram of DACCOR automatically generates EAGER configuration files for112

a given reference, its identified repetitive regions, and multiple sequencing samples.113

Additionally, the combine subprogram can use the EAGER output of the reconstructed regions, as114

well as the EAGER output of the whole genome and combine these reconstructions. Because the origin115

of the reconstructed subsequences are known, they can replace the bases in the original reconstruction116

generated without specific repeat resolution. For each repetitive region, the respective positions in the117

genome are replaced if the original reconstruction resulted in an unknown (N) character.118

To be able to automatically assemble a genome with all its repetitive regions, the subprogram119

pipeline first identifies all repetitive regions in a given reference. Afterwards the NGS samples120

are automatically reconstructed against both the complete reference and each identified repetitive121

region individually using the EAGER pipeline. Finally, these individual regions are combined with the122

reconstructed genome sequence to increase the resolution in repetitive regions.123

The identify subprogram can identify repetitive regions within as well as between different124

chromosomes or a bacterial genome and its plasmids. This is done by combining the identified k-mers of125

all sequences in a given multi-fasta reference file. To be able to match identified repetitive regions to126

the corresponding sequence, a unique offset is added to the indices of the start location of each region.127

To evaluate our method, we applied DACCOR to several bacterial genomes of various lengths and128

repetitiveness. We first compared the step of repeat identification with VMatch (Kurtz, 2003), allowing129

for up to five mismatches in repetitive regions of a minimum length of 101 base-pairs (the length typical130

Illumina HiSeq reads). We then applied our proposed reconstruction method to the syphilis samples131

published by Arora et al. (2016), Pinto et al. (2016), and Sun et al. (2016) to reconstruct the sequences132

of the 16S and 23S rRNA, which are duplicated in the bacterium Treponema pallidum. For this, we133

first used DACCOR to identify all repetitive regions with at most five mismatches and a minimal length134
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Table 1. Comparison of the identified repetitive positions in different bacterial genomes of DACCOR and

VMatch, which was seen as the golden truth to evaluate against. Both programs were run allowing for

one mismatch and reporting only regions of at least 101 bp. The k-mer size for DACCOR was set to 17.

T. pallidum S. flexneri E. coli M. leprae

true positives 22,382 376,669 107,456 74,406

true negatives 1,116,478 4,211,322 4,535,106 3,192,194

false positives 0 354 463 131

false negatives 773 18 857 3 307 1 472

accuracy (%) 99.93 99.58 99.92 99.95

of 101 base pairs in the Nichols strain. We also reconstructed the full genomes of the samples using135

the standard EAGER pipeline. This allowed us to compare our reconstruction of the two genes to the136

reconstruction generated by the standard method using the full genome as a reference. In order to identify137

specific variations in either copy of the genes, we searched for heterozygous positions in the individual138

reconstructions of the extracted sequences that show an allele frequency between 25 and 75%.139

Finally we applied the full DACCOR pipeline to reconstruct the whole genomes, including the identified140

repetitive regions, of two syphilis samples. For this we chose two samples from Arora et al. (2016), one141

with a moderate coverage (AR1, 7X) and one with a very high coverage (AR2, 157X).142

RESULTS143

We first evaluated the identification of repetitive regions by comparing these to the repeats identified by144

VMatch. This comparison (see Table 1) shows that the results of both programs are almost identical.145

We considered VMatch as the “golden truth” and could therefore compute an accuracy for the repetitive146

regions reported by DACCOR. We achieved a very good accuracy with over 99% in all tested cases with147

only very few false negatives as well as false positives.148

Next we reran DACCOR with a higher sensitivity allowing for up to five mismatches in repetitive149

regions of lengths at least 101 base pairs. These results of the different bacterial genomes (see Table 2)150

show that the Shigella genome contains by far the most repetitive regions (1,249 compared to 29 in151

Nichols, 242 in E. coli, and 190 in M. leprae). It also contains the longest repetitive regions of the four152

bacteria (5,383 compared to 3,283, 3,141, and 2,578). The average lengths of the repetitive regions are153

quite similar in all four bacteria (between 570 and 823 base-pairs). The number of repetitive regions154

that can be identified when allowing for up to five mismatches also varies between the different bacteria.155

There are 127 of regions containing mismatches in the Shigella genome, whereas there are only 47 in the156

genome of E. coli, 9 in M. leprae, and 1 in Nichols. Overall 8.3% of the Shigella genome is comprised157

of repetitive regions. The genomes of E. coli and M. lepra are comprised of 2.4% and 2.3% repetitive158

regions respectively, and only 2.0% of the Nichols genome is repetitive.159

The runtime linearly correlates with the number of identified repetitive bases (see Figure 2). After an160

initial preprocessing step, DACCOR identifies about 12,000 repetitive bases per minute. The k-mer size161

Table 2. Statistics of identified repetitive regions using several bacterial genomes for a k-mer size of 17,

at most five mismatches, and a minimum length of 101 base pairs.

T. pallidum S. flexneri E. coli M. leprae

genome size [bp] 1,139,633 4,607,202 4,646,332 3,268,203

# repetitive regions 29 1,249 242 190

different repetitive regions 14 482 104 76

max length of repetitive regions 3,283 5,383 3.141 2,578

average length 823 570 706 643

repetitive regions with mismatches 1 127 47 9

sum of repetitive bases 23,892 660,261 160,897 119,871

% of genome repetitive (non overlapping) 2.0 8.3 2.4 2.3
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Figure 2. Runtime of DACCOR in relation to the number of identified repetitive bases.

does not influence the runtime (see supplementary Figure 2).162

The two longest identified repetitive regions in the Nichols genome correspond to the 16S and 23S163

rRNAs, respectively. Both operons contain two copies of the gene. We extracted these regions and used164
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Figure 3. Histogram of resolved bases (as fraction relative to the length of the respective gene) of the

16S rRNA (a) and 23S rRNA (b) in 106 clinical syphilis samples (Arora et al., 2016; Pinto et al., 2016;

Sun et al., 2016). The number of resolved base-pairs when mapping against each copy of the gene

individually in comparison to the standard mapping approach using both copies has been computed.
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Table 3. SNPs in the 16S and 23S rRNAs identified after extracting the repetitive region. Site-specific

positions refers to positions that appear to be different in the two copies of the respective gene (allele

frequency between 25 and 75%).

16S rRNA 23S rRNA

length of gene 1495 2900

number of variant positions 36 46

number of site-specific positions 30 43

them as two independent references for their reconstruction off all samples published by Arora et al.165

(2016), Pinto et al. (2016), and Sun et al. (2016). We mapped against each copy of the gene individually166

and count the number of resolved bases in each copy. This number was compared to the number of167

resolved bases in the two copies of the respective gene when mapping against the whole genome without168

repeat masking. We then computed the difference of these two numbers and divided by the length of the169

gene. We could improve the base-pair resolution (see Figure 3) by a median value of 82.7% for the 16S170

and 87.4% for the 23S rRNA. It shows that the percentage of the resolved base-pairs was at least as high171

when mapping only against the extracted sequences, compared to the mapping against the whole genome172

for all analyzed samples. This means that we do not lose resolution when mapping only against these173

sequences, but in almost all cases gain information up to an improvement of 100% of the sequence of the174

respective gene.175

Using the individual reconstructions of the 16S rRNA and the 23S rRNA gene sequences, we tried176

to identify SNPs that are specific for only one copy of the respective gene. The results of this analysis177

identified 36 positions that have a SNP call in at least one of the 106 samples for the 16S rRNA (see178

Table 3). Of those 36 positions, 30 show evidence for a site-specific SNP in at least one of all analyzed179

clinical samples. There are two positions (884 and 888 relative to the start of the 16S rRNA), which show180

site-specific variance in about 20% of the samples (see supplementary material). In the 23S rRNA there181

are 46 positions where at least one sample has a SNP. Of these 46, 43 show evidence for site-specific182

SNPs in at least one sample. Here, one position (2003) shows evidence for site-specificity in 37% of the183

samples. Additionally, there are nine positions that show site-specificity in at least 15% of the samples.184

Finally, we compared the total number of unresolved positions in the samples AR1 and AR2, published185

by Arora et al. (2016), between DACCOR and EAGER with the full genome as reference (see Table 4).186

On the sample AR1, the approach using the standard mapping approach without repeat resolution resulted187

in 23,348 unresolved bases, compared to the 4,473 unresolved bases using our enhanced repeat resolution188

approach. This means that using DACCOR, 82.81% of the repetitive regions are resolved, compared to the189

10.27% without DACCOR. For the high coverage sample AR2, the number of unresolved repetitive bases190

could be decreased by 16,585 from 17,549 to 964 bases. As a result, 96.3% of the repetitive bases could191

be resolved, compared to the 82.8% using the standard mapping approach.192

DISCUSSION193

We have developed DACCOR, an approach to increase the base-pair resolution of repetitive regions in the194

reconstruction of full genomes using short reads. For this we first identify the repetitive regions de novo.195

These regions are then used as individual references for mapping short reads of NGS samples. Finally, a196

Table 4. Enhanced genome resolution of two clinical syphilis samples (AR1 and AR2 from Arora et al.

(2016)). EAGER indicate the results using only the full genome as a reference without the extra repeat

resolution of DACCOR. The values refer to the repetitive regions only, including the margin regions (in

total 30330 bp).

AR1 AR2

EAGER DACCOR EAGER DACCOR

#N 23,348 4,473 17,549 964

%N 76.98 14.75 57.86 3.18
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Figure 4. Repetitive regions contained in the arp gene in Treponema pallidum

new draft genome is created by combining the reconstructed repeat regions with the rest of the genome197

that has been reconstructed using a standard mapping approach.198

Our de novo identification of repeats uses a k-mer approach. The choice of k is important for the199

identification of repeat regions. For de novo assembly based on de Bruijn graphs, the optimum depends200

on the genome length, the coverage, the quality, and the length of the reads (Zerbino and Birney, 2008).201

In the case of different read lengths, as often observed in aDNA projects, it has been shown that using202

multiple different k-mers improves the assembly (Seitz and Nieselt, 2017). Other approaches choose an203

optimal k-mer size so that the uniqueness is maximized (Gardner and Hall, 2013). However, as we want204

to identify repetitive regions, we do not want to use a k-mer size in order to maximize uniqueness. In205

our approach the k-mer size defines the minimum length of the repetitive regions that can be identified in206

the first step. Thus, a k-mer size as small as possible should be used to be able to identify all putative207

repeat regions. However, very small k-mer sizes lead to an exponential increase in the runtime (see208

supplementary Figure 2), due to the increasing number of random occurrences of these small k-mers that209

have to be accounted for. Therefore, we propose a minimum size for k of 17. On the other hand, the k-mer210

size should also not be longer than half the length of the input reads.211

The runtime of DACCOR correlates mainly with the repetitiveness of the genome, i.e. with the number212

of repetitive bases that are identified in the respective genome. When allowing mismatches, a slight213

increase in runtime is also noted.214

To identify all repetitive k-mers, all possible k-mers are stored in the first step of the identify215

subprogram of DACCOR. Those that are not repetitive are removed after the screening. Nonetheless, this216

results in high memory usage if the genome contains many repetitive regions. For the example of Shigella217

flexneri, we observed a memory footprint of 8 GB with a k-mer size of 17.218

The comparison between DACCOR and VMatch showed that VMatch is slightly more sensitive,219

probably due to its suffix array approach. A possibility to increase the sensitivity of DACCOR would be to220

elongate all identified repetitive regions based on a local alignment.221

When mapping short reads from typical NGS data, a number of approaches recommend to use222

genomes as references whose repetitive regions are masked (Tarailo-Graovac and Chen, 2009). However,223

this may be problematic, because repetitive regions often overlap and can be quite complex. An example224

for this is the arp gene of Treponema pallidum (see Figure 4). It contains several overlapping repetitive225

regions. It can be seen that the region labeled repeat 3 is partly repetitive with itself. Thus a masking of226

one of the repetitive regions would mask most of itself. Additionally, the masking of the second occurrence227

of repeat 1 would also mask most of both occurrences of repeat 3. When masking the first occurrence of228

repeat 1, the masking of either occurrence of repeat 2 would also mask part of the unmasked region of229

repeat 1. Thus, masking of repetitive regions could result in either loosing genome information or leaving230

repetitive regions unmasked. We therefore propose to use the identified repetitive regions as separate231

references for the mapping, and merge all individually reconstructed regions into a common draft genome.232

Since the de novo identification of repeats in genomes, using these then as individual references for the233

mapping and merging all reconstructed genomic regions into a final draft genome, require many different234

steps, our main goal of DACCOR was to present a fully automatic procedure encompassing all these steps.235

DACCOR makes use of EAGER, a pipeline for the automatic reconstruction of genomic data sets. For236

highly identical repeat regions, each copy is stored as individual sequences together with a margin at the237

5’ and 3’ end of the region. We propose to set the margin to twice the maximum read length to cover all238
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reads spanning over the ends of the repeats.239

Using DACCOR, we have shown that a higher base-pair resolution, compared to the reconstruction240

using the standard mapping approach in repeat regions, can be achieved. In the standard approach, reads241

that can be mapped to different locations result in a mapping quality of zero, which in turn decreases the242

genotyping quality (McKenna et al., 2010). By mapping to the repeat region only, these reads have a243

higher mapping quality, a higher genotype quality, and thus result in more resolved positions. However,244

one has to acknowledge that other unresolved bases, that may be due to lack of coverage or low sequencing245

quality, can not be resolved with our approach. In the case of the two syphilis samples, we could show that246

the majority of unresolved bases in repeat regions could be resolved, and that the remaining unresolved247

bases lie outside of the identified repetitive regions. Furthermore, we have shown that using DACCOR, the248

identification of SNPs in repeat regions can be improved. This is especially useful for the 23S rRNA, as it249

is known to play a role in the antibiotics resistance of bacteria (Arora et al., 2016).250

In conclusion, we have developed a fully automatic pipeline that first conducts a de novo repeat251

identification in bacterial genomes and then uses the repeat regions for an enhanced mapping of short252

read NGS data. Increasing the resolution of a draft genome has an effect on many downstream analyses,253

such as population genetics or phylogenetic analyses. For future improvements we plan to reduce the254

runtime and memory usage by adjusting our data structure and by adding more parallelization to some255

of the compute steps. With this we hope to eventually be able to identify repetitive regions also in large256

eukaryotic genomes, like the human genome.257

SOFTWARE AVAILABILITY258

We have developed an automated software pipeline, written in Java, which allows other researchers to use259

our methodology. This pipeline is available on github:260

https://github.com/Integrative-Transcriptomics/Daccor261
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