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Computational development of rubromycin-based lead 
compounds for HIV-1 reverse transcriptase inhibition

The binding of several rubromycin-based ligands to HIV1-reverse transcriptase was analyzed 

using molecular docking and molecular dynamics simulations. MM-PBSA analysis and 

examination of the trajectories allowed the identification of several promising compounds with 

predicted high affinity towards reverse transcriptase mutants which have proven resistant to 

current drugs. Important insights on the complex interplay of factors determining the ability of 

ligands to selectively target each mutant have been obtained.
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Abstract 

 

The binding of several rubromycin-based ligands to HIV1-reverse transcriptase was 

analyzed using molecular docking and molecular dynamics simulations. MM-PBSA 

analysis and examination of the trajectories allowed the identification of several 

promising compounds with predicted high affinity towards reverse transcriptase mutants 

which have proven resistant to current drugs. Important insights on the complex 

interplay of factors determining the ability of ligands to selectively target each mutant 

have been obtained. 

  

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.348v1 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts



 

Introduction 

HIV reverse transcriptases are multifunctional enzymes which use the virus single-

stranded RNA genome as template to build a double-stranded DNA which may later be 

incorporated into the host’s genome. They are composed of two subunits: p66 acts both 

as a DNA polymerase and as a RNAase which cleaves RNA/DNA hybrid molecules 

and p51 (whose sequence is equal to that of p66, but lacks the last 124 aminoacids) 

plays mostly a structural role. Due to its crucial role in the virus life cycle, HIV reverse 

transcriptase (RT) has been the target of several successful drug-developing efforts. 

These drugs may be grouped in several classes based on their mechanism of action 

(thoroughly reviewed in(Jochmans, 2008; Sarafianos et al., 2009; Singh et al., 2010)): 

nucleoside analogue RT inhibitor (NRTI), like azidothymidine(Mitsuya et al., 1985) 

(the first successful drug against HIV) act as a alternative substrates and block the 

synthesis of the viral DNA due to their lack of a free 3’ OH- group; nucleotide-

competing RT inhibitors (NcRTI) like INDOPY-1(Jochmans et al., 2006) bind the 

active site in an as-yet-undisclosed manner; and non-nucleoside RT inhibitors (NNRTI) 

in contrast bind to the enzyme in a hydrophobic pocket 10 Å away from the active 

site(Kohlstaedt et al., 1992; Ding et al., 1998) and prevent the enzyme from attaining a 

catalytically competent conformation. Since reverse transcriptases lack a proofreading 

ability, very high rates of mutation are observed and mutants resistant to one or more 

drugs frequently arise. To decrease the probability of selection of drug-resistant strains, 

a combination therapy including drugs with different targets and modes of action is 

most often used in clinical practice. Still, newer drugs must be continually developed to 

fight resistant strains.  
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Rubromycins are a small class of compounds containing naphtoquinone and 8-

hydroxyisocoumarin moieties(Brasholz et al., 2007). In 1990, ³- and ´-rubromycin were 

shown to inhibit HIV-1 reverse transcriptase(Goldman et al., 1990), although at levels 

that were also toxic to human T lymphocytes. ´-rubromycin was later shown to be an 

inhibitor of human telomerase(Ueno et al., 2000), fueling interest in its use as an anti-

cancer agent. The development of less toxic variants of these lead compounds has long 

been prevented due to the difficulty of their laboratory synthesis, but several synthetic 

routes to these interesting molecules have recently become available(Akai et al., 2007; 

Rathwell et al., 2009; Wu, Mercado, & Pettus, 2011), enabling the evaluation of many 

derivatives as candidates for the inhibition of telomerase(Yuen et al., 2013).  In this 

report, we describe the evaluation of rubromycin derivatives as inhibitors of HIV-1 

reverse transcriptase using computational docking and molecular dynamics simulations 

of the most promising candidates. The results are compared to those of the 

commercially-available, 2nd-generation NNRTI drug rilpivirine.  

  

Computational methods 

 

All computations were performed in YASARA(Krieger et al., 2004) using the crystal 

structure of the rilpivirine-inhibited HIV1 reverse transcriptase published by Das et al. 

(PDB: 2ZD1)(Das et al., 2008). A double-mutant structure, (p66)K103N/(p66)Y181C 

and a quadruple mutant (p51p66)M184I/(p51p66)E138K, were also generated to 

evaluate the robustness of the ligand binding to reverse transcriptase variants with 

increased resistance to NNRTIs: K103N is known to strongly reduce susceptibility to 

efavirenz and nevirapine(Bacheler et al., 2001; Rhee et al., 2004; Eshleman et al., 2006; 

Zhang et al., 2007; Melikian et al., 2014) and E138K has a similar effect towards 
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rilpivirine, which is increased by M184I(Kulkarni et al., 2012); Y181C reduces 

suceptibility to efavirenz, etravirine and rilpivirine(Reuman et al., 2010; Tambuyzer et 

al., 2010; Rimsky et al., 2012). Rubromycin-based ligands (Figure 1 and Supporting 

Information) were docked to the wild-type structure with AutoDock 4.2.3(Morris et al., 

2009) using default docking parameters and point charges assigned according to the 

AMBER03 force field(Duan et al., 2003). The highest scoring ligands and poses were 

selected for molecular dynamics simulations. Initial structures for molecular dynamics 

simulations of mutant proteins were generated from the corresponding ligand-bound 

wild-type structures through mutation of the corresponding aminoacids. All simulations 

were run with the AMBER03 forcefield(Duan et al., 2003), using a multiple time step of 

1.25 fs for intramolecular and 2.5 fs for intermolecular forces. Simulations were 

performed in cells 5 Å larger than the solute along each axis (final cell dimensions 

127.3 × 102.6 × 78.8 Å), and counter-ions (88 Cl- and 77 Na+) were added to a final 

concentration of 0.9 % NaCl. In total, the simulation contained approximately 106,500 

atoms. A 7.86 Å cutoff was taken for Lennard-Jones forces and the direct space portion 

of the electrostatic forces, which were calculated using the Particle Mesh Ewald 

method(Essmann et al., 1995) with a grid spacing <1 Å, 4th order B-splines and a 

tolerance of 10-4 for the direct space sum. Simulated annealing minimizations started at 

298 K, velocities were scaled down with 0.9 every ten steps for a total time of 5 ps. 

After annealing, simulations were run at 298 K. Temperature was adjusted using a 

Berendsen thermostat(Berendsen et al., 1984) based on the time-averaged temperature, 

i.e., to minimize the impact of temperature control, velocities were rescaled only about 

every 100 simulation steps, whenever the average of the last 100 measured temperatures 

converged. Substrate parameterization was performed with the AM1BCC 

protocol(Jakalian et al., 2000; Jakalian, Jack, & Bayly, 2002). All simulations were run 
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for 30 ns. Differences in ligand binding energies between wild-type and mutant proteins 

were evaluated using the MM-PBSA methodology(Srinivasan et al., 1998): for each 

snapshot (taken at 0.25 ns intervals from the last 15 ns of the simulation) we computed 

the molecular mechanics energy of the protein-ligand complex, the electrostatic 

contribution to solvation energy (using the Adaptive Poisson-Boltzmann Solver (Baker 

et al., 2001)) and nonelectrostatic contributions to solvation (with a surface-area-

dependent term(Wang et al., 2001)). These computations were repeated for each 

snapshot for the ligand-free protein and the protein-free ligad, to obtain an estimate of 

the average binding energy of each ligand. 
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Figure 1: Structures of the tested rubromycin-based ligands. 
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III. Results 

 

Table 1: Substitution patterns and AutoDock-computed binding energies of the best-

scoring ligands. Only differences from the parent compound (´-rubromycin) are shown. 

The binding energy of the drug rilpivirine, computed with the same methods, amounts 

to -13.25 kcal.mol-1. Data for all ligands is available as Supporting Information. 

 

Ligand: Rubromycin 46 36 27 45 13 38 37 

R1=
 -COOCH3 

   
-CH2OH 

   

R2= -C=C-H 
  

(S) HC-CH2     

R3= -C=O-O 
   

-O-C=O 
   

R4= =C=C-H -CH-CH2-       
R5= -C-OH -C=O 

      
R6= -O- 

       
R7= -O- 

       
R8= -OH 

       
R9= -OH 

       

R10= -C=O  -C=O 
       

R11= -O-CH3 -CN -F 
 

-CN -CH2-CH3 -CN -Cl 

Binding 
energy 

-12.95 -13.71 -13.72 -13.82 -13.82 -13.91 -14.25 -14.29 

 

Computational docking allows the fast screening of a large number of candidate ligands, 

which may afterwards be analyzed through more demanding computational techniques 

in the search for suitable leads for further development and experimental 

characterization. Out initial screen analyzed the docking performance of rubromycin 

derivatives with/without truncated rings, substitution of the oxygen atoms appended to 

the spirocyclic ring and different substitution patterns around the rings. The worst-

scoring ligands were those where any of the rings had been removed, as well as the ones 
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where the oxygen at the R6 position was substituted by nitrogen or carbon. Surprisingly, 

substitution of the =CH- at the R4 position by an isoelectronic =N- also led to a dramatic 

loss of binding affinity. The most promising leads (Table 1) generally had (like the 

NNRTI drug rilpivirine) a nitrile group appended to the ligand. The behavior of these 

molecules in the reverse transcriptase binding pocket of wild-type and mutant reverse 

transcriptase was then evaluated through 30 ns-long molecular dynamics simulations 

and compared to that of rilpivirine. 

 

Table 2: Binding affinity (average ± standard error of the mean) of the best-scoring 

ligands to reverse-transcriptase mutants, relative to the binding affinity of each ligand to 

the wild-type enzyme. Values in kcal.mol-1. Negative values show stronger binding than 

observed to the wild-type protein. 

 

 K103N / Y181C E138 K / M184I 

Rilpivirine 1.6±0.9 3.6±0.8 

³-rubromycin 9.8±1.1 0.3±1.1 

13 -6.7±1.4 -16.8±1.4 

27 7.7±1.4 -13.0±1.2 

36 10.3±1.0 -7.1±0.9 

37 -4.0±1.2 -5.2±1.4 

38 4.6±1.0 -4.1±0.9 

45 -3.6±1.0 -7.0±1.2 

46 -1.9±1.2 -3.8±1.0 
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Binding affinities of each ligand to wild-type and mutant HIV-1 RT s were computed 

with the MM-PBSA methodology using the last 15 ns of each molecular dynamics 

simulation (Table 2). This method, while not accurate enough to produce reliable 

absolute binding free energies, has been shown to provide good estimates of binding 

affinity trends provided that either the ligands or the protein targets under comparison 

are very similar (Massova & Kollman, 2000). The computed data for rilpivirine agree 

with the experimentally observed sensitivity of its binding to E138K / M184I variants, 

and to the relative insensitivity of its effect on the presence/absence of K103N or 

Y181C mutation, which supports the applicability of the MM-PBSA approach to this 

system. Ligands 13, 27, 36 and 45 are computed to bind significantly stronger to the 

rilpivirine-resistant E138K/M184I HIV1-RT variant than to the wild-type protein, and 

may therefore be suitable lead compounds for further pharmaceutical developments 

against rilpivirine-resistant strains. Further insight to the determinants of binding 

affinity was obtained through close inspection of each simulation. 

As observed in the crystal structure(Das et al., 2008), rilpivirine remains bound  to RT 

throughout the simulation through a large number of hydrophobic contacts and two very 

stable hydrogen bonds with the backbone of Lys101, whether in the wild-type or any of 

the tested mutants. Its high hydrophobicity strongly favor it to adopt a very buried 

conformation and low solvent-accessible area throughout the simulation. The high 

stability of the hydrogen bonds does not change in the mutated variants, but the total 

number of close hydrophobic contacts between rilpivirine and the protein does become 

smaller in the E138K/M184I mutant, which is consistent with the experimentally 

observed lower affinity of this drug towards it (Singh et al., 2012), and the computed 

MM-PBSA binding energy. 
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Figure 2: ´-rubromycin (left panel) and rilpivirine (right panel) bound to wild-type HIV-

1 reverse transcriptase. Snapshots were taken from random points in the last 15ns of 

molecular dynamics simulations. 

 

The binding of ligand 13 to wild type RT differs more from that of ´-rubromycin than 

would be expected from the very small difference in their structures (the single 

substitution of a methoxy group in ´-rubromycin by an ethyl): since the ethyl group is 

less hydrophilic than a methoxy, it initially tends to establish a hydrophobic interaction 

with the sidechain of Val179, instead of protruding (like the methoxy group) in the 

direction of the solvent, leading to a binding mode where the stabilizing hydrogen-

bonds between the ligand and the protein are due to Glu138 instead of Lys101. In 

contrast to what is observed in the binding of ´-rubromycin to the K103N/Y181C, the 

replacement of the Lys-based H-bonds does not lead to an unfavorable buried 

conformation of the ligand because, as the simulation progresses, the interaction with 

Glu138 causes subtle changes in the local environment which becomes more exposed to 

the solvent than originally: indeed, there is in average one more water molecule near 

ligand 13 than near ´-rubromycin, leading to a smaller desolvation penalty when 13 

binds to the protein. Binding of 13 to the mutants is strongly favored over binding to the 

wild-type due to the formation of hydrogen bonding to the backbone of Ile180 

(especially in E138K/M184I) and especially by the changes in the electrostatic 

component of ligand solvation caused by the presence of two intra-molecular H-bonds 

in 13 when bound to the mutant proteins. 

The sp3 hybridization in the acetyl-bearing carbon of the isocoumarin-moiety in 27 

introduces a deviation from full planarity in that region of the ligand, which facilitates 

its interactions with the Trp229 and Ty188 aminoacids on that end of the NNRTI-
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binding cavity. Ligand 27 is found to bind much more favorably to the quadruple 

mutant E138K/M184I (with a very large number of very short and stable hydrogen 

bonds with Lys101, Lys103, Lys138 and Thr139) than to wild-type or K103N/Y181C, 

where the only stable hydrogen bonds available are those with Glu138. The electrostatic 

component of the solvation energy of 27 follows the opposite trend as the protein is 

changed from WT to the mutants, but the smaller variation of this factor simply 

dampens the magnitude of the change in binding affinities brought about by the 

variation in protein-ligand interactions. 

Ligand 36 bears a fluorine atom in place of the methoxy group carried by ´-rubromycin. 

Like ligand 27, 36 has higher affinity to the E138K/M184I mutant than to either the 

wild-type and, especially, the K103N/Y181C mutant. The minute size of the fluorine 

substituent  allows Lys101 and Glu138 (which lie on opposite sides of the crevice 

where the ligands bind) to approach each other and form a strong ionic bridge which 

pushes the ligand further inside the cavity. This ionic bridge cannot form in the 

E138K/M184I mutant, leading to a binding mode where the ligand is slightly more 

exposed and strongly binds to Lys101, Lys103 and Lys 138. In the K103N/Y181C, the 

interactions between ligand and protein are weaker due to the strong deviations from 

180º in the possible H-bonding partners in the binding cavity. 

Ligands 37 and 38 bear a chlorine and a cyanide (respectively) in place of the fluorine 

present on 36. The intermediate size of these substituents (relative to the fluorine in 36 

and the methoxy in ´-rubromycin) leads to an intermediate degree of penetration in the 

binding cavity, between those of 36 and in ´-rubromycin. Aa observed in most cases, 

Lys101 is responsible for the most stable interaction between protein and ligand. No 

single contribution is, however, determinant in the observed trend of binding affinity of 

37 to the proteins, as the correlation of total binding energies to either electrostatic 
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