A peer-reviewed version of this preprint was published in PeerJ on 16 March 2018.

View the peer-reviewed version (peerj.com/articles/4473), which is the preferred citable publication unless you specifically need to cite this preprint.

pcr: an R package for quality assessment, analysis and testing of qPCR data

Mahmoud Ahmed 1, Deok Ryong Kim Corresp. 2

1 Department of Biochemistry and Convergence Medical Sciences, Gyeongsang National University School of Medicine, Jinju, GyeongNam, South Korea
2 Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, GyeongNam, South Korea
Corresponding Author: Deok Ryong Kim
Email address: drkim@gnu.ac.kr

Background. Real-time quantitative PCR (qPCR) is a broadly used technique in the biomedical research. Currently, few different analysis models are used to determine the quality of data and to quantify the mRNA level across the experimental conditions.

Methods. We developed an R package to implement methods for quality assessment, analysis and testing qPCR data for statistical significance. Double Delta $\Delta \Delta CT$ and standard curve models were implemented to quantify the relative expression of target genes from CT in standard qPCR control-group experiments. In addition, calculation of amplification efficiency and curves from serial dilution qPCR experiments are used to assess the quality of the data. Finally, two-group testing and linear models were used to test for significance of the difference in expression control groups and conditions of interest.

Results. Using two datasets from qPCR experiments, we applied different quality assessment, analysis and statistical testing in the pcr package and compared the results to the original published articles. The final relative expression values from the different models, as well as the intermediary outputs, were checked against the expected results in the original papers and were found to be accurate and reliable.

Conclusion. The pcr package provides an intuitive and unified interface for its main functions to allow biologist to perform all necessary steps of qPCR analysis and produce graphs in a uniform way.
pcr: an R package for quality assessment, analysis and testing of qPCR data

Mahmoud Ahmed¹ and Deok Ryong Kim²

¹,² Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea 527-27

Corresponding author:
Deok Ryong Kim²

Email address: drkim@gnu.ac.kr

ABSTRACT

Background. Real-time quantitative PCR (qPCR) is a broadly used technique in the biomedical research. Currently, few different analysis models are used to determine the quality of data and to quantify the mRNA level across the experimental conditions. Methods. We developed an R package to implement methods for quality assessment, analysis and testing qPCR data for statistical significance. Double Delta CT and standard curve models were implemented to quantify the relative expression of target genes from CT in standard qPCR control-group experiments. In addition, calculation of amplification efficiency and curves from serial dilution qPCR experiments are used to assess the quality of the data. Finally, two-group testing and linear models were used to test for significance of the difference in expression control groups and conditions of interest. Results. Using two datasets from qPCR experiments, we applied different quality assessment, analysis and statistical testing in the pcr package and compared the results to the original published articles. The final relative expression values from the different models, as well as the intermediary outputs, were checked against the expected results in the original papers and were found to be accurate and reliable. Conclusion. The pcr package provides an intuitive and unified interface for its main functions to allow biologist to perform all necessary steps of qPCR analysis and produce graphs in a uniform way.

INTRODUCTION

Real-time quantitative PCR (qPCR) is a commonly used technique to analyze the relative gene expression level in the biomedical research. In most cases, small scale experiments are designed to quantify the level of mRNA among experimental conditions. Some advanced machines and optimized protocols have simplified the experiments to a highly efficient one-step process, allowing the effective analysis of a large scale of qPCR data. However, all processes for assessing the quality of the data, performing the analysis and reporting the results are not done in the most uniform way across the literature (Bustin and Nolan, 2004). Different analysis models have been proposed and implemented in different software environments (Pabinger et al., 2014). Furthermore, requirements and guidelines for reporting qPCR data were independently introduced (Bustin et al., 2009).

In this report, we introduce an open source R package for performing quality assessment, modeling and testing for statistical significance of qPCR data in a uniform way. In its current version, the pcr package implement two methods for relative quantification of mRNA expression proposed originally by Livak and Schmittgen (2001), in addition to the necessary steps to check the assumption of these methods. Also, we implement a number of methods to check for statistical significance in qPCR data which were introduced in SAS by Yuan et al. (2006). Finally, the package provides unified interface to make the analysis accessible and the ability to make graphs of the different analysis steps for visual inspection and preparation of publication-level figures. We start by describing the process for generating the data in the original papers, briefly introduce the methods and apply them to the original data using the pcr.
MATERIALS & METHODS

Data Sources
To illustrate the usage of the pcr package and to apply it to qPCR data, we used real qPCR datasets from two published papers. In addition, we compared the results obtained by the pcr package to that of the original paper to ensure the reliability. At the first paper, Livak and Schmittgen (2001) obtained total RNA from human tissues; brain and kidney. c-myc and GAPDH primers were then used for cDNA synthesis and used as input in the PCR reaction. Seven different dilutions where used as input to the PCR reaction (three replicates each), this dataset was referred to as ct3 and shown in Table 1. Six replicates for each tissue were run in separate tubes. This dataset was referred to as ct1 through this document and shown along with the difference calculations in Table 2 and 3. At the second work, Yuan et al. (2006) extracted total RNA from *Arabidopsis thaliana* plant treated and control samples (24 samples each), and performed qPCR analyses using MT7 and ubiquitin primers. This dataset was referred to as ct4 and shown the results of the different testing methods that applied in the original paper in Table 4.

Statistical methods

In contrast with the absolute quantification of the amount of mRNA in a sample, the relative quantification uses a internal control (reference gene) and/or a control group (reference group) to quantify the mRNA of interest relative to these references. This relative quantification was sufficient to draw conclusions in most of the biomedical applications involving qPCR. A few methods were developed to perform these relative quantification. These methods generally require different assumptions and models for the analysis. The most common two of these methods were described here in the following sections.

The comparative Cₜ methods

The comparative Cₜ methods assume that the cDNA templates of the gene/s of interest as well as the control/reference gene have similar amplification efficiency, and also that this amplification efficiency is near perfect. Meaning, at a certain threshold during the linear portion of the PCR reaction, the amount of the gene of interest and the control double each cycle. Another assumption is that the expression difference between two genes or two samples can be captured by subtracting one (gene or sample of interest) from another (reference). The final assumption is that the reference doesn’t change with the treatment or the course in question. The formal derivation of the double delta Cₜ model is described here. Briefly, the ∆∆Cₜ is given by:

\[\Delta \Delta C_T = \Delta C_{T,q} - \Delta C_{T,cb} \]
(1)

And the relative expression by:

\[2^{-\Delta \Delta C_T} \]
(2)

Where \(\Delta C_{T,q} \) is the difference in the \(C_T \) (or their average) of a gene of interest and a reference gene in a group of interest. \(\Delta C_{T,cb} \) is the difference in the \(C_T \) (or their average) of a gene of interest and a reference gene in a reference group. The error term is given by:

\[s = \sqrt{s_1^2 + s_2^2} \]
(3)

Where \(s_1 \) is the standard deviation of a gene of interest and \(s_2 \) is the standard deviation of a reference gene.

Standard curve

In comparison, this model doesn’t assume perfect amplification but rather actively use the amplification in calculating the relative expression. So when the amplification efficiency of all genes are 100% both methods should give similar results. The standard curve method is applied using two steps. First, serial dilutions of the mRNAs from the samples of interest are used as input to the PCR reaction. The linear trend of the log input amount and the resulting Cₜ values for each gene are used to calculate an intercept and a slope. Secondly, these intercepts and slopes are used to calculate the amounts of mRNA of the
genes of interest and the control/reference in the samples of interest and the control sample/reference. These amounts are finally used to calculate the relative expression in a manner similar to the later method, just using division instead of subtraction. The formal derivation of the model is described here (Yuan et al., 2006). Briefly, The amount of RNA in a sample is given by:

\[\log amount = \frac{C_T - b}{m} \]

(4)

And the relative expression is given by:

\[10^{\log amount} \]

(5)

Where \(C_T \) is the cycle threshold of a gene, \(b \) is the intercept of \(C_T \) log10 input amount, \(m \) is the slope of \(C_T \). And the error term is given by:

\[s = (cv)(\bar{X}) \]

(6)

Where:

\[cv = \sqrt{cv_1^2 + cv_2^2} \]

(7)

Where \(s \) is the standard deviation, \(\bar{X} \) is the average. \(cv \) is the coefficient of variation or relative standard deviation.

Statistical significance tests

Assuming that the assumptions of the first methods are holding true, the simple t-test can be used to test the significance of the difference between two conditions (\(\Delta C_T \)). t-test assumes, in addition, that the input \(C_T \) values are normally distributed and the variance between conditions are comparable. Wilcoxon test can be used if sample size is small, and those two last assumptions are hard to achieve.

Two use the linear regression here. A null hypothesis is formulated as following,

\[C_{T,target,treatment} - C_{T,control,treatment} = C_{T,target,control} - C_{T,control,control} \]

(8)

This is exactly the \(\Delta \Delta C_T \) value as explained earlier. So the \(\Delta \Delta C_T \) is estimated and the null is rejected when \(\Delta \Delta C_T \neq 0 \).

Quality Assessment

Fortunately, regardless of the method used in the analysis of qPCR data, The quality assessment can be done in a similar way. It requires an experiment similar to that of calculating the standard curve. Serial dilutions of the genes of interest and controls are used as input to the reaction and different calculations are made. The amplification efficiency is approximated be the linear trend between the difference between the \(C_T \) value of a gene of interest and a control/reference (\(\Delta C_T \)) and the log input amount. This piece of information is required when using the \(\Delta \Delta C_T \) model. Typically, the slope of the curve should be very small and the \(R^2 \) value should be very close to one. A value of the amplification efficiency itself is given by \(10^{-1/slope} \) and should be close to 2. Other analysis methods are recommended when this is not the case. Similar curves are required for each gene using the \(C_T \) value instead of the difference for applying the standard curve method. In this case, a separate slope and intercept for each gene are required for the calculation of the relative expression.

RESULTS & DISCUSSION

Availability & Installation

The pcr packages is available on CRAN, the main repository for R packages and can be installed by invoking install.packages in an R (\(\geq 3.4.2 \)) session. The package’s source code is also available on github, https://github.com/MahShaaban/pcr along with the development version.
install the pcr package from CRAN
install.packages('pcr')

The examples shown in this article are explained in greater details in the package vignette that can be accessed through browseVignette('pcr'). Moreover, the package documentation provides detailed instruction on the input and the output of each function (e.g. ?pcr.analyze).

Functionality & user interface
The pcr package provides different methods for performing quality assessment, modeling and testing real-time qualitative PCR data through the unified interface of three functions pcr_assess, pcr_analyze and pcr_test, respectively.

Quality Assessment
pcr_assess provides two methods for assessing the quality of qPCR data. These are 'efficiency' and 'standard_curve' to calculate the amplification efficiency and gene standard curves as described in the methods section. The following code block applies both methods to the dataset ct3, shown in Table 1.

load required libraries
library(pcr)
library(ggplot2)
library(cowplot)
library(dplyr)
library(xtable)
library(readr)

pcr_assess
locate and read data
fl <- system.file('extdata', 'ct3.csv', package = 'pcr')
ct3 <- read.csv(fl)

make a vector of RNA amounts
amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3)

calculate amplification efficiency
res1 <- pcr_assess(ct3,
 amount = amount,
 reference_gene = 'GAPDH',
 method = 'efficiency')

calculate standard curves
res2 <- pcr_assess(ct3,
 amount = amount,
 method = 'standard_curve')

retain curve information
intercept <- res2$intercept
slope <- res2$slope

Analysis models
Similarly, pcr_analyze provides two methods to model the C_T values and calculates the relative expression of target genes. 'delta_delta_ct' performs the ∆∆C_T method described previously. The average relative expression of the target gene in the condition of interest is given by the equations 1 & 2 and the standard deviation by 3. The calculations are applied to the dataset 'ct1', shown in Table 2 and Figure 2A. 'relative_curve' performs the relative standard curve quantification, average relative expression/amount of the target gene in the condition of interest is given by equations 4 & 5 and the standard deviation by
Table 1. Average C_T value for c-myc and GAPDH at different input amounts

<table>
<thead>
<tr>
<th>Input RNA (ng)</th>
<th>c-myc Average C_T</th>
<th>GAPDH Average C_T</th>
<th>ΔC_T (c-myc - GAPDH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>25.59 ± 0.04</td>
<td>22.64 ± 0.03</td>
<td>2.95 ± 0.05</td>
</tr>
<tr>
<td>0.5</td>
<td>26.77 ± 0.09</td>
<td>23.73 ± 0.05</td>
<td>3.04 ± 0.10</td>
</tr>
<tr>
<td>0.2</td>
<td>28.14 ± 0.05</td>
<td>25.12 ± 0.10</td>
<td>3.02 ± 0.11</td>
</tr>
<tr>
<td>0.1</td>
<td>29.18 ± 0.13</td>
<td>26.16 ± 0.02</td>
<td>3.01 ± 0.13</td>
</tr>
<tr>
<td>0.05</td>
<td>30.14 ± 0.03</td>
<td>27.17 ± 0.06</td>
<td>2.97 ± 0.07</td>
</tr>
<tr>
<td>0.02</td>
<td>31.44 ± 0.16</td>
<td>28.62 ± 0.10</td>
<td>2.82 ± 0.19</td>
</tr>
<tr>
<td>0.02</td>
<td>32.42 ± 0.12</td>
<td>29.45 ± 0.08</td>
<td>2.97 ± 0.14</td>
</tr>
</tbody>
</table>

Figure 1. Amplification efficiency and standard curves of c-myc and GAPDH. Seven different dilutions of RNA were used as an input to synthesize cDNA, then to a real-time quantitative PCR reaction with c-myc and GAPDH primers. (A) ΔC_T values were calculated by subtracting the C_T values from three independent samples of the control gene (GAPDH) from the target c-myc. Averages and standard deviations are shown as points and error bars. The blue line represents the linear trend between the ΔC_T and log10 of the input amount. (B) C_T values from three independent samples of c-myc and GAPDH are shown with the corresponding log10 input amounts.
Table 2. Relative quantification using comparative ($\Delta\Delta^{c}C_{T}$) method (separate tubes)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>c-myc C_{T}</th>
<th>GAPDH C_{T}</th>
<th>$\Delta^{c}C_{T}$</th>
<th>$\Delta\Delta^{c}C_{T}$</th>
<th>c-myc$'$N</th>
<th>Rel. to Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>30.72</td>
<td>23.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.34</td>
<td>23.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.58</td>
<td>23.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.34</td>
<td>23.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.5</td>
<td>23.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.43</td>
<td>23.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>30.49 ± 0.15</td>
<td>23.63 ± 0.09</td>
<td>6.86 ± 0.17</td>
<td>0.00 ± 0.17</td>
<td>1.0</td>
<td>1.0 (0.9–1.1)</td>
</tr>
<tr>
<td>Kidney</td>
<td>27.06</td>
<td>22.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.03</td>
<td>22.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.03</td>
<td>22.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>22.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.99</td>
<td>22.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.94</td>
<td>24.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>27.03 ± 0.06</td>
<td>22.66 ± 0.08</td>
<td>4.37 ± 0.10</td>
<td>-2.50 ± 0.10</td>
<td>5.6</td>
<td>5.6 (5.3–6.0)</td>
</tr>
</tbody>
</table>

equation 6 & 7. The calculation is applied to the same dataset ‘ct1’ and is shown in Table 3 and Figure 2B.

pcr_analyze

locate and read raw ct data
fl <- system.file('extdata', 'ct1.csv', package = 'pcr')
ct1 <- read_csv(fl)

add grouping variable
group_var <- rep(c('brain', 'kidney'), each = 6)

calculate all values and errors in one step
mode == 'separate tube' default
res1 <- pcr_analyze(ct1, group_var = group_var,
 reference_gene = 'GAPDH',
 reference_group = 'brain')

calculate standard amounts and error
res2 <- pcr_analyze(ct1, group_var = group_var,
 reference_gene = 'GAPDH',
 reference_group = 'brain',
 intercept = intercept,
 slope = slope,
 method = 'relative curve')

Significance Testing

Finally, pcr_test can be used to calculate useful statistics, p-values and confidence intervals on the previous models. Two tests are available of the two-group comparisons; 't.test' and 'wilcox.test' to test for the difference of the normalized target gene expression ($\Delta^{c}C_{T}$) in one condition to another. Linear regression, 'lm', can be applied to estimate these differences between multiple conditions and a reference (Equation 8). The following code applies different testing methods to the dataset ‘ct4’. The dataset was published original in (Yuan et al., 2006), along with results of different testing method (Table 4). Table 5 shows the results of the three different tests as implemented in pcr_test.
Table 3. Relative quantification using the standard curve method (separate tube)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>c-myc (ng)</th>
<th>GAPDH (ng)</th>
<th>c-myc<sub>N</sub> norm. to GAPDH</th>
<th>c-myc<sub>N</sub> Rel. to Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>0.033</td>
<td>0.51</td>
<td>0.043</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>0.036</td>
<td>0.59</td>
<td>0.043</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>0.039</td>
<td>0.51</td>
<td>0.040</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average 0.039 ± 0.004 0.54 ± 0.034</td>
<td>0.07 ± 0.008 1.0 ± 0.12</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.40</td>
<td>0.96</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>1.06</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
<td>1.07</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>0.43</td>
<td>0.96</td>
<td>Average 0.41 ± 0.016 1.02 ± 0.052</td>
<td>0.40 ± 0.025 5.5 ± 0.35</td>
</tr>
</tbody>
</table>

Figure 2. Relative expression of c-myc in human brain and kidney tissues. Total RNA from human brain and kidney tissues were used to synthesize cDNA and real-time quantitative PCR reaction with c-myc and GAPDH primers. C_T values from six independent replicates were used to calculate the expression of c-myc in the kidney normalized by GAPDH and relative to the brain using the ∆∆C_T (A) and the standard curve methods (B). Averages and standard deviations are shown as bars and error bars.
Table 4. Statistical significance using different testing methods

<table>
<thead>
<tr>
<th>Test</th>
<th>$\Delta\Delta C_T$ (estimate)</th>
<th>p-value</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Regression</td>
<td>-0.6848</td>
<td><0.0001</td>
<td>(-0.4435, -0.9262)</td>
</tr>
<tr>
<td>ANOVA</td>
<td>-0.6848</td>
<td><0.0001</td>
<td>(-0.4435, -0.9262)</td>
</tr>
<tr>
<td>t-test</td>
<td>-0.6848</td>
<td><0.0001</td>
<td>(-0.4147, -0.955)</td>
</tr>
<tr>
<td>Wilcoxon test</td>
<td>-0.6354</td>
<td><0.0001</td>
<td>(-0.4227, -0.8805)</td>
</tr>
</tbody>
</table>

Table 5. Different testing methods applied to the same dataset.

<table>
<thead>
<tr>
<th>gene</th>
<th>estimate</th>
<th>p-value</th>
<th>lower</th>
<th>upper</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>t.test</td>
<td>target</td>
<td>-0.68</td>
<td>0.00</td>
<td>-0.96</td>
<td>-0.41</td>
</tr>
<tr>
<td>wilcox.test</td>
<td>target</td>
<td>-0.64</td>
<td>0.00</td>
<td>-0.88</td>
<td>-0.42</td>
</tr>
<tr>
<td>lm</td>
<td>target</td>
<td>-0.68</td>
<td>0.00</td>
<td>-0.95</td>
<td>-0.41</td>
</tr>
</tbody>
</table>

Comparison with other packages

Pabinger et al. (2014) surveyed the tools used to analyze qPCR data across different platforms. They included 9 R packages which provide very useful analysis and visualization methods. Some of these packages focuses one certain model and some are designed to handle high-throughput qPCR data. Most of these packages are hosted in CRAN and a few on the Bioconductor so they adhere to Bioconductor methods and data containers. In comparison, pcr provides a unified interface for different quality assessment, analysis and testing models. The input and the output are tidy `data.frame`, and the package source code follows the tidyverse practices. This package targets the small scale qPCR experimental data.
and the R user practitioners. The interface and documentation choices were made with such users in mind and require no deep knowledge in specific data structures or complex statistical models.

Limitations & future directions
The current version of the pcr package (1.1.0) provides only methods to estimate the expression of genes in a certain condition relative to another. Other methods were proposed for absolute quantification of the copy number of genes in samples (Whelan et al., 2003). Also, the comparative C_T methods assume that the PCR reaction has a close to perfect amplification rates. Other methods were proposed to model the data when this assumption is not true (Liu and Saint, 2002; Tichopad et al., 2003). We are planning to implement methods for absolute quantification and dealing with less than perfect amplification efficiency cases in a future version of the package.

CONCLUSION
To sum, the pcr package is an open source R package for quality assessing, modeling and testing real-time quantitative PCR data. The package provide an intuitive and unified interface for its main functions to allow biologist to perform all necessary steps of qPCR analysis and produce graphs in a uniform way.

ACKNOWLEDGMENTS
We thank all lab members for the critical discussion at the development of this R package. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2015R1D1A01019753) and by the Ministry of Science, ICT and Future Planning (NRF-2015R1A5A2008833).

REFERENCES