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Land-use and climate change are affecting the abundance and distribution of species. The

Trans-Mexican Volcanic Belt (TMVB) is a very diverse region due to geological history,

geographic position and climate, however, is one of the most disturbed regions in Mexico.

Reptiles are particularly sensitive to environmental changes due to their low dispersal

capacity and thermal ecology. In this study, we define the environmental niche (a part of

it; considering climatic, topographic and land use variables) and potential distribution

(present and future) of the five Thamnophis species present in TMVB. To do so, we used

the maximum entropy modelling software (MAXENT). First, we modeled to select the most

important variables to explain the distribution of each species, then we modeled again

only with the most important variables and projected these models to the future (year

2050) considering a middle-moderate climate change scenario (rcp45) and the land use

and vegetation variables for year 2050, generated with Land Change Modeler based on the

land use change occurred between years 2002 and 2011. We also calculated niche overlap

between species in environmental space for the present and the future. Percentage of arid

vegetation was a negative important variable for all the species and minimum

temperature of the coldest month was selected as an important variable in four of the five

species. Distance to Abies forest had a high percentage of contribution for T. scalaris and

T. scaliger distribution. We found that all Thamnophis species will experience reductions in

their distribution ranges in the TMVB in the future, however, for the whole country, the

distribution of T. melanogaster seems to increase in the future. T. scalaris is the species

that will suffer the biggest reduction in its distribution; the fact that this species is limited

by high temperatures and that cannot shift its distribution upward, as it is already

distributed in the highest elevations, can be the cause of this dramatic decline. We found a

reduction in niche overlap between species in the future, which means a reduction in the
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range of suitable combination of variables for the species.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3476v1 | CC BY 4.0 Open Access | rec: 20 Dec 2017, publ: 20 Dec 2017



Environmental niche modeling; present and future potential distribution of garter snakes

species from the Trans-Mexican Volcanic Belt 

Andrea  González-Fernándeza,  Javier  Manjarreza,*,  Uri  O.  García-Vázquezb,  Maristella

D9Addarioc, Armando Sunnyc

aLaboratorio de Miología Evolutiva, Facultad de Ciencias, Universidad Autónoma del Estado de

México, Instituto literario # 100, Colonia Centro, 50000 Toluca, Estado de México, México.

bFacultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Matalla

5 de Mayo s/n, Ejército de Oriente, México, D.F., C.P. 09230, Mexico.

cCentro de Investigación en Ciencias Miológicas Aplicadas, Universidad Autónoma del Estado de

México, Instituto literario # 100, Colonia Centro, Toluca, Estado de México, CP 50000, México.

*Corresponding author: Javier Manjarrez. E-mail address: jsilva@ecologia.unam.mx

Running title: Niche modeling of TMVB garter snakes.

Abstract:

1

2

3

4

5

6

7

8

9

10

11

12

13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3476v1 | CC BY 4.0 Open Access | rec: 20 Dec 2017, publ: 20 Dec 2017



Land-use and climate change are affecting the abundance and distribution of species. The

Trans-Mexican  Volcanic  Melt  (TMVM)  is  a  very  diverse  region  due  to  geological  history,

geographic  position  and  climate,  however,  is  one  of  the  most  disturbed  regions  in  Mexico.

Reptiles are particularly sensitive to environmental changes due to their low dispersal capacity

and thermal ecology. In this study, we define the environmental niche (a part of it; considering

climatic, topographic and land use variables) and potential distribution (present and future) of the

five Thamnophis species present in TMVM. To do so, we used the maximum entropy modelling

software (MAXENT). First, we modeled to select the most important variables to explain the

distribution of each species, then we modeled again only with the most important variables and

projected these models to the future (year 2050) considering a middle-moderate climate change

scenario (rcp45) and the land use and vegetation variables for year 2050, generated with Land

Change Modeler based on the land use change occurred between years 2002 and 2011. We also

calculated niche overlap between species in environmental space for the present and the future.

Percentage of arid vegetation was a negative important variable for all the species and minimum

temperature of the coldest month was selected as an important variable in four of the five species.

Distance to  Abies forest had a high percentage of contribution for  T. scalaris and  T. scaliger

distribution. We found that all Thamnophis species will experience reductions in their distribution

ranges  in  the  TMVM  in  the  future,  however,  for  the  whole  country,  the  distribution  of  T.

melanogaster seems to increase in the future. T. scalaris is the species that will suffer the biggest

reduction in its distribution; the fact that this species is limited by high temperatures and that

cannot shift its distribution upward, as it is already distributed in the highest elevations, can be

the cause of this dramatic decline. We found a reduction in niche overlap between species in the

future, which means a reduction in the range of suitable combination of variables for the species.

Key  Words: potential  distribution;  environmental  niche  models;  climate  change;  land-use

change; Thamnophis.

Introduction

Land-use and climate change are affecting the abundance and distribution of species, altering

biological communities, ecosystems, and their associated services to humans (Parmesan & Yohe,
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2003; Cardinale et al., 2012; Kortsch et al., 2015; Nadeau, Urban & Mridle, 2017). Moth factors

are  the  main  contributors  to  the  global  decline  of  reptiles  (Ribeiro  et  al.,  2009;  Schneider-

Maunoury et al., 2016; Sunny, González-Fernández & D9Addario, 2017), in fact, some studies

indicate that between 15 and 44% of the world9s reptile species are threatened (Möhm et al., 2013;

Ceballos et al.,  2015) because they are particularly sensitive to environmental changes due to

their  low  dispersal  capacity  and  thermal  ecology  (Huey,  1982;  Castellano  &  Valone,  2006;

Ribeiro et al., 2009; Russildi et al., 2016). Studies predicting biological responses to land use and

climate change are therefore necessary in order to assess the potential impacts of these changes

and develop management decisions and conservation strategies (Jiménez-Valverde & Lobo, 2007;

Nadeau, Urban & Mridle, 2017). Information concerning species distributions is essential in these

cases  (Liu,  White  &  Newell,  2013).  Through  species  occurrence  data  and  environmental

information, we can generate environmental niche models that can be projected to geographic

space,  showing particular  areas where environmental conditions are favorable for the species

presence (Suárez-Atilano, 2015). 

The TMVM is a set of mountain ranges and volcanoes of different ages, aligned on a strip

that crosses the Mexican territory from the west, on the Pacific coast, to the east, on the Gulf of

Mexico. It is a transition area between Neartic and Neotropical regions which leads to an overlap

of biotas from both regions (Suárez-Atilano, 2015). Its geological history and geographic position

make it a very complex area with 30 different climatic types and different types of vegetation like

coniferous  forests,  oaks,  mesophyll  forests,  alpine  pastures,  subalpine  scrub  and  riparian

vegetation (Espinoza & Ocegueda, 2007). For these reasons, the TMVM is a biogeographic zone

with high species richness and endemism; it is the second biogeographic zone with the highest

herpetological richness and the most important region in endemic amphibian and reptile species

(Flores-Villela  & Canseco-Márquez,  2007;  Sunny, González-Fernández  & D9Addario,  2017).

Due to the complex characteristics of the TMVM, the montane taxa of this region have been

exposed  to  a  sky-island  dynamic  through  climate  fluctuations  (Mastretta-Yanes,  2015),

consequently, the high-altitude adapted species could be vulnerable to climate change as they

may be limited by future rising temperatures (Sunny, González-Fernández & D9Addario, 2017).

Moreover, the TMVM is one of the most disturbed regions in the country as it contains the biggest

metropolitan  areas  of  Mexico  (CONAPO,  2010;  Sunny,  González-Fernández  &  D9Addario,

2017).

Garter snakes are among the most abundant snake species in North America (Rossman,

Ford & Seigel, 1996; de Queiroz, Lawson & Lemos-Espinal, 2002), they are distributed from
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Canada to Costa Rica, but only the northern populations have been well studied (Rossman, Ford

& Seigel,  1996; Manjarrez, 1998; de Queiroz,  Lawson & Lemos-Espinal,  2002) and we lack

information  on the  ecology of  Mexican  Thamnophis (Manjarrez,  Venegas-Marrera  & García-

Guadarrama, 2007). From an evolutionary perspective, the group as a whole is singular for its

radiation into diverse ecological  niches (de Queiroz,  Lawson & Lemos-Espinal,  2002); some

species are generalists and others are specialists  in their diets and  habitats  (Rossman, Ford &

Seigel, 1996), therefore some species are particularly sensitive to land-use and climate change.

For  this  study,  we  chose  the  garter  snake  species  that  are  distributed  in  the  TMVM.  Our

hypothesis was that land use and climate change will decrease the future distribution range of

these species. Therefore, the aim of the study was to define the environmental niche (a part of it;

considering climatic, topographic and land use variables) and the present and future potential

distribution, for the whole country, of the five Thamnophis species present in TMVM. 

Materials and methods

We modeled the distribution of the Thamnophis species that occur in the Trans-Mexican

Volcanic Melt (T. cyrtopsis,  T. eques,  T. melanogaster,  T. scalaris and  T. scaliger). Occurrence

data were obtained from fieldwork (60% of records or  more; Table S1) and online  databases,

namely the Global Miodiversity Information Facility (GMIF and iNaturalist). We selected for the

analysis only the records from the last 20 years. Maps of occurrence data for the five species

were produced to check for obvious errors. We also filtered these data to obtain only one record

per km2 to reduce spatial autocorrelation (Moria et al.,  2014). We defined a polygon for each

species which represents the accessibility area (Suárez-Atilano et al., 2014; Suárez-Atilano et al.,

2017;  Sunny,  González-Fernández  &  D9Addario,  2017).  These  polygons  were  generated

considering biogeographic regions with geographical records or records near its borders (Sunny,

González-Fernández & D9Addario, 2017). We obtained bioclimatic variables from WorldClim

(Hijmans et al., 2005), topographic and land cover variables were obtained from the National

Institute of Statistics and Geography based on satellite images series V, 1:250 000 with a pixel

resolution of 120 meters (Landsat TM5) during the period 2011 to 2013 (INEGI, 2013). Land

cover variables were converted to raster and transformed from categorical to continuous using a

resample method that averages the value of the surrounding pixels to assign a new value to each

pixel. For raster processing we used ARC GIS 10.5 and the packages RASTER (Hijmans, 2016)

and RGDAL (Mivand, Keitt & Rowlingson, 2017) for R software (version 3.4.0; R. Development
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Core  Team,  2017).  After  a  bibliographic  review  and  correlation  analysis  to  discard  highly

correlated variables (Pearson coefficient higher than 0.8, Suárez-Atilano, 2015) we selected the

following  variables:  elevation,  natural  grasslands  percentage,  induced  grasslands  percentage,

percentage of arid vegetation,  Pinus forest percentage, distance to  Pinus forest,  Quercus forest

percentage, distance to  Quercus forest, distance to water sources, agriculture percentage,  Abies

forest percentage, distance to Abies forest, minimum temperature of the coldest month, maximum

temperature of the warmest month, precipitation of the wettest month and precipitation of the

driest month.  

We used the maximum entropy modelling  software  (MAXENT; Phillips,  Anderson &

Schapire, 2006) which estimates species distributions by finding the distribution of maximum

entropy (the most spread out, or closest to uniform) subject to constraints imposed by a known

distribution of the species, and by the environmental conditions across the study area (Anderson

& González, 2011). First, we ran the model for each species in MAXENT with 10 replicates and

we selected the most important variables in explaining the distribution of each species (Anderson,

Lew & Peterson, 2003; Chefaoui, Hortal & Lobo, 2005; Suárez-Atilano et al., 2017). All analyses

were performed with a convergence threshold of 1 X 10-5 with 500 iterations (Pearson et al.,

2007; Suarez-Atilano, 2015). We modeled again only with the most important variables (Guisan

and Zimmerman, 2000; Guisan and Thuiller, 2005; Araújo and Guisan, 2006) for each species

and projected these models to the future. We obtained the future bioclimatic variables CCSM4 for

the year 2050 considering the climate change scenario rcp45 (middle-moderate) from WorldClim.

Land  use  and  vegetation  variables  for  year  2050  were  generated  using  the  software  LAND

CHANGE  MODELER  FOR  ECOLOGICAL  SUSTAINAMILITY  in  IDRISI  SELVA 17.0

software (Clark Labs, 2012) and the land cover and vegetation layers from years 2002 and 2011

(series III and V; INEGI 2005, 2013). We also used elevation, slope (obtained from the elevation

layer)  and  distance  to  urban  settlements,  for  a  better  prediction  of  land  use  change.  We

established present urban areas, of the present distribution maps, and future urban areas, of the

future distribution maps, as areas of zero habitat suitability. We did not include distance to urban

areas as a variable in the models because there is usually a bias with it, as these areas are more

easily accessed by recorders (Araujo & Guisan, 2006). To evaluate model performance, we used

partial-ROC graphics  and  we  used  null  distributions  of  expectations  to  assess  the  statistical

significance of the partial-ROC graphics (Peterson, Papes & Soberón, 2008; Osorio-Olvera et al.,

2016)  as  recommended  based  on  AUC  criticisms  (Lobo,  Jiménez-Valverde  &  Real,  2008;

Peterson, Papes & Soberón, 2008). While AUC evaluates only the environmental niche model
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(under  the  omission-commission  framework)  performance,  partial-ROC allows  for  statistical

significance  from  the  AUC  itself,  based  on  a  null  distribution  of  expectations  created  via

bootstrapping replacement of 50% of the total available points and 1,000 resampling replicates

(Suárez-Atilano,  2015).  One-tailed  significance  of  the  difference  between  AUC and  the  null

expectations was assessed by fitting a standard normal variate (the z-statistic) and calculating the

probability that the mean AUC ratio was f 1. We used 75% of occurrence localities for model

training  and  25%  for  model  testing  (Suarez-Atilano,  2015).  We used  the  platform  NICHE

TOOLMOX for partial-ROC calculations (Osorio-Olvera et al., 2016). We generated the species

distribution binary maps using Max SSS threshold (Liu, White & Newell,  2013), a threshold

selection method based on maximizing the sum of sensitivity and specificity. This is considered

an adequate method to use when reliable absence data are unavailable (Liu, White & Newell,

2013). We used these binary maps to calculate the area of high suitability for the present and for

the future (Suárez-Atilano, 2015), for the whole Mexico and only TMVM for each species, in

order to see if the distribution of each species will decrease or increase in the future in both areas.

We also calculated niche overlap between species in environmental space using D (Schoener

metric; Rödder & Engler, 2011) and Hellinger9s I metrics (Warren, Glor & Turelli, 2008) for the

present and the future in order to assess if the overlap between niches will increase or decrease in

the future. For environmental niche calculations, we used the package ECOSPAT (Di Cola et al.,

2017) for R.

Results

After  depuration,  we  worked  with  267  records  of  T. cyrtopsis,  274  of  T. eques,  103  of  T.

melanogaster, 186 of  T. scalaris and 76 of  T. scaliger. The most important variables for  each

Thamnophis species are summarized in  the Table 1. For  T. cyrtopsis were (Fig. 1A):  minimum

temperature  of  the  coldest  month  (33.7% contribution),  arid  vegetation  (26.4%),  distance  to

Quercus forest (8.5%) and maximum temperature of the warmest month (5.2%). These variables,

together, explained 73.8% of the species potential distribution. Habitat suitability decreased when

minimum  temperatures  were  lower  than  5°C  and  steadily  decreased  when  maximum

temperatures  increased.  Arid  vegetation  had  a  negative  effect  on  habitat  suitability  for  this

species, and also distance to Quercus forests, therefore proximity to Quercus forests was positive

for the species. For T. eques: (Fig. 1M) elevation (28.4% contribution), minimum temperature of

the  coldest  month  (19.2%),  arid  vegetation  (15.6%) and agriculture  (9.6%).  These  variables,
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together, explained 72.8% of  T. eques  potential distribution. Habitat suitability for this species

had an optimum near 2500 m.a.s.l. but it dropped to zero with minimum temperatures lower than

-7°C. Arid vegetation had a negative effect on this species and agriculture was positive at low

values  of  this  variable,  however,  it  became  negative  at  higher  values  (above  30%).  For  T.

melanogaster:  (Fig.  1C)  elevation  (27.3% contribution),  agriculture  (12.9%),  arid  vegetation

(11.5%)  and  minimum temperature  of  the  coldest  month  (11.3%).  These  variables,  together,

explained  63% of  T. melanogaster potential  distribution.  Elevation  was  a  positive  variable.

Habitat suitability dropped to 0 with minimum temperatures lower than -7°C. Arid vegetation had

a negative effect  on this  species  and agriculture was positive  at  low values  of  this  variable,

however, it became negative at higher values (above 20%). For T. scalaris: (Fig. 1D) distance to

Abies forest (44.9% contribution), maximum temperature of the warmest month (36%) and arid

vegetation  (4.9%).  These  variables,  together,  explained  85.8  %  of  the  species  potential

distribution. Arid vegetation and distance to  Abies forests had negative effects on this species,

therefore,  proximity to  Abies forests  was positive for  the  species.  Habitat  suitability steadily

decreased when maximum temperatures increased. For  T. scaliger: (Fig. 1E):  distance to  Abies

forest  (40.6%  contribution),  minimum  temperature  of  the  coldest  month  (26.5%)  and  arid

vegetation  (5.3%).  These  variables,  together,  explained  72.4  %  of  the  species  potential

distribution. Arid vegetation and distance to  Abies forests had a negative effect on this species.

Habitat suitability dropped to 0 with minimum temperatures lower than -3°C. It is important to

notice that arid zones had a percentage of importance in all the models and minimum temperature

of the coldest month resulted important in four of the five models (Table 1). 

Metween 2002 and 2011, we can observe an increase of almost 16000 km2 in agriculture extension

and an increase of about 5000 km2  in urban areas. There is also a smaller increase in induced

grasslands.  We can observe  an  important  reduction  in  arid  vegetation  and natural  grasslands

mainly because of its conversion to agriculture lands. There is also a reduction in  Pinus and

Quercus forests, meanwhile Abies forest seems to keep its extension (Fig. 2). For the year 2050,

an increase of 20,391.64 km2 in urban areas is expected according to the model, the main increase

will  take place in  the surroundings  of Toluca city. Agriculture will  increase 82,865 km2 and

induced  grasslands  will  increase  24,796.05  km2 (Fig.  3).  We  generated  present  and  future

potential distribution maps for each species, modeled using only the most important  variables

(Fig. 4). We preferred to show the continuous maps because binary outputs can obscure important

biological detail (Liu, White & Newell, 2013). Partial-ROC bootstrap tests showed significant

ratio values of empirical AUC over null expectations (T. cyrtopsis =1.49695, P <0.001; T. Eques
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= 1.682837, P <0.001; T. Melanogaster = 1.758803, P <0.001; T. scalaris = 1.846627, P <0.001;

T. scaliger = 1.875488, P <0.001) Fig. S1.

According  to  high  suitability  area  calculations  for  the  present  and  the  future,  all

Thamnophis species will  experience reductions in  their  distribution in  the TMVM and in the

whole country. Only T. melanogaster will increase its distribution in the future. T. scalaris is the

species that will  suffer the biggest reduction in its  distribution (reductions of 54.08% for the

TMVM and 54.30% for the whole country, Table 2; Fig. 4). We can observe a reduction in niche

overlap between species in the future in all cases (Table 3; Fig. 5).

Discussion 

Environmental niche

Although our records and literature support that grasslands and water sources are essential for

Thamnophis species in México (Jones, 1990; Manjarrez and Drummond, 1996; Venegas-Marrera

and Manjarrez, 2011), these variables were not selected by the model as important to explain the

distribution of the species. This can be explained because both variables are more related with the

microhabitat of the species and we are modelling the macrohabitat; although most of the records

are in grasslands or near water sources, we can find water sources (seasonal or permanent) and

grasslands through most of the country, also where the species is not present, therefore, these

variables are not limiting the species at a macro level. Anyway, percentage of arid vegetation

(which can be interpreted as the opposite of water sources) was a negative limiting factor for all

the  species  (Table  1).  Distances  to  forests  were  more  important  to  explain  the  presence  of

Thamnophis species  than  the  percentage  of  these forests.  This  is  especially important  for  T.

scalaris and  T. scaliger as  distance  to  Abies forest  is  one  of  the  most  important  variables

determining  their  probability  of  presence.  These  results  are  consistent  with  our  fieldwork

observations,  as  we found only a  few individuals  inside  forests,  the  majority were found in

grasslands near coniferous forests. This may be because coniferous forests favor moisture (annual

precipitation between 1000 and 3800 mm) and a cold microclimate (2-24°C; Sáenz-Romero et

al.,  2012;  Sunny, González-Fernández & D9Addario,  2017) preferred by  Thamnophis species

(Manjarrez & Drummond, 1996). Therefore, microclimatic conditions of grasslands surrounded

by  forests  and  large  extents  of  grasslands  without  forest  may  be  different  and  grasslands

surrounded by forests will offer the climatic benefits of forests and the food benefits of grasslands
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due to the small preys that live there (Mastos, Araújo & Silva, 2005; Mociño3Deloya et al., 2009;

Reinert et al., 2011; Wittenberg, 2012; Mociño-Deloya, Setser & Pérez-Ramos, 2014). 

Low agriculture percentages were positive for  T. eques and  T. melanogaster,  but high

percentages were negative for both species. This may be because agriculture is a tradeoff for

many reptile species, especially snakes, because at the same time that provides benefits for them,

like prey availability, also let them exposed to human interactions (i. e., people kill them for fear

although Thamnophis species are not dangerous for humans; Sunny et al., 2015). Moreover, the

stuck practice of crop burning and the use of roller-chopping may also affect their populations

(Mullin & Seigel, 2009). 

Maximum temperature of the warmest month was one of the most important variables

explaining  T.  scalaris potential  distribution,  however,  for  all  other  species  the  minimum

temperature of the coldest month was more important. This can be explained because T. scalaris

is the species occurring at highest elevation and, consequently, is adapted to a colder climate.

Therefore, while other species are more limited by lower temperatures, T. scalaris is more limited

by higher temperatures, which will make this species more vulnerable to climate change. This

scenario is consistent with the future distribution model for this species as T. scalaris suffers the

biggest distribution range reduction. The fact that its distribution already includes the existing

areas with the highest altitude implies that, as climate change takes hold, this species will be

limited in its ability to shift its distribution upward, increasing the possibility of becoming extinct

(Sunny,  González-Fernández  &  D9Addario,  2017).  According  to  the  IUCN  T.  Scalaris is

considered  of  Least  Concern  (Canseco-Márquez  &  Mendoza-Quijano,  2007),  however,  our

results suggest that this risk category is probably going to change in the future. The reduction in

niche  overlap  between  species  in  the  future  means  a  reduction  in  the  range  of  suitable

combination of variables for the species.

Present and future potential distribution

We are surprised by the fact that the distribution range of T. melanogaster resulted to increase in

the future considering the whole country, as this species is the most threatened of the five ones,

according  to  the  IUCN (Endangered,  Vasquez-Díaz  & Quintero-Díaz,  2007).  We have  some

possible  explanations  for  that;  temperature  increases  may  have  positive  effects  on  T.

melanogaster presence,  however in the TMVM, where the conversion to agriculture is higher

(CONAPO, 2010; Sunny, González-Fernández & D9Addario, 2017), this species will reduce its
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distribution. Another possible explanation, more feasible, can be that this species is more aquatic

than the others (Manjarrez & Drummond, 1996) so, an approach considering both macrohabitat

and microhabitat variables (like water sources quality) will be necessary for a better prediction of

T. melanogaster distribution. 

Conservation implications 

The preservation of  Abies forests  in the TMVM is key for the conservation of many species

(Figueroa-Rangel, Willis & Olvera-Vargas, 2010; Vargas-Rodriguez et al., 2010; Ponce-Reyes et

al., 2012; Mryson et al.,  2014), like  T. scalaris and  T. scaliger, as the TMVM has the highest

amount of  Abies forests (91.143%) of the country (Sunny, González-Fernández & D9Addario,

2017).  However,  Abies forest  only  represents  the  1.1%  of  TMMV  area  (Sunny,  González-

Fernández & D9Addario,  2017).  Unfortunately, governmental laws have recently changed the

protection status of some areas of the TMVM, like the Nevado de Toluca Volcano (DOF, 2013).

This change could lead to logging and to changes in land use (Mastretta3Yanes et al., 2014).

Abies forest has keep a constant extension from 2002 to 2011 (Fig. 2) and we are afraid this may

change as a consequence of this protection status variation,  affecting  Thamnophis populations

and  the  populations  of  many other  species  of  amphibians  and  reptiles  of  the  TMVM.  Also,

Thamnophis species may face the potential effects of climate change. Environmental temperature

is important to ectothermic species like garter snakes because they are more active when they can

maintain  a  body  temperature  above  approximately  22°C  (Manjarrez  &  Drummond,  1996).

Environmental temperatures increases may lead Thamnophis to a physiological stress that will

result in a fitness reduction (Peterson, Gibson & Dorcas 1993), this will be especially important

for  T. scalaris as  this  species  cannot  shift  its  distribution  upward  as  we  mentioned  before.

Moreover, land-use changes are expected to accelerate due to climate change (Maclean & Wilson,

2011; Urban, 2015; Nadeau, Urban & Mridle, 2017) so garter snakes could suffer the synergic

effect of both factors.

Conclusions

Percentage of  arid  vegetation was a  negative important  variable in  all  species  and minimum

temperature of the coldest month was selected as an important variable in four of the five species.

Distance to  Abies forest was very important to explain  T. scalaris and  T. scaliger distribution
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(with  a  contribution  over  40%  for  both  species).  All  Thamnophis species  will  experience

reductions in their distributions in the TMVM, as we predicted, however, for the whole country, T.

melanogaster seems to  increase  its  distribution  in  the  future. We consider  that  more  studies

should be done to evaluate  T. melanogaster distribution and abundances. These studies should

consider microhabitat variables like water quality. We also consider essential to carry out studies

about  T. scalaris abundance, as this species will suffer the biggest reduction in its distribution

according to our results. Therefore, current abundance data of this species will be key to decide if

a  change in  its  conservation  status  is  needed.  Climate  change reversion  involve  government

decisions and the predominant economical system in the world, so we can say little about this

here.  However, we consider  Abies forests  of great importance for  T. scalaris and  T. scaliger

conservation. Moreover, in the short term, we think it is essential to implement environmental

education activities,  in  order  to  avoid snake killing,  the use of the roller  chopping and crop

burning practices. 
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Figure 1

Graphics of the most important variables for each Thamnophis species: (A) T. cyrtopsis,

(B) T. eques, (C) T. melanogaster, (D) T. scalaris and (E) T. scaliger.
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Figure 2

Land use change by category (in Km2) between years 2002 and 2011.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3476v1 | CC BY 4.0 Open Access | rec: 20 Dec 2017, publ: 20 Dec 2017



Figure 3

Present (2011) and future (2050) maps of agriculture, induced grasslands and urban

areas.
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Figure 4

Present (2011) and future (2050) potential distribution maps for each Thamnophis

species: (A) T. cyrtopsis, (B) T. eques, (C) T. melanogaster, (D) T. scalaris and (E) T.

scaliger.
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Figure 5

Present (2011) and future (2050) environmental niches for each species.
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Table 1(on next page)

Percentages of the most important variables that explain the distribution of each

Thamnophis species.
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Variables T. cyrtopsis T. eques T. melanogaster T. scalaris T. scaliger

Minimum temperature of 

the coldest month
33.7 19.2 11.3 - 26.5

Maximum temperature of 

the warmest month
5.2 - - 36

Elevation 28.4 27.3 - -

Arid vegetation 26.4 15.6 11.5 4.9 5.3

Agriculture 9.6 12.9 - -

Distance to Quercus forest 8.5 - - - -

Distance to Abies forest 44.9 40.6

Total 73.8 72.8 63 85.8 72.4

1

2
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Table 2(on next page)

Present and future high suitability area (in Km2) and percentage of reductions in these

areas for each Thamnophis species in Mexico and the TMVB.
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MEXICO TMVB

Present

distribution

(Km2)

Future

distribution 

(Km2)

Reduction

(%)

Present

distribution

(Km2)

Future

distribution 

(Km2)

Reduction

(%)

T. cyrtopsis 661888.53 387393.67 41.47 103190.15 56172.18 45.56

T. eques 583936.04 554336.36 5.07 102001.64 88928.44 12.82

T. melanogaster 255647.78 317411.39 -24.16 83237.55 67581.46 18.81

T. scalaris 110441.63 50474.08 54.30 54057.65 24825.27 54.08

T. scaliger 58682.16 37278.67 36.47 42804.76 26617.94 37.82

1

2
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Table 3(on next page)

Pair-wise niche overlap indices Schoener´s D and Hellinger´s I. Above the diagonal the

present niche overlap, below the diagonal the future niche overlap.
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Schoener´s D T. cyrtopsis T. eques T. melanogaster T. scalaris T. scaliger

T. cyrtopsis - 0.601 0.512 0.375 0.429

T. eques 0.073 - 0.855 0.410 0.757

T. melanogaster 0.033 0.580 - 0.341 0.803

T. scalaris 0.446 0.064 0.029 - 0.361

T. scaliger 0.0438 0.500 0.403 0.063 -

Hellinger´s I T. cyrtopsis T. eques T. melanogaster T. scalaris T. scaliger

T. cyrtopsis - 0.747 0.651 0.544 0.547

T. eques 0.264 - 0.924 0.630 0.869

T. melanogaster 0.174 0.748 - 0.581 0.867

T. scalaris 0.538 0.235 0.161 - 0.596

T. scaliger 0.161 0.593 0.581 0.241 -

1

2
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